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Abstract

A self-organising architecture, loosely based upon a particular implementation of
adaptive resonance theory (ART) is used here as an alternative to the fixed decoder in
the seminal implementation of reinforcement learning of Barto, Sutton and Anderson
(BSA). The cart-pole problem is considered and the results are compared to those of
the original study. The objective is to illustrate the possibility of controllers that
partition state space through experience without the need for a priori knowledge.
Input / output pattern pairs, desired state space regions and the network size /
topology are not known in advance. Results show that, although learning is not
smooth, the reinforcement learning implementation considered here is successful and
learns a meaningful control mapping. The adaptive search element and the adaptive
critic element of the original (BSA) study are retained.

1. Introduction

Artificial neural networks which learn incrementally by adding new nodes or
processing elements during operation have been used to approximate mappings (Platt,
1991; Kandirkamanathan and Niranjan, 1992). This technique obviates many of the
problems associated with fixed network structures such as ascertaining the optimum
network size/configuration (e.g. Fujita, 1992), deciding upon a connection topology
and providing sufficient information capacity (complexity) for adequate representation
of the problem domain.

One class of neural network architectures especially suited to increasing learning
capacity through experience is that based upon adaptive resonance theory (ART)
(Grossberg, 1980; Carpenter and Grossberg, 1987a, 1987b, 1989; Carpenter et al,
1991a, 1991b,1992) ART networks have the capacity of dynamically allocating nodes
as required during processing without the need for retraining. This property provides a
natural basis for on-line adaptive learning. This paper considers a network based
loosely upon some of the principles of ART which acts as a self-organising state space
decoder to provide an internal representation of state space.
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2. Control systems and the problem of delay.

An area of application for the incremental paradigm is the dynamic partitioning of state
space or information space for control and related problems. Very often, it is difficult
to establish more than crude qualitative information about state space trajectories on
all but the simplest of analytical systems. Ascertaining an accurate model of system
dynamics and contriving an objective or cost function (Hocking, 1991) signifying
desired behaviour, is usually the preferred route in optimal control problems. Most
adaptive methods are indirect and use an estimated system model to recompute
controls at each step (Sutton et al, 1992). If adequate knowledge is available, the a
priori integration of this knowledge into the network can limit the autonomy and
flexibility of the network. Autonomous learning systems need to be able to extract and
organise information during experience in their particular data rich environment,
increasing their information capacity where necessary.

The provision of input-output pairs (consisting of a stimulus and a desired response)
by an external teacher is an artificial process which relies upon several underlying
presuppositions for its operation as a training method. One such area of
presupposition is that of the temporal connection between input-output pairs; this
temporal connection forms the basis for state transition dynamics.

The effects of an input on state transitions are not limited to instantaneous changes
unless memoryless systems are considered; a more accurate assessment of real world
systems is that state transitions are influenced by inputs as a function of the time
interval between a particular input and a given state transition. This temporal effect
reduces the validity of simplistic stimulus-response pairing of input and output pairs to
some extent. Problems which involve delayed feedback to a learning system can be
reduced to simple pattern association tasks but require a problem to be solved
beforehand by a given teacher in order to specify optimal actions which should be
taken by the system (Myers, 1992). One way to take delay into account is to present
delayed inputs as part of the pattern pair. However, this requires assumptions about
the system model, that is, about how many delayed input terms are required, and thus
increases the dimensionality of the input space.

3. The Cart-Pole Problem.

Following Michie and Chambers (1968) and Barto et al (1983) the cart-pole system is
used to exemplify those aspects of neural networks as autonomous learning systems
considered in this paper. The cart-pole system (Figure 1) is a highly non-linear system
involving the characterisation of complex state-space trajectories. Classical solution
methods require assumptions about the form of the control force function and an
objective function (Hocking, 1991). Furthermore, such techniques are rarely general
and require an a priori analysis of each dynamical system encountered.
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Figure 1. The cart-pole system.

A computer simulation (including friction effects) is used to provide the system. Full
details can be found in Barto et al (1983). Information from the physical system
simulation is minimal and does not provide stimulus-response pairs in the form of
inputs and desired control outputs to be associated. Only the state vector and a coarse
failure signal, reflecting the cart-pole system status, are supplied to the adaptive
control system. If the pole falls or the cart hits the track boundaries then a failure
signal is sent to the controller and the cart-pole system is reset to its initial conditions
to begin a new trial.

