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Abstract

In the last few years a great deal of attention has been devoted to detecting and,
to a certain extent, quantifying complex dynamics produced by nonlinear systems.
Most techniques developed for the analysis of linear systems is totally inadequate for
handling nonlinear systems in a systematic, cousistent and global way. This paper
presents a brief introduction to some of the main concepts and tools used in the analysis
of nonlinear dynamical systems aund chaos with an emphasis on the signal processing
aspects. Acquaintace with such approaches usually enables a better understanding of

~ a number of phenomena which otherwise would remain unclear or even go unnoticed.
The 1nain objectives of this tutorial are to present a readable introduction to the subject
avoiding as much as possible any mathematics, to mention a few implications for real
problems and to provide several references for further reading.

1 Introduction

The use of linear models has always been common practice in science and .engineering. A
good linear model, however, describes the dynamics of the system only in the neighbourhood
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of the particular operating point for which the model was derived. The need for a broader
picture of the dynamics of real systems has prompted the development and use of dynamical
models which include the nonlinear interactions observed in practice.

In this paper a few basic concepts related to nonlinear dynamical systems are briefly
reviewed. The objective is threefold, namely i) to provide a brief introduction to complex
dynamics and chaos, ii) to mention some implications of using such ideas to problems in the
fields of modelling, analysis, signal processing and control of nonlinear systems, and iii) to
indicate a few basic references which can be used as a starting point for a more detailed
study on this subject.

The ambit of the techniques developed for nonlinear systems with chaotic dynamics can
be appreciated by considering the wide range of examples in which chaos has been found.
Different types of mathematical equations exhibit chaotic solutions, for instance ordinary
differential equations, partial differential equations (Abhyankar et al., 1993), continued frac-
tions (Corless, 1992) and delay equations (Farmer, 1982).

Chaos is also quite common in many fields of control systems such as nonlinear feed-
back systems (Baillieul et al., 1980; Genesio and Tesi, 1991), adaptive control (Mareels and
Bitmead, 1986; Mareels and Bitmead, 1988; Golden and Ydstie, 1992) and digital control
systems (Ushio and Hirai, 1983; Ushio and Hsu, 1987)

Chaos seems to be the rule rather than the exception in many nonlinear mechanical and
electrical oscillators and pendula (Blackburn et al., 1987; Hasler, 1987; Matsumoto, 1987;
Ketema, 1991; Kleczka et al., 1992).

Chaos, fractals and nonlinear dynamics are common in some aspects of human physiology
(Mackey and Glass, 1977; Glass et al., 1987; Goldberger et al., 1990), population dynamics
(May, 1987; Hassell et al., 1991), ecology and epidemiology (May, 1980; Schaffer, 1985), and
the solar system (Wisdom, 1987; Kern, 1992; Sussman and Wisdom, 1992).

Models of electrical systems have been found to exhibit chaotic dynamics. A few ex-
amples include DC-DC converters (Hamill et al., 1992), digital filters (Lin and Chua, 1991;
Ogorzalek, 1992), power electronic regulators (Tse, 1994), microelectronics (Van Buskirk and
Jeffries, 1985), robotics (Varghese et al., 1991), circuits with saturable inductors (Kawakami,
1992) and power system models (Abed et al., 1993). e

There seems to be some evidence of low dimensional chaos in time series recorded from
the electroencephalogram (Babloyantz et al., 1985; Babloyantz, 1986; Layne et al., 1986)
although such results are so far unconclusive. Other areas where there has been much
debate concerning the possibility of chaotic dynamics are economics (Boldrin, 1992; Jaditz
and Sayers, 1993) and the climate (Lorenz, 1963; Elgar and Kadtke, 1993). _

Many other examples in which chaos has apparently been diagnosed include the models
of a rotor blade lag (Flowers and Tongue, 1992), force impacting systems (Foale and Bishop,
1992), belt conveyors (Harrison, 1992), neural systems (Harth, 1983), biological networks
(Lewis and Glass, 1991), spacecraft attitude control systems (Piper and Kwatny, 1991),
fuzzy logic (Grim, 1993), an agricultural implement system (Sakai and Aihara, 1994) and
friction force (Wojewoda et al., 1992), to mention just a few.

An advantage of focusing on chaotic systems is that chaos is ubiquitous in nature, science
and engineering. Thus simple systems which exhibit chaos commend themselves as valuable
paradigms and benchmarks for developing and testing new concepts and algorithms which
in principle would apply to a much wider class of problems. Most of the tools and concepts
reviewed in this paper are therefore also very relevant to systems which display regular




dynamics.

2 Nonlinear Dynamics: Concepts and Tools

This section provides some concepts and tools for the analysis of nonlinear dynamics. Some
of the tools considered in this section currently constitute active fields of research in their
own right. Although no attempt has been made to give a thorough treatment on such issues,
a significative number of references has been included for further reading.

2.1 Differential and difference equations
An nth-order continuous-time system can be described by the differential equation

dy

E=3}=f(y,t), (1)

wlhere y(t) € IR" is the state at time t and f : IR®™ — IR" is a smooth function called the
vector field. f is said to generate a flow ¢;: IR" — IR", where ¢;(y,t) is a smooth function
which satisfies the group properties ¢¢, 41, = ¢, © ¢y, and ¢(y,0) = v.

Given an initial condition, yo € R"™ and a time tg, a trajectory, orbit or solution of
equation (1) passing through (or based at) yg at time to is denoted as ¢;(yo, to).

Because the time is explicit in equation (1), f is said to be non-autonomous. Conversely,
systems in which the vector field does not contain time explicitly are called autonomous.

A system is said to be time periodic with period T if f(y,t) = f(y,t + T), Vy,t. An
n th-order non-autonomous system with period T can be converted into an (n + 1) th-order
autonomous system by adding an extra state § = 2/T in which case the state space will
be transformed from the Euclidean space IR™' to the cylindrical space IR™ x $', where
$' = IR/T is the circle of length T = 27 /w. It is noted that all the non-autonomous systems
considered in this work will be time periodic in most situations.

A Fized point of f or equilibrium, §, is defined as f(§) = 0 for continuous-time systems
and as § = f(7) for discrete-time systems. Df is the Jacobian matrix of the system, defined
as the matrix of first partial derivatives. Evaluating the Jacobian at a particular point on
a trajectory of the system, that is Df(y;) gives a local approximation of the vector field f
in the neighbourhood of y;, sometimes Df(y;) is referred to as a linearisation of f at y;.
If Df(§) has no zero or purely imaginary eigenvalues, then the eigenvalues of this matrix
characterise the stability of the fixed point 7.

An nth-order discrete-time system can be described by a difference equation of the form

y(k+1) = fly(k),0) . (2)

A trajectory or orbit of a discrete system is a set of points {y(k +1)}2,. The definitions
for discrete systems are analogous to the ones described for continuous-time systems and

therefore will be omitted. For details see (Guckenheimer and Holmes, 1983; Parker and
Chua, 1989; Wiggins, 1990)




2.2 Numerical simulation of dynamical systems

Generating time series for a system described by a difference equation is quite straightforward
since y(k), k = ny,ny,+1,n,+2,... can be computed by simply interating an equation like
(2) from a set of n, initial conditions.

If the system is described by an ordinary differential equation, simulation cannot be
performed as easily since an equation like (1) will need to be integrated. Fortunately, there
are a number of well known algorithms available for performing this task (Parker and Chua,
1989) of which the fourth-order Runge-Kutta is undoubtedly the most commonly used.

An important question when integrating differential equations on a digital computer is
the choice of the integration interval. In the case of linear systems or nonlinear systems with
relatively slow dynamics the choice of the integration interval is not usually critical. For
some nonlinear systems, however, if such an interval is not sufficiently short spurious chaotic
regimes may be induced when integrating the system using, for instance, a fourth-order
Runge-Kutta algorithm, whilst second-order Runge-Kutta algorithms may induce spurious
dynamics even for fairly short integration intervals (Grantham and Athalye, 1990). It has
also been reported that in some cases the location of the bifurcation points depend on the
integration interval if it exceeds a critical value (Aguirre and Billings, 1994a).

