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Abstract

A hybrid utilisation of the Fuzzy ARTMAP (FAM) neural network and the Probabilistic Neural
Network (PNN) is proposed for on-line learning and prediction tasks. FAM is used as an
underlying clustering algorithm to classify the input patterns into different recognition categories
during the learning phase. Subsequently, a non-parametric probability estimation procedure in
accordance with the PNN paradigm is employed during the prediction phase. This hybrid
approach realises an incremental learning network with implementation of the Bayes strategy for
on-line applications. The effectiveness of this network is assessed with statistical classification
problems in both stationary and non-stationary environments. Simulation studies illustrate that
the network is capable of asymptotically approaching the Bayes optimal classification rates.
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1 INTRODUCTION

Autonomous knowledge acquisition has always been a
major research area in machine learning. Recently,
researchers have shown increasing interest in using
neural networks as the core of learning systems. This
is mainly because neural networks can acquire
knowledge from exemplars and then generalise the
knowledge 1o cover the entire problem domain.
However, when using feedforward neural networks,
such as the Multi-Layer Perceptron (MLP) networks
and the Radial Basis Function (RBF) networks, one
will have to rely upon some heuristics to select the
“optimum” network size and parameters (Lippmann
(1)). Besides, these networks are usually static after
training. If the problem domain is dynamic and non-
stationary, re-training the feedforward networks with
newly available information is necessary as it is very
difficult to allow them to continue learning in

perpetuity.

In contrast, the Adaptive Resonance Theory (ART)
(Carpenter & Grossberg (2)) family of neural networks
are developed to overcome the so-called stability-
plasticity dilemma (2). These networks are able to
learn in changing environments where new information
can be accommodated to its knowledge base without
corrupting previously leamed information. On the
other hand, the Probabilistic Neural Network (PNN)
(Specht (3), (4)) also has autonomous learning
properties similar to those of ART. In this paper, we
propose a hybrid utilisation of Fuzzy ARTMAP (FAM)
(Carpenter et al (5)), a supervised ART network, with
the PNN for on-line learning and classification tasks,
and compare the results with the Bayes optimal rates.

2 FUZZY ARTMAP AND THE
PROBABILISTIC NEURAL NETWORK

FAM is a variant of the supervised ARTMAP
(Carpenter et al (6)) architecture in which fuzzy set
theory is incorporated to govern the dynamics of
ARTMAP. Fig. 1 shows a schematic diagram of the
FAM network for binary classification tasks. In
general, FAM consists of two identical fuzzy ART
(Carpenter et al (7)) modules, ART, and ART;,, linked
by a map field, Fs,. Each ART module has two layers
of nodes: Fi., is the input layer; and Fopp is a
dynamic layer where every single node encodes a
prototype pattern of the input samples. The number of
nodes in F,, can be increased when necessary.

During supervised learning, ART, receives an input
pattern and ART), receives its target output. In ART,
(as well as in ART,), in order to avoid the category

proliferation problem (7), the input pattern a is

complement-coded in Fy,, i.e. A=(a,1-a), before it is

transmitted to Fo,. F, is a winner-take-all competitive

layer where a choice function is used to measure the
response of each prototypical node as follows:
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where w,_; is the weight vector of the jth F,, node;
and o, is the choice parameter of ART, (5). The
fuzzy “and” operator () and the norm | . | are defined

as: (xay), =min(x, ) and |x|= 3 |x| (Zadeh (8)).

The maximally responsive node is selected as the
winner while all other nodes are shut down. The
winning node then sends its weight vector (the
prototype pattern) to Fy,. A vigilance test is performed
to check the similarity between the prototype pattern
and the input pattern, i.e.
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where p, is the vigilance parameter of ART,; and
W,_; is the Jth wining node in F,,. If this test is
satisfied, resonance occurs and learning takes place.
However, if it fails, the winning node will be inhibited
and the input pattern will be re-transmitted to F,, to
search for a new winner which fulfils the vigilance test.
If such a node does not exist, a new node is recruited to
code the input pattern.

To impose supervision, the map field associates the
winner in F,, with the target winner in F,,. This
association is permanent so that a target output can be
recalled during the prediction phase.

2.1 Modified Fuzzy ARTMAP

According to our previous work (Lim & Harrison (9)),
we indicate that FAM is unable to establish one-to-
many mappings, i.e. forming an association from an F,,
prototypical node to more than one F,, target output via
the map field. This mapping is crucial in statistical
pattern classification tasks where overlapping regions
can occur in the input space in which a particular
cluster may belong to more than one class subject to
different probabilities of class membership.