The intention here is not simply to develop another controller for this particular
problem; it is to explore some of the issues for which the cart-pole problem provides a
convenient example and to indicate the possibilities of developing flexible, general
purpose controllers capable of adapting to a given dynamical system through exploring
state or information space with a minimum of a priori information.

4. Reinforcement Learning

Reinforcement learning (Barto ef al, 1983; Sutton 1988, 1992: Sutton et al 1992;
Daynan and Hinton, 1993) arose out of earlier work based upon classical conditioning
(Pavlov, 1928; Hebb, 1949; Sutton and Barto, 1981, 1990: Barto and Sutton, 1982;
Klopf, 1988). In its simplest formulation it consists of using a single scalar variable
representing the punishment / reward status of an artificial neural system with respect
to the environment in which it is operating. This signal is fed back to the learning
system by a critic which rewards favourable system responses and punishes undesirable
ones. Earlier work (Michie and Chambers, 1968) was entirely failure driven. The '
system considered here is the seminal implementation of Barto, Sutton and Anderson
(BSA) (Barto et al 1983) which consists of an associative search element (ASE) and
an adaptive critic element (ACE); the latter being responsible for interpreting the
success / failure status of the ASE subsystem. In the original form, the ASE and ACE
are both implemented using a single adaptive element but this is not a necessary
condition.

As mentioned in section 2, consequences of actions do not always follow directly from
the environment and varying degrees of temporal association have to be taken into
account since delays are often present (Myers, 1992). The feedback signal assesses the
performance of the network as a whole (Barto et al 1983) and thus reflects the
importance of the ensemble of actions in eliciting a given environmental (system)



response rather than the single input and instantaneous response implied by learning
laws based upon simple associationism.

5. The BSA Implementation

The BSA implementation of a reinforcement learning based controller uses a fixed
state space partitioning which gives 162 distinct regions or boxes. A decoder system
(Figure 2) assigns a unique output line to each state space region. The set of decoder
outputs forms the code which activates a single ASE processing element. During
processing, a state vector enters the decoder which switches on the appropriate input
line to the ASE which subsequently issues a control action subject to the current
system state. Depending upon the outcome and a prediction of reinforcement, the

information stored in the activated node, representing the traversed state space region
is then updated.
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Figure 2. The ASE / ACE reinforcement learning system of Barto et al (1983) See text for details.

6. A Self-Organising State Space Decoder

The decoder is a subsystem of the whole control system which lends itself to useful
modification. It allows the properties of the controller to be modified whilst retaining
the functionality of the ASE/ACE sub-units. Various methods of state space
partitioning become possible (e.g. Lin and Kim, 1991) including self-organisation
through experience as explored in this paper. Thus, the a priori partitioning of state

space, as given in the original formulation, is a sufficient but not necessary condition
for using the ASE/ACE system.

The decoder system considered here is based upon some of the operating
characteristics of one particular implementation of ART, fuzzy ART (Carpenter,
Grossberg and Rosen, 1991). To distinguish it from the original architecture, it has



been given the name EUCART. The EUCART decoder uses the Euclidean Metric to
establish open balls in a transformed subspace of the state space of R* and uses
category bounds based upon the fuzzy ART dynamics to prevent category drift. The
latter problem is a common problem of Euclidean based clustering methods (Moore,
1989). EUCART does not include all of the sophisticated mechanisms of fuzzy ART
as they are not required for this problem. Like fuzzy ART, the EUCART network
input is a vector in the unit hypercube. In this case the cart-pole state vector is scaled
by a mapping R* — [0,1]* and forms the EUCART decoder input. The Euclidean
metric, as opposed to a fuzzy metric, was used so that continuity between nearby
states was preserved. EUCART partitions state space by forming clusters vectors in
the transformed space, [0,1]* representing state transitions. The decoder begins in a
completely naive state with a single node and incrementally increases its representation
of state space through experience. Some self-organising systems, (e.g. Kohonen,
1989) require a fixed number of nodes at the outset; this introduces the question of
adequate network size as raised in the introduction.