Irrespective of the type of the dynamical equations or the algorithm used to solve such
equations, an important question which should be answered is whether the simulated results
are representative of the ‘real solution’. This is a nontrivial matter, and to address it would
involve a detailed look into the shadowing lemma (Guckenheimer and Holmes, 1983). For
the purposes of this tutorial, it suffices to mention that there is abundant evidence that
computer simulations are generally reliable as numerical tools for the analysis of dynamical
systems (Sauer and Yorke, 1991). However, it should also be borne in mind that pitfalls do
exist (Troparevsky, 1992), some of them as a consequence of the eztreme sensitivity to initial
conditions conditions exhibited by some systems. This characteristic is one of the most
peculiar features of a chaotic system and will be briefly illustrated in section 2.9. Extreme
sensitivity to initial conditions does not invalidate numerical computations but certainly
calls for caution in analysing the results.

2.3 Spectral methods

One of the first tools used to diagnose chaos was the power spectrum (Mees and Sparrow,
1981). The appearance of a broad spectrum of frequencies of highly structured humps near
the low-order resonances is usually credited to chaos in low-order systems (Blacher and
Perdang, 1981). However, broad-band noise and the existence of phase coherence can make
it difficult to discriminate experimentally between chaotic and periodic behaviour by means
of the power spectrum (Farmer et al., 1980). More recently the raw spectrum (sum of the
absolute values of the real and imaginary components) and the log spectrum (log of the raw
spectrum) have been compared with more classical techniques in the context of chaotic time
series analysis (Denton and Diamond, 1991).

Recently, the application of spectral techniques to the analysis of chaotic systems has
concentrated on the bispectrum and trispectrum (Pezeshki et al., 1990: Subba Rao, 1992;
Chandran et al.,, 1993; Elgar and Chandran, 1993; Elgar and Kennedy, 1993). See (Nikias
and Mendel, 1993; Nikias and Petropulu, 1993) for an introduction on higher-order spectral




analysis. Such techniques have been used to detect and, to a certain extent, to quantify the
energy transfer among [requency modes in chaotic systems.

2.4 Embedded trajectories

One technique used in the analysis of nonlinear dynamical systems is to plot a steady-state
trajectory of a system in the phase-space. Thus if y(t) is a trajectory of a given system this
can be achieved by plotting y(t) against y(t). For low-order systems this procedure can be
used to distinguish between different dynamical regimes.

In many practical situations, however, only one variable is measured. In these cases an
- alternative procedure is to plot y(t — T,) against y(t) where T}, is a time lag. These variables
can be used in the reconstruction of attractors (Packard et al., 1980; Takens, 1980) and such
variables also define the so-called pseudo-phase plane. This is motivated by the fact that
y(t—T,) is, in a way, related to y(t) and consequently the embedded trajectories represented
in the pseudo-phase plane should have properties similar to those of the original attractor
represented in the phase plane (Moon, 1987).

A further advantage of this technique is that it enables the comparison of trajectories
computed from continuous systems where y(t) is usually available, and from discrete models
where y(t) is often not available and would have to be estimated. Phase portraits and
piots of trajectory embeddings can be used not only as a means of distinguishing different
dynamical regimes, but also to demonstrate qualitative relationships between original and
reconstructed attractors.

The choice of T}, for graphical representation purposes is not critical and plotting a tra-
jectory onto the pseudo-phase plane for varying values of T;, may give some insight regarding
the information flow on the attractor (Fraser and Swinney, 1986). These and other related
issues will be addressed in more detail in section 3.

2.5 Dynamical attractors

If a deterministic and stable system is simulated for a sufficiently long time it reaches steady--
state. In state space this corresponds to the trajectories of tlie system falling on a particular
‘object’ which is called the attractor. Asymptotically stable linear systems excited by con-
stant inputs have point attractors which have dimension zero and correspond to a constant
time series.

Nonlinear systems, on the other hand, usually display a wealth of possible attractors. To
which attractor the system will finally settle depends on the system itself and also on the
initial conditions.

An advantage of considering attractors in state space as alternative representations of
time series is that a number of geometrical and topological results can be used. For the
purposes of this tutorial, it will suffice to point out that the shape and dimension of the
attractors in state space are directly related to the complexity of the dynamics of the respec-
tive time series. Thus simple low dimensional attractors correspond to simple time series
dynamics whereas more complex time series lie on attractors with higher dimension. This is
illustrated in figure 1.

The most common attractors are the point attractor (dimension zero), limit cycles (di-
mension one) and tori (dimension two). Another type of attractor which has recently at-




tracted a great deal of attention are the so-called strange or chaotic attractors which are
fractal objects. Such attractors will be introduced in section 2.7.

2.6 Bifurcation diagrams

Most nonlinear systems have more than one attractor. To which attractor the system will
ultimately converge depends on the system parameters and on the initial conditions. A
useful tool for assessing how a given nonlinear system ‘moves’ from one attractor to another
over a range of parameter values is the bifurcation diagram. This reveals how the system
bifurcates as a certain parameter, called the bifurcation parameter, is varied. Roughly, a
system is said to undergo a bifurcation when there is a gualitative change in the trajectory
(or attractor) of the system. At the bifurcation point, the Jacobian of the system has at
least one eigenvalue with the real part equal to zero for continuous-time systems or on the
unit circle for discrete-time systems.

There are a number of known bifurcations. The most common co-dimension one bifurca-
tions are the pitchfork, the saddle-node, the transcritical, the Hopf bifurcation, and the flip
or period doubling, which only occur in discrete maps or periodically driven systems. For an
introduction to bifurcation and a description of the aforementioned types see (Guckenheimer
and Holmes, 1983; Mees, 1983; Thompson and Stewart, 1986).

Approaches to calculate bifurcation diagrams include the brute force, path following
(Parker and Chua, 1989), the cell-to-cell mapping technique (Hsu, 1987) and frequency
domain methods (Moiola and Chen, 1993). For reasons of simplicity, the brute force ap-
proach is described in what follows. This approach is simple and robust but in general it is
computationally intensive.

A point 7 of a bifurcation diagram of a nonautonomous systems driven by 4 cos(wt)
with A as the bifurcation parameter is defined as

T:{(ynA) € ]R'XIIyzy(tl): A:AU) ti=to+K$X2'ﬂ'/(xJ} ) (3)

where | is the interval ] =[A; AfJC IR, 0 < t, < 27/w and K, is a constant. This means
that the point r is chosen by simulating the system for a sufficiently long time K, x 27 /w
with A = A to ensure that transients have died out before plotting y(K,, x 27 /w) against
Ap. In practice for each value of the parameter A, ny, points are taken at the instants

ti=to+ (Kes+ i) x 27 /w, t=01, .. f—1 . (4)

Clearly, the input frequency w can also be used as a bifurcation parameter. For au-
tonomous systems a bifurcation diagram can be obtained in an analogous way by choosing

b =g 4 (K ¥ ), i=0,1,..,np~1. ()

A bifurcation diagram will therefore reveal at which values of the parameter A € I the
solution of the system bifurcates and how it bifurcates. When studying chaos such diagrams
are also useful in detecting parameter ranges for which the system behaviour is chaotic.

As an example of a bifurcation diagram consider figure 2. Througout this tutorial,
bifurcation parameters are denoted by A. Thus, figure 2 shows some of the different types
of attractors displayed by the system as A is varied. In particular, for A = 4.5, 9 and 11
the system displays period-one, period-three and chaotic dynamics, respectively. For clarity
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the respective attractors represented in the cylindrical state-space (see section 2.1) are also
shown.

2.7 Chaotic or strange attractors

Despite some attempts, there is no widely accepted definition of chaos or chaotic attractors.
In this section, a rather intuitive introduction to some aspects of strange attractors will be
briefly given based on the ideas presented above.

Firstly it should be realised that chaos is not a pathological dynamical regime which is
only exhibited by carefully designed paradigms. Secondly, chaos is not a dynamical regime

- which lacks order or pattern. On the contrary, chaotic systems have well defined patterns of

behaviour and are full of order and beauty.

The terms strange and chaotic were coined because in the genesis of chaos, the (now well
known) attractors which scientists came accross were totally different from what was known
at the time (thus the term strange), and the time series produced by such systems would not
follow any predictable path (thus the term chaotic). Although there exist some pathological
cases in which strange attractors are nonchaotic (Grebogi et al., 1984; Ding et al., 1989;
Kapitaniak, 1993), the terms ‘strange’ and ‘chaotic’ are usually used interchangeably.