In FAM, p, is dynamically increased during match-
tracking ((5), (6)) when a prediction is rejected by the
map field. A search is initiated which leads to~ the
selection of a new F,, prototypical node’ th;t Satisfied .

equation (2), or to the shut-down of the' Fy,’ layer lf no ..
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such node exists (5).

We therefore propose a constraint on p,, during
match-tracking, as follows:

0<p, < mi{L-If%l“’—l] 3)

where A is the current input vector to ART, in
complement-coded format; and w,_; is the winning
Jth node in Fo.. The effect of the constraint is to recruit
a new node in F, to code the input pattern instead of
just ignoring it as in the original algorithm, thus
having two similar prototypical nodes to map to
different target outputs. In addition, a frequency
measure scheme which records the number of correct
predictions of nodes in F, is also introduced and this
information is used to facilitate the selection of the
winning node. Two variants of the frequency measure
scheme have been proposed (9): INC only and
INC/DEC based on the reward and reward/penalty
rationale. The INC method records correct predictions
only whereas the INC/DEC method increases or
decreases the frequency counts corresponding to correct
or incorrect predictions respectively.

We assessed the applicability of Modified FAM with a
common classification task: the separation of two
multi-dimensional sources. Two classes of Gaussian
distributed, continuous-valued random variables with
different source separations (means), variances and
prior probabilities were generated. Our studies have
found that Modified FAM is able closely to
approximate the Bayes optimal error rates in various
configurations of the problem in both stationary and
non-stationary environments, whereas FAM is not.
Nevertheless, we have also realised that it has some
difficulties with real-valued input patterns. This is
because Modified FAM fails to devise an efficient and
flexible technique in: (i) forming non-linear decision
boundaries in multi-dimensional cases; and (ii)
tracking the changes of the optimal decision boundaries
in non-stationary environments.

2.2 Probabilistic Neural Network

The PNN is a neural network model that directly
implements the Bayes strategy for pattern classification
in its learning paradigm. It learns instantaneously in
one-pass through the data samples and is able to
formulate complex decision boundaries which
approximate the Bayes optimal limits. Besides, the
decision boundaries can be modified on-line when new
data is available without having to re-train the network.
However, the key feature of the PNN is its ability to
estimate the probability density functions by using the
Parzen window (Parzen (10)) based on the data

samples, i.e. a non-parametric density estimation

procedure.

Fig. 2 depicts a schematic diagram of the PNN for
binary classification task. In the basic PNN, the input
pattern, x, is first fanned-out to the pattern layer where
each pattern unit forms a dot-product of the input and
weight patterns. The dot-product is transformed by an
activation function in accordance with the Parzen
kemel estimator ((3), (4)). The summation units then
add all the outputs of pattern units corresponding to
each category to give estimates of probability density
functions (P(xIA)/P(xIB)). For classification

problems, these estimates can be weighted by their
respective @ priori probabilities ( P(A)/ P(B)). This
enables the output unit to calculate the a posteriori
probability of x belonging to a particular category
according to Bayesian decision criterion, e.g.
P(Alx) = P(xlA)P(A)/ P(x).

Leamning in the PNN is accomplished by generating a
new pattern unit for each input pattern and encoding it
as the weight patten. The pattern unit is then linked to
the summation unit of the class of the current input
pattern.  This process is non-iterative and can be
implemented on-line. Note that in addition to kernels
using dot-product inputs, many alternative forms of
estimators have also been described by Specht (4), (12).

2.3  Probabilistic Fuzzy ARTMAP

Our studies have discovered a close similarity in the
network connections between FAM and PNN as shown
in Fig. 1 and 2. The F), and F,, layers correspond to
the input and pattern layers whereas the map field layer
(Fab) corresponds to the summation layer. In essence,
in one-from-N classification, each node in F,, is
permanently associated with only one node in F,,
through the map field weights (w,,), which is then
linked to the target output in Fy,. Thus, the F,, nodes
can be used to sum up outputs from all the F,, nodes
corresponding to a particular target category, taking the
role of the summation units in the PNN.

In fact, the major drawback of the PNN is to recruit a
new pattern unit for every input pattern which leads to
an explosive number of pattern units when large or
unbounded data sets are available. As suggested in the
literature (Burrascano (11), Specht (12), Musavi (13)),
this problem can be remedied by using a clustering
technique to reduce the number of pattern units
required so that each pattern unit represents a cluster of
input patterns.