7. The EUCART implementation: Some Results

Simulations comprising 10 runs of 500 trials each, were carried out. The state vector
was reset to x = ¥ =0 =6 = 0 after each trial. The simulation conditions and
parameters were similar to those in the BSA implementation except for a few minor
changes necessitated by the new approach. First, runs were not terminated when the
trial of a particular run first reached the ceiling of 500,000 time steps of 0.02 seconds
(approximately 2.8 hours of simulated time). Learning was still occurring in some
cases and the system had to reach the ceiling value a large number of times
consecutively to indicate convergence. Second, the learning parameter,o was set to
1,000 in the BSA implementation to establish the control actions quickly. Here,
because the state space partitioning was not fixed, learning needed to remain plastic to
prevent premature establishment of control actions. Hence o was set to 0.8.
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Figure 3. Simulation results showing the performance of the ASE/ACE system with the EUCART
state space decoder. The trials were averaged over ten or eight runs. See text.



Figure 3 shows the results of 10 runs and a subset of 8 runs. The subset was required
for clarity as 8 of the 10 runs converged to the ceiling value within the 500 trial limit.
The solid curve shows the average of the 8 runs which converged during the trial limit.
The dotted curve shows the average with the remaining two runs added to the
ensembles for each trial. As with the original BSA study, a single point is plotted to
indicate the average of each bin of 5 consecutive trial (ensemble) averages. The
remaining curves show 1 standard deviation either side of the respective means. These
are calculated at 25 trial intervals on the original ensemble values (not on the 5 trial
bins). Although the sample size is small, standard deviation is used to indicate spread,
since maximum and minimum values are dominated by the trial which converges first.
The circles at the top of the graph indicate at which trial the members of the 8 run
subset converged.

As expected the trend is towards greater trial durations as the trial number increases.
However, the increases in trial duration are not monotonic. This is because the
addition of a new EUCART node introduces an initial arbitrary control action. This
sometimes pushes the state space trajectory into previously unencountered regions of
state space or a region where the control actions are not properly established. The
ASE / ACE system is then likely to fail if the well established state space regions are
not quickly re-entered. Also, new nodes are sometimes added to cover “gaps” in state
space and their influence replaces some well-established state space regions with naive
coverage because the regions are now associated with a new node (i.e. the new node
centre is now nearer to the regions). As the results show, performance is recovered
when the new nodes learn to represent desirable control actions.
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Figure 4. Simulation results showing the increase in the number of EUCART nodes representing
individual state space regions and their associated control actions.. See text.

Figure 4 shows the average increase in the number of EUCART nodes for both the full
set of 10 runs and for the 8 trial subset. Both the 8 run averages and 8 run maxima
reflect convergence to a final set of desirable control actions. The 10 run averages and
10 run maxima indicate that adequate state space coverage has not yet been achieved.



Figure 5 shows one typical run. Again, the results are plotted as an average of bins of
five ensemble averages. The graph shows some correlation between increases in node
numbers and disruption of trial duration. This is readily apparent at around trial 380
with the small increase in the number of EUCART nodes occurring simultaneously
with a drop in the trial duration before recovery and ultimate convergence. The
shortest run of the set of trials converges after just 10 trials with only 24 nodes.
However, this set of control actions is almost certainly limited as comparatively little of
state space has been explored. The controller would not be expected to be as robust
and to possess as good disturbance rejection as those controllers with many more
nodes indicating a wider experience of state space.
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Figure 5. One typical run from the ensemble. Results are plotted as averages of five consecutive
trials. Note the transient disruptions caused by the addition of new nodes.

8. Conclusions/ Further Work

The simulations suggest that it is possible to retain Barto, Sutton and Anderson’s ASE
/ ACE subsystems with their proven success while using a self-organising state space
decoder. This points to the possibility of autonomous systems which explore state
space with few a priori conditions for learning. This would make systems more
flexible and more generally applicable, although there would be a commensurate
increase in initial naivity and thus learning time.

One undesirable feature of the present system is the disruption to average trial duration
cased by increases in the number of EUCART nodes. This would possibly be reduced
by using information from surrounding nodes to prime the new node thereby obviating
the need for arbitrary initial control actions when a new node is created. The
experience of the surrounding nodes must be taken into account as nodes with much
learning experience are more reliable indicators of successful control actions than naive
nodes.
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