In order to suggest an image of chaos, let us consider a system which originally has a
simple and well known attractor and then, via bifurcations, becomes increasingly complex.
There are many ways, of course, in which a system may become more complex. Figure 3
illustrates two such paths. Figures 3a-b-c-d shows a two dimensional projection of the state
space of a system which originally (3a) follows a periodic motion of period one, that is,
the trajectory takes one revolution to repeat itself. After a bifurcation, the system is still
periodic but now (3b) the periodicity is the double of what it was before. After a sequence
of such bifurcations, the resulting trajectory is aperiodic but still resembles the overall shape
of the preceeding periodic attractors. Thus figure 3d is the projection of a chaotic attractor
and the sequence of bifurcations illustrated by 3a-b-c-d is called the period-doubling route to
chaos.

Similarly, the templates shown in 3e-f-g-h illustrate another sequence of bifurcations.
Here, each bifurcation increases not the periodicity but rather the dimension of the attractor.
It is worth pointing out that from figure 3g to figure 3h the dimension increases from two to a
number which is between two and three because of two main reasons. First, the trajectories
on the strange attractor in figure 3h cannot cross (if they did the motion would be penodlc)
and in second place the volume of this attractor is zero.

In the study of chaotic systems it is somewhat instructive to consider the di{ferent routes
to chaos in order to gain further insight about the dynamics of the system under investigation.
As pointed out “the benefit in identifying a particular prechaos pattern of motion with one
of these now clussic models is that a body of mathematical work on each exists which may
offer better understanding of the chaotic phenomenon under study” (Moon, 1987, page 62).

Because a thorough study of the routes to chaos is beyond the immediate scope of this
work, some of the most well-known patterns will be listed with some references for further
reading. Some of the routes to chaos reported in the literature include period doubling
cascade (Feigenbaum, 1983; Wiesenfeld, 1989), quasi-periodic route to chaos (Moon, 1987),
itermittency (Manneville and Pomeau, 1980; Kadanoff, 1983), frequency locking (Swinney,
1983). For other routes to chaos see (Robiuson, 1982) and references therein.




In many cases it would be of interest to see more detail in graphical representations than
provided by figures 3d and 3h. In the next section a mathematical device is described which
reveals the fine strucute of atttractors. Also, quantitave measures of chaotic attractors will
be described in sections 2.10 and 2.11.

2.8 DPoincaré sections

A bifurcation diagram shows the different types of attractors to which the system settles to
as the bifurcation parameter is varied. However, a bifurcation diagram provides very little
information concerning the shape of the attractors in state-space. In order to gain further
insight into the geometry of attractors one may use the so-called Poincaré map. Such a map
is a cross section of the attractor and can be obtained by defining a plane which should be
transversal to the flow in state space as shown in figure 4.

More precisely, consider a periodic orbit ¢ of some flow ¢, in IR" arising from a nonlinear
vector field. Let £ C IR™ be a hypersurface of dimension n—1 which is transverse to the flow
¢:. Thus the first return or Poincaré map P = £ — I is defined for a point g€ X by

P(g) = ¢5(q) , (6)
where 7, is the time taken for the orbit ¢;(g) based at g to first return to Z.

This map is very useful in the analysis of nonlinear systems since it takes place in a
space which is of lower dimension than the actual system. It is therefore easy to see that
a fixed point of P corresponds to a periodic orbit of period 27 /w for the flow. Similarly,
a subharmonic of period K x 27 /w will appear as K fixed points of P. Quasiperiodic and
chaotic regimes can also be readily recognised using Poincaré maps. For instance, the first-
return map of a chaotic solution is formed by a well-defined and finely-structured set of
points for noise-free dissipative systems.

From the above definition it is clear that if a system has n> 3, the Poincaré map would
require more than two dimensions for a graphical presentation. In order to restrict the
plots to two-dimensional figures, y(t — T,) is plotted against y(t) at a constant period. For
periodically driven systems the input period is a natural choice and the resulting plot is
called a Poincaré section.

This procedure amounts to defining the Poincaré plane £, in'the pseudo-phase-space and
then sampling the orbit represented in such a space. The choice of T, is not critical but it
should not be chosen to be too small nor too large compared to the correlation time of the
trajectory. Otherwise the geometry and fine structure of the attractor would not be well
represented. The qualitative information conveyed by both Poincaré maps and sections are
equivalent as demonstrated by the theory of embeddings (Takens, 1980; Sauer et al., 1991).

Although the Poincaré sections are usually obtained by means of numerical simulation,

it is possible, although not always feasible, to determine Poincaré maps analytically (Guck-
enheimer and Holmes, 1983; Brown and Chua, 1993).

2.9 Sensitivity to initial conditions

Probably the most fundamental property of chaotic systems is the sensitive dependence on
initial conditions. This feature arises due to the local divergence of trajectories in state space
in at least one ‘direccion’. This will be also addressed in the next section.




In order to illustrate sensitivity to initial conditions and one of its main consequences, it
will be helpful to consider the map

y(k) = A1 —y(k=1)]y(k-1) . (7)

In order to iterate equation (7) on a digital computer, an initial condition y(0) is required.
Using this value, the right hand side of equation (7) can be evaluated for any value of A. This
produces y(1) which should be ‘fedback’ and used as the initial condition in the following
iteration. This procedure can be then repeated as many times as necessary to generate a
time series y(0),y(1),v(2),.. ..

A graphical way of seeing this is illustrated in figure 5. It should be noted that the right
hand side of equation (7) is a parabola, as shown in figure 5a. Thus to evaluate equation (7)
is equivalent to finding the value on the parabola which corresponds to the initial condition.
This is represented in figure 5a by the first vertical line. The feeding back of the new value
is then represented by projecting the value found on the parabola on the bisector. This
completes one iteration.

Chosing the initial condition y(0) = 0.22 and A = 2.6, figure 5a shows the iterative
procedure and reveals that after a few iterations the equation settles to a point attractor.
The respective time series is shown in figure 5b. The same procedure was followed for the
same initial condition and A = 3.9. The results are shown in figures 5c-d. Clearly, the
equation does not settle onto any fixed point and not even onto a limit cycle. In fact, it is
known that equation (7) displays chaos for A = 3.9.

What happens if instead of a single initial condition an interval of initial conditions is
iterated? This is shown in figures 5e-f. For A = 2.6, the map will eventually settle to the
same point attractor as before. This is a typical result for regular stable systems and it
illustrates how all the trajectories based on the initial conditions taken from the original
interval converge to the same attractor.

Considering a much narrower interval of initial conditions and proceeding as before
yielded the results shown in figure 5f for which A = 3.9. Clearly, the interval of initial
conditions was widened at each iteration. Such an interval can be interpreted as an error in -
the original initial condition, y(0) = 0.22. In practice errors in initial conditions will be al-
ways present due to a number of factors such as noise, digitalisation effects, round-off errors,
finite wordlength precision, etc. It is this effect of amplifying errors in initial conditions which
is known as the sensitive dependence on initial conditions and an immediate consequence of
this feature is the impossibility of making long-term predictions for chaotic systems. The
next section describes indices which quantify the sensitivity to initial conditions."

2.10 Lyapunov exponents

Lyapunov exponents measure the average divergence of nearby trajectories along certain ‘di-
rections’ in state space. A chaotic attracting set has at least one positive Lyapunov exponent
and no Lyapunov exponent of a non-chaotic attracting set can be positive. Consequently
such exponents have been used as a criterion to determine if a given attracting set is or
is not chaotic (Wolf, 1986). Recently the concept of local Lyapunov exponents has been
investigated (Abarbanel, 1992). The local exponents describe orbit instabilities a fixed num-
ber of steps ahead rather than an infinite number. The (global) Lyapunov exponents of an




attracting set of length N can be defined as !

.1 . . _
= Jl_r’nooﬁ log, 7i(N), 1=12 cun, (8)

where log, = In and the {ji;(N )}, are the absolute values of the eigenvalues of

[Df(ym)][Df (yn-1)]--[Df (w1)] (9)

where D f(y;) € R™ " is the Jacobian matrix of the n-dimensional differential equation (or
discrete map) evaluated at y;, and {yc}l, is a trajectory on the attractor. Note that n is
the dynamical order of the system.