According to Lippmann (1), the learning procedure of
ART is actually similar to the so-called sequential
leader clustering algorithm. In view of the suitability
of the learning methodology and the likeness of the
network connections, FAM provides a natural platform
where the two networks can be incorporated. As a
result, we propose a Probabilistic FAM for on-line
applications where FAM is used as the underlying
clustering algorithm during the learning phase.
Conversely, the PNN is used to give a Bayesian
probability estimation of the outputs during the
prediction phase.

In FAM, only one of the elements in w_, is unity which
indicates the link from an F,, node to the appropriate
F.. node. However, in order to accommodate
clustering, the link in w,, should be incremented by
one if the F, node successfully classifies an input
pattern. Thus, the outputs can then be weighted by w,,
to represent the strength of different cluster prototypes.
Besides, summing the links in w, provides
information of the prior class probabilities.

In summary, the algorithm of Probabilistic FAM is as
follo_ws:

(a)  Learning Phase

(1)  Feedforward the input pattern and determine the
winner according to the choice function of
equation (1).

(2)  Feedback the prototype pattern and perform the
vigilance test as in equation (2).

(3)  If there is no match, trigger the search cycle and
Goto (1).

Else Goto (4).

(4) Update the weights of the winning node.

Increment the link in w_, by one.

(b)  Prediction Phase

(1)  Feedforward the input pattern and compute the
inputs to the kernel estimators.

(2) Perform the activation functions upon the
outputs from the pattern units.

(3)  Sum the kemel estimations weighted by w,, for
each category.

(4)  Select the highest a posteriori estimate and
predict the target output in ART,.

Note that the effect of equation (3) should be taken into
consideration in Probabilistic FAM for implementing
one-to-many mappings. However, the frequency
measure information has been encoded in w ;.

3 SIMULATION STUDIES

To demonstrate the capabilities of Probabilistic FAM,
we re-investigate the two problems addressed with
Modified FAM, i.e. multi-dimensional inputs and non-
stationary cases. Both FAM and Probabilistic FAM use
the on-line approach operating in the conservative
mode (the choice parameter o — 0) (5). The on-line
operational cycle proceeds as follows: an input pattern
is first presented to ART, with its target output to
ART,. Second, a predicted class is sent from F,
winner to Fp,. Then, the prediction is compared with
the actual class and the outcome gives a classification
result (prediction phase). Finally, learning ensues to
associate the input pattern with its target class (learning
phase).

In all experiments, the input patterns were in
complement-coded format and the kerel estimators
used were the “city-block” distance metric (12) to
obviate normalisation of input patterns to unit length.
Some of the important network parameters used were:
the vigilance parameter of ART,, p, =05; the
learning rate parameter, =1 (fast learning); and the
smoothing parameter, ¢ =0.1.

3.1 Stationary on-line learning and classification

Here, two sources of continuous-valued, Gaussian-
distributed random variables were generated with fixed
prior probabilities (P{c,} = P{c,}=05) and variances
(6} =67 =10). Class 1 and class 2 were represented
by multivariate normal distributions with mean vectors
K, =(-100,...00 and p,=(100,...,0). The
dimension of the input samples was increased from two
to six. Although the data parameters are time-
invariant, tackling the task on-line is in fact a non-
stationary process, owing to the build-up of templates—
the so-called finite-operating-time problem. In each
simulation, 5000 input samples were generated and a
1000-sample window was applied for calculating the
accuracy, e.g. the accuracy at sample 2000 was the
percentage of correct predictions from trials 1001-2000.

Table 1 shows the average results of 5 runs and their
standard deviations at the end of the sample
presentation.  Fig. 3(i) depicts a typical on-line
accuracy plot against increasing number of samples for
six-dimensional input samples. From Table 1,
Probabilistic FAM shows an improvement of at least
15% over FAM with smaller standard deviations in all
cases. Although the standard deviations are estimated
from a small sample size (5 runs), it indicates a
dispersion of the results across the averages. Note that



the results can sometimes exceed the optimum Bayes
limits owing to the use of the window method in
calculating the accuracy.

3.2 Non-stationary on-line learning and
classification

In this experiment, we investigate the classification
abilities of FAM and Probabilistic FAM in non-
stationary environments. Two properties were
evaluated, viz. the ability to track non-stationarity and
the approximation to the Bayes limits. Here, two
classes of single-dimensional Gaussian distributed
random variables were generated with a sample size of
25000. But the data statistics were subject to step
changes at each 5000 samples. This simulates a severe
non-stationary scenario as one might expect to
experience a gradual change of data statistics to enter
the environment rather than a step change. In order to
track non-stationarity, a forgetting factor is introduced
in the operation of Probabilistic FAM. A factor of ¥,
was applied to the links in w_, where k was the
window length of the on-line accuracy.