In many situations the reconstructed or identified models may have a dimension which
is larger than that of the original systems and therefore such models have more Lyapunov
exponents. These ‘extra’ exponents are called spurious Lyapunov exponents. The estima-
tion of Lyapunov exponents is known to be a nontrivial task. The simplest algorithms (Wolf
et al., 1985; Moon, 1987) can only reliably estimate the largest Lyapunov exponent (Vastano
and Kostelich, 1986). Estimating the entire spectrum is a typically ill-conditioned problem
and requires more sophisticated algorithms (Parker and Chua, 1989). Further problems arise
when it comes to deciding which of the estimated exponents are true and which are spuri-
ous (Stoop and Parisi, 1991; Parlitz, 1992; Abarbanel, 1992). The estimation of Lyapunov
exponents is currently an active field of research as can be verified from the following ref-
erences (Sano and Sawada, 1985; Eckmann et al., 1986; Bryant et al.,, 1990; Brown et al.,
1991; Parlitz, 1992; Kadtke et al., 1993; Nicolis and Nicolis, 1993; Chialina et al., 1994). For
application of Lyapunov exponents in the quantification of real data see (Brandstater et al.,
1983; Wolf and Bessoir, 1991; Vastano and Kostelich, 1986).

In view of such difficulties and the fact that the largest Lyapunov exponent, A, is in
many cases the only positive exponent? and that this gives an indication of how far into
the future accurate predictions can be made, it seems appropriate to use A; to characterise
a chaotic attracting set (Rosenstein et al., 1993). Indeed, the largest Lyapunov exponent
has been used in this way and to compare severa] identified models (Abarbanel et al., 1989
Abarbanel et al., 1990; Principe et al., 1992).

The algonthm suggested in (Moon, 1987) for estimating A; is described below. A similar
algorithm which simultaneously estimates the correlation dimension to be defined in section
2.11 has been recently investigated in (Rosenstein et al., 1993).

Consider a point zg on the trajectory z(k) (for the moment it is assumed that such a
trajectory is available a priori), say zo = z(0), and a nearby point zo+ ;. For simplicity
it is assumed that z(k) € IR, but in general higher-dimensional systems will be the case.
The largest Lyapunov exponent of an attracting set of length N can be defined as (see also
equation (8))

A= l lim ilog M (10)
N N mk:l € l

!Many authors use logs in this definition
2In this case A\; = h, where h is the Kolmogorov-Sinai or metric entropy. Note that for dissipative systems
(chaotic and non-chaotic) 3_i._; A; < 0 (Eckmann and Ruelle, 1985; Wolf, 1986).
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where 8, is the distance between two points on nearby trajectories at time k. The estimation
of ), is a simulation-based calculation (Moon, 1987; Parker and Chua, 1989). The main idea
is to be able to determine the ratio

lzi=(z1+6) || _ |6
20— @+l ~ 6]’ 1)

where z; is another point on the trajectory z(k), namely z(AL), z1+6; is a point obtained
by following the evolution of the randomly chosen initial condition z¢+6p over the interval
AL where AL will be referred to as the Lyapunov interval.

From the last equation it is clear that one only needs to follow the evolution of pertur-
bations §; along the reference trajectory z(k). It is well known that the Jacobian matrix
Df(z;) describes the dynamics of the system for small perturbations in the neighbourhood
of z;. Thus the computation of the largest Lyapunov exponent, A;, consists in solving the
variational equations

§=Df(z:)6 , (12)

where Df(z;) is the Jacobian matrix of f(-) evaluated at z;, and also of simulating the
system

z = f(z) (13)

if the trajectory z(k) = {z;}}, is not available in advance. Equations (12) and (13) are
simulated and the ratio || §k+1 || / || 6% || is calculated once at each AL interval. Therefore
estimating A; consists in successively predicting the systems governed by Df(-) and f(-) AL
seconds into the future and assessing the expansion of the perturbations 6;.

Some of the ideas described above are illustrated in figures 6a-b. The former figure is
the bifurcation diagram of the logistic equation (7). Figure 6b shows the largest Lyapunov
exponent of such an equation for a range of values of A. The largest Lyapunov exponent
was calculated as described above. Note that A; = 0 at bifurcation points and that A; > 0
for chaotic regimes as predicted by the theory. These figures also reveal the narrow windows
of regular dynamics which are surrounded by chaos.

-

2.11 Correlation dimension

Another quantitative measure of an attracting set is the fractal dimension. In theory, the
fractal dimension of a chaotic (non-chaotic) attracting set is non-integer (integer). An excep-
tion to this rule are fat fractals which have integer fractal dimension which is consequently
inadequate to describe the properties of such fractals (Farmer, 1986). Nontheless, like the
largest Lyapunov exponent, the fractal dimension can, in principle, be used not only to di-
agnose chaos but also to provide some further dynamical information (Grassberger et al.,
1991). A deeper treatment can be found in (Russell et al., 1980; Farmer et al., 1983; Grass-
berger and Procaccia, 1983a; Atten et al., 1984; Caputo et al., 1986) for raw data and in
(Badii and Politi, 1986; Badii et al., 1988; Mitschke, 1990; Brown et al., 1992; Sauer and
Yorke, 1993) for filtered time series.

The fractal dimension is related to the amount of information required to characterise a
certain trajectory. If the fractal dimension of an attracting set is D + 6, D € Z*, where
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0<6<1, then the smallest number of first-order differential equations required to describe
the data is D +1.

There are several types of fractal dimension such as the pointwise dimension, correla-
tion dimension, information dimension, Housdor[ff dimension, Lyapunov dimension, for a
comparison of some of these dimensions see (Farmer, 1982; Hentschel and Procaccia, 1983;
Moon, 1987). For many strange attractors, however, such measures give roughly the same
value (Moon, 1987; Parker and Chua, 1989). The correlation dimension® (Grassberger and
Procaccia, 1983b), however, is clearly the most widely used measure of fractal dimension
employed in the literature.

A time series {y;}/L, can be embedded in the phase space where it is represented as a
sequence of d.-dimensional points y; = [uj ¥i=1 - Yj-de+1]- Suppose the distance between

two such points is® Si; =| yi—y; | then a correlation function is defined as (Grassberger and
Procaccia, 1983Db)

1
Cl(e) = A&gnm I (number of pairs (i, j) with Si; <€) . (14)

The correlation dimension is then defined as

D.= lim log Cle) Cle) .

e~ log, €

(15)

For many attractors D. will be (roughly) constant for values of € within a certain range.
In theory, the choice of d. does not influence the final value of D. if d. is greater than
a certain value. In particular, it has been shown that provided there are sufficient noise-
free data, d, = Ceil(D.), where Ceil(-) is the smallest integer greater than or equal to D,
(Ding et al., 1993) and that this result remains true in the case the data have been filtered
using finite impulse response (FIR) filters (Sauer and Yorke, 1993). In practice, due to
the lack of data and to the presence of noise, d, > Ceil(D.), thus several estimates of the
correlation dimension are obtained for increasing values of d.. If the data were produced
by a low-dimensional system, such estimates would eventually converge. Of course, these

results depend largely on both the amount and quality of the data available. For a brief -

account of data requirements, see section 4.1 below.

In order to illustrate the estimation of D, a time series with N = 15000.data points was
obtained by simulating Chua’s circuit (Chua and Hasler, 1993) operating on the double scroll
attractor. The correlation function C(e) was then calculated for 2 < d. < 10 and plotted
in figure 7. For small embedding dimensions (d. = 2) the correlation dimension is D, = 1.8
but as d, is increased the scaling region converges to the correct value D, = 2.0 for d. = 5.

Some fractals have the properties of self-similarity. This is illustrated in figure 8 which
shows the well known Hénon attractor (Hénon, 1976) and an amplification of a small section
of one of its legs. It should be observed that what appears to be a single ‘line’ in the attractor
turns out to be two lines (see zoom in figure 8). However, if each of these lines were zoomed
again it would become apparent that they are composed of two lines each and this continues
ad infinitum. This particular fractal structure is sometimes referred to as having a Cantor
set structure.

3This measure can be seen as a generalised dimension and is considered to be the easiest Lo estimale
reliably (Grassberger, 1986b) and thus remains the most popular procedure so far.
4geyeral norms can be used here such as Euclidean, £, etc.
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Probably the greatest application of the correlation dimension is to diagnose if the un-
derlying dynamics of a time series have been produced by a low-order system (Grassberger,
1986a; Lorenz, 1991). Because this is an important problem, the estimation of correlation
dimension has attracted much attention in recent years. Many papers have focussed on
determining the causes of bad estimates (Theiler, 1986), estimating error-bounds (Holzfuss
and Mayer-Kress, 1986; Judd and Mees, 1991) and suggesting improvements on the original
algorithm described in (Grassberger and Procaccia, 1983b).

2.12 Other invariants

There are a number of less used invariants of strange attractors reported in the literature
such as the Kolmogorov or metric entropy, topological entropy, generalised entropies and
dimensions, partial dimensions, mutual information, etc. (Grassberger and Procaccia, 1984;
Eckmann and Ruelle, 1985; Fraser, 1986; Grassberger, 1986b).

With few exceptions (Hsu and Kim, 1985), statistics have received little attention as
invariant measures of strange attractors. Apparently, the most useful such measure is the
probability density function (Packard et al., 1980; Moon, 1987; Vallée et al., 1984; Kapita-
niak, 1988)

The estimation of unstable limit cycles has also been put forward as a way of charac-
terising strange attractors. The motivation behind this approach is that because a strange
attractor can be viewed as a bundle of infinite unstable limit cycles, the number of the
periodic orbits, the respective distribution and properties should be representative of the
attractor dynamics. Indeed, from such information other invariants such as entropies and
dimensions can be estimated (Auerbach et al.,, 1987). For more information on this sub-
ject, see (Grebogi et al., 1987; Cvitanovié, 1988; Lathorp and Kostelich, 1989; Lathorp and
Kostelich, 1992)

3 Embedding Techniques

An nth-order dynamical system such as the one in equation (1) can be represented as a set
of n first-order ordinary differential equations each governed by a state variable. The global
system would therefore have n time variables {y1, y2, ..., yn} and the solution of such a
system could be thought of as n time series.

In a sense, the n time series mentioned above are obtained from the original n th-order
system by decomposition. Also, given the n times series it is possible to recover the original
n-dimensional solution by taking each state variable to be a coordinate of a ‘reconstruction
space’ and to represent each time series in such a space. Thus n time series can be used to
compose or reconstruct the system solution or trajectory. This is illustrated in figure 9.

A difficulty encountered in practice with this approach is that the order of the system
n is seldom known and even when an accurate estimate of this variable exists the number
of measurements will not be as large as n. Take for for instance the atmosphere which is
usually thought of as a high-order system, but monitoring and weather forecasting stations
only measure a very limited number of variables of this system.

This can be described in a more mathematical way by considering the action of a mea-
suring function A(y) : IR™ — IR which operates on the entire state or phase space but which
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yields just a scalar which is called the measured variable. The question which naturally
arises at this stage is the following: given f: R™ — IR™ and A(y) : R™ - R is it possible to
reconstruct a trajectory or solution of f from the scalar measurement h(y)?

Fortunately, it turns out that this question has an affirmative answer if certain require-
ments are met (Takens, 1980; Packard et al., 1980; Sauer et al., 1991). Thus embedology is
concerned with how to reconstruct the phase space of a dynamical system of order n from a
limited set of measurements ¢ where ¢ < n, and more often than not g = 1. In other words,
the objective is to reconstruct the phase space of a system from a single time series. The
resulting phase space is usually referred to as embedded phase space, embedding space or just
embedding.

Another question which should be addressed is: why should we be concerned in recon-
structing the trajectories of a dynamical system? In sections 2.5 and 2.7 it was seen that in
state (or phase) space the steady state dynamics of a system are represented by geometrical
figures which are called attractors. A stable autonomous linear system only has one kind
of attractor, a point attractor. However, nonlinear systems may have more complicated
attractors such as limit cycles, tori and even strange attractors.

Therefore if time series are used to reconstruct the phase space of dynamical systems via
embedding techniques, it is possible to use results from differential geometry and topology
to analyse the resulting attractors which are geometrical objects in the reconstructed space.
Moreover, if the embedding was successful, both the reconstructed and the original attractors
are equivalent from a topological point of view, or in other words, they are said to be
diffeomorphic.

The practical consequences of this are obvious. No matter how complex a dynamical
system might be, even if only one variable of such a system is measured, it is possible
to reconstruct the original phase space via embedding techniques. It is also possible to
estimate qualitative and quantitative invariants of the original attractor, such as Poincaré
maps, fractal dimension and Lyapunov exponents, directly from the reconstructed attractor
which is topologically equivalent to the original one. These ideas are illustrated in figure 10.

A convenient but by no means unique way of reconstructing phase spaces from scalar
measurements is achieved by using delay coordinates (Packard et al., 1980; Takens, 1980;
Sauer et al., 1991). Other coordinates include the singular value (Broomhead and King,
1986; Albano et al., 1988) and derivatives (Baake et al., 1992; Gouesbet and Maquet, 1992).
A framework for the comparison of several reconstructions has been developed in (Casdagli
et al., 1991) and three of the most common methods have been studied in (Gibson et al.,
1992).

A delay vector has the following form

y(k) = ly(k) y(k=7) ... ylk=(de—1)7)]", (16)

where d. is the embedding dimension and 7 is the delay time. Clearly, y (k) can be represented
as a point in the d.-dimensional embedding space. Takens has shown that embeddings with
de > 2n will be faithful generically so that there is a smooth map fr: IR%* — IR such that
(Takens, 1980)

y(k+T) = fr(y(k)) (17)

for all integers k, and where the forecusting time T and 7 are also assumed to be integers.
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A consequence of Taken’s theorem is that the attractor reconstructed in R¢ is diffeomorphic
to the original attractor in state space and therefore the former retains dynamical and
topological characteristics of the latter.

In the case of delay reconstructions, the choice of the reconstruction parameters, that
is, the embedding dimension d. and the delay time 7 is of the greatest importance since
such parameters strongly affect the quality of the embedded space. The selection of d.
has been investigated in (Cenys and Pyragas, 1988; Aleksi¢, 1991; Cheng and Tong, 1992;
Kennel et al.,, 1992). The choice of the delay time has been discussed in (Albano et al.,
1991; Buzug et al., 1990; Fraser, 1989; Kember and Fowler, 1993; Liebert and Schuster,
1989; Billings and Aguirre, 1995). Many authors have suggested that in some applications
it is more meaningful to estimate these parameters simultaneously, this is tantamount to
estimating the embedding window defined as (d. — 1)7 (Albano et al., 1988; Buzug and
Pfister, 1992; Martinerie et al., 1992). Some of these methods have recently been compared
in (Rosenstein et al., 1994). Dynamical reconstructions from nonuniformly sampled data has
been addressed in (Breedon and Packard, 1992) and phase space reconstruction of symmetric
attractors has been considered in (King and Stewart, 1992).

Taken'’s theorem gives sufficient conditions for equation (17) to hold, that is, in order to
be able to infer dynamical invariants of the original system from the time series of a single
variable, however no indication is given as to how to estimate the map fr. A number of
papers have been devoted to this goal and such methods can be separated into two major
groups, namely local and global approximation techniques.

The local approaches usually begin by partitioning the embedding space into neighbour-
hoods {Ui}fﬁ‘l within which the dynamics can be appropriately described by a linear map
gr : R — IR such that

y(k +T) = gri(y(k)) fory(k) el i=1,..., Ny . (18)

Several choices for gr have been suggested in the literature such as linear polynomials
(Farmer and Sidorowich, 1987; Casdagli, 1991) which can be interpolated to obtain an
approximation of the map fr (Abarbanel et al., 1990). Simpler choices include zeroth-
order approrimations, also known as local constant predictors (Farmer and Sidorowich, 1987;
Kennel and Isabelle, 1992; Wayland et al., 1993) and a weighted predictor (Linsay, 1991).