Table 2 shows the parameters used to generate the
input samples. Fig. 3(ii) depicts the average results of
5 runs with some indications of their standard
deviations. From Fig. 3(ii), it is clear that Probabilistic
FAM not only successfully tracks non-stationarity in
the data environment but is capable of asymptotically
approaching the Bayes limit.

4 DISCUSSION

Studies of the ability of FAM in probability estimation
have been reported in Carpenter et al (14). They
investigated FAM in two modes, “slow-learning” and
“mix-nodes”, where different learning strategies were
adopted for probability estimation of two noisy, nested
spirals. Our work here investigates the effectiveness of
Probabilistic FAM operating in fast-learning, on-line
mode in binary classification tasks.

The two simulations above demonstrate that
Probabilistic FAM is able to overcome the difficulties of
Modified FAM in handling multi-dimensional input
patterns and non-stationary environments. Unlike
Modified FAM which uses the frequency measure
scheme 1o formulate the separating decision
boundaries, Probabilistic FAM forms non-linear
decision boundaries that approximate the Bayes-
optimal by using the Parzen window approach. A
maximum a posteriori decision criterion is then
directly applied as part of its implementation to select

the most probable output. In addition to providing
probabilistic outputs, the decision process can also be
adjusted and weighted by different risk or loss factors.
More importantly, the Bayes strategy is implemented
on-line without having to re-train the network when
auxiliary information becomes available.

Nevertheless, there are a few difficulties associated with
the combination of FAM and PNN. To obviate the
need of complement-coding, one can normalise the
input patterns to unit length and employ the dot-
product kernel estimators. However, owing to the fuzzy
learning rules of FAM in complement-coding and fast-
learning mode, the prototypical patterns are represented
by vertices of the hyper-rectangles that define the
cluster boundaries (5). In other words, the patterns
encoded in F,, nodes do not reflect the centroids of
input clusters. Another problem is the need to select a
smoothing parameter for the kernel estimators and one
often has to resort to some heuristic in determining the
“optimum” value. To overcome this problem, Musavi
et al (13) have proposed the construction of the
covariance matrices of Gaussian kernel estimators by
using the Gram-Schmidt orthogonalisation process.
Besides, the convergence of the Parzen window
estimation procedure is guaranteed only when the data
samples extend to infinity.

5 CONCLUSIONS

A hybrid network which incorporates the FAM and
PNN architectures is presented. The advantages of
Probabilistic FAM are two-fold: (i) it provides a
probabilistic interpretation of predicted outputs
according to the Bayes strategy by using the PNN as the
underlying estimation mechanism; and (ii) it reduces
the number of pattern units required by using FAM as
the underlying clustering mechanism.  Simulation
studies demonstrate that Probabilistic FAM is able to
classify statistical patterns on-line in both stationary
and non-stationary environments and simultaneously
achieve the Bayes optimal classification rates. Current
work suggests that further improvements are necessary,
particularly in relation to determining the smoothing
parameter and cluster centres autonomously and on-
line.
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TABLE 1  Average results of 5 runs at the end of the data presentation in stationary environments

Input Bayes Limit Probabilistic FAM Fuzzy ARTMAP

Dimension Accuracy Accuracy | Standard Accuracy Standard

(%) (%) Deviation (%) Deviation
2 84.13 84.4 1.1 69.1 1.8
3 84.13 84.4 0.5 69.3 1.1
4 84.13 84.7 0.7 69.6 2.0
5 84.13 84.1 0.7 67.5 0.9
6 84.13 83.4 0.8 67.4 2.6

TABLE 2  The data statistics are changed every 5000 samples to simulate non-stationary environments

Class 1 Class 2
Samples Mean Standard Prior Mean Standard Prior
Deviation | Probability Deviation | Probability
1-5000 -0.5 1.0 0.1 0.5 1.0 0.9
5001-10000 -0.5 2:5 0.5 0.5 2.5 0.5
10001-15000 -0.5 1.0 0.5 0.5 1.0 0.5
15001-20000 -0.5 0.5 0.5 0.5 4.5 0.5
20001-25000 -0.5 1.0 0.5 0.5 1.0 0.5
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