Global approximators overcome some of the difficulties faced by local maps. Although
global models have problems of their own, some attention has been devoted to the investiga-
tion of such models (Cremers and Hiibler, 1987; Crutchfield and McNamara, 1987; Kadtke
et al., 1993; Aguirre and Billings, 1995e).

4 Diagnosing Chaos

In general, the problem of diagnosing chaos can be reduced to estimating invariants which
would suggest that the data are chaotic. For instance, positive Lyapunov exponents, non-
integer dimensions and fractal structures in Poincaré sections would suggest the presence
of chaos. The main question is how to confidently estimate such properties from the data,
especially when the available records are relatively short and possibly noisy. The techniques
that have been suggested in the literature may be divided in two major groups.

15




Non-parametric methods. These include the use of tools which take the data and esti-
mate dynamical invariants which, in turn, will give an indication of the presence of chaos.
Such tools include power spectra, the largest Lyapunov exponent, the correlation dimension,
reconstructed trajectories, Poincaré sections, relative rotation rates etc. Detailed descrip-
tion and application of these techniques can be found in the literature (Moon, 1987; Tufillaro
‘et al., 1990; Denton and Diamond, 1991). For a recent comment of the practical difficulties in
using Lyapunov exponents and dimensions for diagnosing chaos see (Mitschke and Dammig,
1993).

Two practical difficulties common to most of these approaches are the number of data
points available and the noise present in the data. These aspects are briefly discussed in the
following section.

Poincaré sections are very popular for detecting chaos because for a chaotic system the
Poincaré section reveals the fractal structure of the attractor. However, in order to be able to
distinguish between a fractal object and a fuzzy cloud of points a certain amount of data is
necessary. Moon (1987) has suggested that a Poincaré section should consist of at least 4000
points before declaring a system chaotic. For non-autonomous systems this means 4 x 10?
forcing periods which could amount to 4 x 10° data points.

Prediction-based techniques. Some methods try to diagnose chaos in a data set based
upon prediction errors (Sugihara and May, 1990; Casdagli, 1991; Elsner, 1992; Kennel and
Isabelle, 1992). Thus predictors are estimated from, say, the first half of the data records
and used to predict over the last half. Chaos can, in principle, be diagnosed based on how
the prediction errors behave as the prediction time is increased (Sugihara and May, 1990),
or based on how the prediction errors related to the true data compare to the prediction
errors obtained from ‘faked’ data which are random but have the same length and spectral
magnitude as the original data (Kennel and Isabelle, 1992). A related approach has been
termed the method of surrogate data (Theiler et al., 1992a; Theiler et al., 1992b).

Regardless of which criterion is used to decide if the data are chaotic or not, predictions
have to be made. Clearly, the viability of these approaches depends on how easily predictors
can be estimated and on the convenience of making predictions. Once a predictor is estimated
criteria and statistics such as the ones presented in (Sugihara and May, 1990; Kennel and
Isabelle, 1992) can be used to diagnose chaos.

4.1 Data requirements

The length and quality of the data records are crucial in the problem of characterisation
of strange attractors. At present, there seems to be no general rule which determines the
amount of data required to learn the dynamics, to estimate Lyapunov exponents and the cor-
relation dimension of attractors. However it is known that “in general the detailed diagnosis
of chaotic dynamical systems requires long time series of high quality” (Ruelle, 1987).

Typical values of data length for learning the dynamics are 2x10* (Farmer and Sidorowich,
1987; Abarbanel et al., 1990) for systems of dimension 2 to 3, 1.2x 10% — 4 x 10* (Casdagli,
1991).

It has been argued that to estimate the Lyapunov exponents 10 — 104 forcing periods
should be used (Denton and Diamond, 1991). Other estimates are N > 10P (quoted in
(Rosenstein et al., 1993) and N > 30° where D is the dimension of the system (Wolf et al.,
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1985) but in some cases at least 2 x 30”7 was required (Abarbanel et al., 1990). Typical
examples in the literature use 4x10* — 6.4x 10* (Eckmann et al., 1986) 1.6x10* (Wolf and
Bessoir, 1991) and 2x 10* data points (Ellner et al., 1991).

Fairly long time series are also required for estimating the correlation dimension. In fact,
it has been pointed out that dimension calculations generally require larger data records
(Wolf and Bessoir, 1991). For a strange attractor, if insuflicient data is used the results
would indicate the dimension of certain parts of the attractor rather than the dimension
of the entire attractor (Denton and Diamond, 1991). However, results have been reported
which suggest that consistent estimates of the correlation dimension can be obtained from
data sequences with less than 1000 points (Abraham et al., 1986). On the other hand,
there seems to be evidence that “spuriously small dimension estimates can be obtained from
using too few, too finely sampled and too highly smoothed data” (Grassberger, 1986a).
Moreover, the use of short and noisy data sets may cause the correct scaling regions to
become increasingly shorter and may cause the estimate of the correlation dimension to
converge to the correct result for relatively large values of the embedding dimension (Ding
et al.,, 1993). Thus typical examples use 1.5 x 10* — 2.5 % 10* (Grassberger and Procaccia,
1983b) and 0.8 x 10* — 30 x 10* data points (Atten et al., 1984). Thus there seems to be
no agreed upon rule to determine the amount of data required to estimate dimensions with
confidence but it appears that at least a few thousand points for low dimensional attractors
are needed (Theiler, 1986; Havstad and Ehlers, 1989; Ruelle, 1990; Essex and Nerenberg,
1991). In particular, N > 10P</2 has been quoted in (Ding et al., 1993).

It should be realised that the difficulties in obtaining long time series goes beyond prob-
lems such as storage and computation time. Indeed, it has been pointed out that for some
real systems, stationarity cannot always be guaranteed even over relatively short periods of
time. Examples of this include biological systems (May, 1987; Denton and Diamond, 1991),
ecological and epidemological data (Schaffer, 1985; Sugihara and May, 1990). A test for
stationarity has been recently suggested in (Isliker and Kurths, 1993).

5 Applications

The investigation of mathematical tools for analysing nonlinear dynamical systems is still
in its infancy. Nevertheless a great number of techniques are available and a few have been
applied to real problems sometimes with promissing results. Some tools were discussed in
section 2. Many concepts discussed in that section used the idea of phase space. Thus the
practical reconstruction of dynamical trajectories in such a space was discussed in section 3.
The important question of how to detect chaos is intimately related to the data requirements
of such techniques and has been brieflly addressed in section 4.

In this section a few applications will be mentioned. In fact most of what will be cited
could be labelled as benefits and implications of the application of the concepts and tools
described in the first part of the paper. It goes without saying that the list of ‘applications’
discussed in this work is a small fraction of a much wider universe.
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5.1 Signal processing

Signal processing was probably one of the fields most affected by the advent of chaos. Tra-
ditionally, a signal was always thought of being composed by a deterministic component
which could be predicted once a ‘model’ of the underlying dynamics was available and by
an unpredictable component which would usually be modelled as a stochastic process. In
most cases, the best that could be hoped for was to infer a good model for the deterministic
part and to use it in forecasting problems while the unpredictable component was most of
the time ignored.

The concept of chaos and in particular the reality of sensitivity to initial conditions has
strongly influenced the way models are conceived. The fact that deterministic chaos does
appear random at times has uncovered the fact that ‘random’ behaviour can be modelled,
analysed and predicted to a certain extent using purely deterministic models. Moreover,
because chaos seems to be ubiquitous it appears that most of the randomness which sci-
entist find in data records and have to deal with is, after all, produced by a deterministic
mechanism. This mechanism is chaos.

Thus when it comes to processing and modelling of signals and systems, one can dare
to model randomness as long it is of low order (Crutchfield and McNamara, 1987; Casdagli,
1989; Haynes and Billings, 1992; Mees, 1993; Aguirre and Billings, 1995¢). If the randomness
in the data is of high-order, the best option still seems to be stochastic modelling. The
question of how to detect if the randomness in the data is of low or high order has been
addressed in section 4.

Chaos has also influenced the way models are validated (Haynes and Billings, 1994).
Probably the most common way of validating models (and certainly the most naive) is via
simulation or prediction over the validation data set. This procedure is based on the accepted
fact that if the model is correct then it should provide very accurate predictions. If the
model fails to give good forecasts it is promply dismissed as inaccurate and a better model is
searched for. It should be realised however that if the data happen to be chaotic, no matter
how accurate the model is, because of some inevitable noise on the data, the predictions will
never coincide with the data records. It thus becomes apparent that alternative ways of
validating models should be sought. Some of the tools described in section 2 provide ways
of verifying if a model reproduces the original dynamical features of the system even if the
the predictions are not as accurate as expected (Aguirre and Billings, 1994c). Therefore
whenever possible, nonlinear invariants should be used in the validation.

In the field of nonlinear system identification, the tools described insection 2 have been
found very useful in characterizing some relationships which exist between the structure of
nonlinear models and the respective dynamical behaviour. It should be realised that a purely
statistical approach to system identification does not in general reveal how the dynamics of
the final model is influenced by the various variables involved (Billings and Haynes, 1993;
Haynes and Billings, 1994) although attempts have been made to link statistics and dynamics
(Tong, 1992). Nonlinear invariants and in particular bifurcation diagrams have been useful
in investigating the effects of overparametrization (Aguirre and Billings, 1995b) and the
sampling time (Billings and Aguirre, 1995) on the dynamics of nonlinear models.

One of the truths which the chaos advent uncovered was that simple models can (and
often do) produce complex dynamics. This has been highlighted by the use of very simple
paradigms which produce very complex dynamics. The consequences of this to signal and
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system modelling is clear, namely that the resulting models do not have to be complex no
matter how complicated and intricate the data may be. This has prompted some authors
to investigate the important issue of structure selection for nonlinear models (Billings et al.,
1989; Kadtke et al., 1993; Mees, 1993; Aguirre and Billings, 1995d).

Another field in which chaos has direct implications is filtering and suboptimal estimation
schemes. Many techniques as for instance Kalman filtering and least squares suboptimal
estimation use estimated instead of measured variables as a way of reducing the effect of
noise or in order to compensate for the lack of measurements. When the data are chaotic,
the estimated values will no longer be close to the real variables because of the sensitivity to
initial conditions. Filtering and noise reduction of chaotic data has in fact attracted much
attention over the last few years (Brown et al., 1992; Chen et al., 1990; Davies, 1992; Farmer
and Sidorowich, 1991; Grassberger et al., 1993; Holzfuss and Kadtke, 1993; Kostelich and
Yorke, 1988; Kostelich and Yorke, 1990; Mitschke, 1990; Schreiber and Grassberger, 1991;
Sauer, 1992; Aguirre et al., 1995).

Motivated by the fact that low dimension chaotic randomness can be modelled and pre-
dicted by deterministic models, a number of techniques have been developed which are based
on deterministic forecasting (Crutchfield and McNamara, 1987, Farmer and Sidorowich,
1987: Farmer and Sidorowich, 1988; Linsay, 1991; Principe et al., 1992; Smith, 1992). A
good introduction to this subject is provided in (Casdagli et al., 1992).

Finally, an issue which needs furhter investigation is the effects of the sensitivity to initial
conditions on the statistical and dynamical properties of parameters estimation algorithms.
A few preliminary results in this direction have been discussed in (Aguirre and Billings,
1995¢). This subjects seems relevant because there is some evidence that chaotic systems

are not only sensitive to initial conditions but are also sensitive to parameters (Farmer, 1935;
Brown et al., 1992).

5.2 Quantification of systems with complex dynamics

The investigation of chaotic systems revealed the need to characterize complex dynamics, or
in other words to measure and quantify complexity. One of the most relevant concepts in~
this particular field is that of fractal dimension. There are a number of ‘slightly’ different
indices which have been designed to measure the fractal structure of attracters reconstructed
directly from data records. One of the most popular methods is the correlation dimension
described in section 2.11.

Roughly, the integer part of the correlation dimension of an attractor is an indication of
the degrees of freedom of the attractor and the fractional part indicates how ‘complex’ the
signal/system is. The closer the fractional part is to unity, the more complex the signal is in
the sense that it has a greater ability to occupy the state space. This property is sometimes
referred to as space filling.

The concepts of seusitivity to initial conditions and fractal geometry usually come to-
gether as most systems which are sensitive to initial conditions often display attractors which
are fractals. The sensitivity to initial conditions is measured by positive Lyapunov exponents
whereas the fractal structure of attractors is somewhat characterised by the correlation di-
mension. Consequently, such indices can be used to measure and quantify complex systems
and signals. One of the main limitations however is not only the amount but, also the quality
of the data available. For details see section 4.
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The analysis of real signals has been investigated by many authors in the light of these
new concepts. Speech signals have been studied and evidence found that such signals are
nonlinear. Short-term forecasting of such signals are of potential comercial use in transmis-
sion coding (Casdagli, 1992).

Electroencephalogram data have been considered in (Babloyantz et al., 1985; Layne et al.,
1986; Casdagli, 1992; Theiler et al., 1992a; Fuchs et al., 1992; Theiler, 1995). The main objec-
tive in most papers concerned with these data is to be able to establish possible relationships
between dynamical properties of the reconstructed attractors and the degree of unconscious-
ness of the patient which could be either sleeping or under the effects of anesthesia. Any
conclusive results in this direction would be welcome in particular in anesthesia control
problems where one of the main problems is to feedback the degree of unconsciousness.

Data from many fields of natural sciences have been analysed by many authors. A
few examples include: the monthly New York measles (Casdagli, 1992; Sugihara and May,
1990), epidemics (Rand and Wilson, 1991), postural sway data (Collins and J., 1994), the
focal accommodation system of human eyes (Sumida et al., 1994), sunspots (Casdagli, 1992;
Theiler et al., 1992a; Feudel et al., 1993; Mujndt et al., 1991) paleoclimatic data (Elgar and
Kadtke, 1993), atmospheric data (Lorenz, 1991; Yang et al., 1994). Econometric and finance
series have been analysed in (Gilmore, 1993; Jaditz and Sayers, 1993; Larsen and Lam, 1992;
Barnett and Chen, 1988; Brock and Sayers, 1988).

To be able to quantify complexity in real data is a great achievement per se. However,
having characterised complex systems to some extent is of help in developing a model for
such systems and with a model at hand one can think of taming complex systems. It seems
fair to say that a long-term goal of a great portion of what has been investigated in the «
field of complex dynamics is to find ways of controlling complex problems such as demo-
graphical growth and population spatial distributions, the spread of contagious deseases,
and controlling physiological signals as heart beats, etc. The possibilities are fascinating
and consequently much attention has been paid to the control of chaotic systems (Chen and
Dong, 1993a). This is briefly discussed in what follows.

5.3 Control and synchronization of chaos

Is chaos a beneficial dynamical steady state? this is a central question in the control of
chaotic systems. Of course, if the answer to the above question is yes, applied scientists and
control engineers would be investigating ways of provoking chaos rather than suppressing it.
A negative answer, on the other hand, would prompt researchers in the opposite direction.
Because of the sensitive dependence on initial conditions, displayed by chaotic systems,
it is impossible to make accurate long-term predictions of such systems. In many situations,
however, it is desirable that the system under investigation be predictable. Furthermore,
the appearance of chaotic dynamics is not always welcome because in some situations it has
been associated with abnormal behaviour (Glass and Mackey, 1988, pages 177, 179). -
In other applications the onset of chaos seems to have several advantages. For instance,
it has been argued that “a cognitive system must be chaotic in order to perform effective
signal processing” (Nicolis, 1984). Further, chaos enhances heat transfer (Chang, 1992),
improves mixing in chemical reactions (Ottino, 1992), reduces idle-channel tones in modula-
tors (Schreier, 1994) and seems to have a promising future in secure communication systems
(Cuomo et al., 1993; Wu and Chua, 1993; Parlitz et al., 1992). In addition, some authors
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have suggested that chaotic dynamics indicate a healthy state as opposed to the diseases
which manifest as physiological periodic signals (Glass et al., 1987; Goldberger et al., 1990).
The matter of how healthy chaos is, however, is far from settled (Pool, 1989). Consequently,
techniques for controlling nonlinear dynamics are required in order to provoke or suppress
chaos or any other dynamical regime according to the particular application at hand.

Most of the works concerned with the control of chaos are devoted to stabilising a chaotic
system to regular dynamics, that is, fixed points, periodic orbits or quasiperiodic regimes.
The related problem of driving a system from a regular to a chaotic regime has received
less attention. This type of control could be important in situations where chaos is not only
welcome but also desirable (Goldberger et al.,, 1990; Chang, 1992; Ottino, 1992; Cuomo
et al., 1993; Wu and Chua, 1993). ;

Clearly, chaos is per se neither beneficial nor harmful as described by James Gleick “In
some applications, turbulence is desirable — inside a jet engine, for example, where efficient
burning depends on rapid mixing. But in most, turbulence means disaster. Turbulent airflow
over a wing destroys lift. Turbulent flow in an oil pipe creates stupefying drag” (Gleick, 1987,
p.122). Therefore it seems appropriate to search for control schemes which would perform
well in both situations.

If on the one hand sensitivity to initial conditions hampers prediction-based control
schemes, on the other hand such a property might turn out to be greatly advantageous from
a control point of view. To see this it should be recalled that if a system is sensitive to initial
conditions, a small perturbation at time ¢y can provoke relatively large effects at time t > tg.
This means that to achieve a certain control objective may require a much smaller control
action if the system were chaotic. The problem of course is to determine how and when
should the control action be applied. Some works in this direction have appeared in the
literature (Ott et al., 1990; Ditto et al., 1990; Garfinkel et al., 1992; Nitsche and Dressler,
1992; Romeiras et al., 1992; Shinbrot et al., 1990; Spano et al., 1991).

Many different techniques have been investigated in the context of controlling chaos and
it seems inappropriate to try to categorize such methods here. As pointed out before, how-
ever, most methods can be grouped into two categories. When it is desired that chaos be
suppressed the approaches are labelled under control of chaos and when the main objec-
tive is to make a system follow a chaotic trajectory the problem at hand is referred to as
synchronization of chaos.

Chaos can be suppressed by the addition of small amplitude pérturbations (Braiman and
Goldhirsch, 1991; Aguirre and Billings, 1995a), random perturbations (Kapitaniak, 1991),
by parametric driving (Dorning et al., 1992; Fronzoni et al., 1991; Lima and Pettini, 1990),
by means of feedback (Liu et al., 1994). '

The problem of synchronization has been investigated in (Chua et al., 1993; Kocarev
et al., 1993; Ogorzalek, 1993; Pecora, 1990; Wu and Chua, 1993; Aguirre and Billings,
1994b).

The stabilization of chaotic systems has been achieved by applying feedback (Chen and
Dong, 1993b; Dedieu and Ogorzalek, 1994; Hunt, 1991; Pyragas, 1992; Roy et al., 1992),
frequency harmonic balance techniques (Genesio and Tesi, 1993; Genesio and Tesi, 1992),
conventional control techniques (Hartley and Mossayebi, 1993), open plus closed loop control
(Jackson and Grosu, 1994), dynamical vibration absorbers (Kapitaniak et al., 1993), adaptive
control (Sinha et al., 1990; Vassiliadis, 1993; Qammar and Mossayebi, 1994) and quantitative
feedback design (QFD) (Yau et al., 1993). The control of multiple attractor systems has
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been investigated in (Jackson, 1990).

Most of the references above are concerned with systems which are chaotic before control
is applied. However, chaos has been detected in control systems in which the plant was
not chaotic. Conditions for the occurrence of chaos in feedback systems (Genesio and Tesi,
1991), adaptive control (Mareels and Bitmead, 1986; Mareels and Bitmead, 1988; Golden
and Ydstie, 1992) and in digital systems (Ushio and Hsu, 1987) have been reported in
the literature. The use of estimated models in control problems has been investigated in
connection with synchronization (Aguirre and Billings, 1994b) and suppression of chaos
(Aguirre and Billings, 1995a).

Informative introductions to the vast field of control of chaos can be found in (Ditto and
Pecora, 1993; Hunt and Johnson, 1993).

6 Discussion and Further Reading

The analysis and quantification of chaotic dynamics is a relatively recent area. Nevertheless
there is an immense collection of scientific papers and books devoted to this subject and any
attempt to produce a survey on nonlinear dynamics and chaos, no matter how thorough,
would be, in all certainty, just a rough sketch on this fascinating subject.

The main objective of this paper has been to review in a very pragmatic way a few
concepts which are believed to be basic. Since it would be inappropriate to produce an
in-depth review, a rather generous number of references has been cited for further reading.
Needless to say, the reference list does not exhaust the wealth of papers and book: currently
available.

The following references seem to be a good starting point. The books (Gleick, :987) and
(Stewart, 1989) are a good introduction for the average reader. A more formal coverage is
given by (Thompson and Stewart, 1986) and (Moon, 1987). For a mathematical exposition
on the subject see (Guckenheimer and Holmes, 1983) and (Wiggins, 1990). Some practical
aspects of bifurcation and chaos are discussed in (Matsumoto et al., 1993) and a good account
on computer algorithms for nonlinear systems applications can be found in (Parker and
Chua, 1989). See also (Abraham and Shaw, 1992) for a beautifully illustrated introduction
to nonlinear dynamics and bifurcations. The following papers are also good introductions to
nonlinear dynamics and chaos (Mees and Sparrow, 1981; Shaw, 1981; Mees: 1983; Eckmann
and Ruelle, 1985; Crutchfield et al., 1986; Mees and Sparrow, 1987; Parker and Chua, 1987,
Argyris et al., 1991; Thompson and Stewart, 1993; Chen and Moiola, 1995). Good surveys on
modelling and analysis of chaotic signals can be found in (Grassberger et al., 1991; Abarbanel
et al., 1993). Finally, see (Hayashi, 1964; Atherton and Dorral, 1980) for a rather ‘classical’
approach to the analysis of nonlinear oscillations.
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Figure 1: Time series and respective attractors. (a) damped oscillations settling onto a
(b) point attractor. (c) quasi-periodic oscillations lie on a (d) torus in state space. Attractors
with higher dimensions and more complicated shapes correspond to time series with greater
complexity. '

Figure 2: Bifurcation diagram for the Duffing-Ueda oscillator §+0.1y +1y® = Acos(t), where
A, the amplitude of the input, is the bifurcation parameter.

Figure 3: Routes to chaos. Sequence a-b-c-d shows the well known period-doubling route
to chaos. In this sequence the periodicity doubles each time the system bifurcates until
it becomes chaotic which is an aperiodic regime. Sequence e-f-g-h is sometimes called the
torus-breakdown route to chaos. In this sequence the dimension increases each time the
system bifurcates. In e-f-g the dimension is incremented by one. From g to h the increase is
fractional.

Figure 4: A Poincaré section is obtained by defining a plane in state space which is transversal
to the flow. The image formed on such a plane is the Poincaré section of the attractor and
will display fractal structure if such an attractor is chaotic.

Figure 5: Graphical iteration of the logistic equation (7), (a) regular motion (A = 2.6) and
(b) respective time series, (c) chaotic motion (4 = 3.9), and (d) respective time series. In
these figures the same initial condition has been used, namely y(0) = 0.22. In figures (e)
and (f) an interval of initial conditions has been iterated for the same values of A as above.
The intervals used were y(0) € [0.22 0.24] and y(0) € [0.220 0.221], respectively. Note how
such an interval is amplified when the system is chaotic, (f). This is due to the sensitive
dependence on initial conditions.

Figure 6: (a) Bifurcation diagram of the logistic map, and (b) respective largest Lyapunov
exponent, A;. Note that A; = 0 at bifurcation points and that A; > 0 for chaotic regimes.

Figure 7: Logarithm of the correlation function C(e) plotted against log(e) for embedding
dimensions d. = 2 to d, = 10. The correct value, D, = 2.0 is attained for d. = 5.

Figure 8: Fractal structure of the Hénon attractor.

Figure 9: The n time series defined by the state variables of an ntn-order dynamical system
can be used to compose the trajectory in state space.

Figure 10: In many practical situations the number of measured variables is limited. Embed-
ding techniques enable the reconstruction of the state space even from a single measurement.
The reconstructed (or embedded) and the original state spaces are equivalent.
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