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Abstract

In optimization, multiple objectives and constraints cannot be handled in-
dependently of the underlying optimizer. Requirements such as continuity and
differentiability of the cost surface add yet another conflicting element to the
decision process. While “better” solutions should be rated higher than “worse”
ones, the resulting cost landscape must also comply with such requirements.

Evolutionary algorithms (EAs), which have found application in many areas
not amenable to optimization by other methods, possess many characteristics
desirable in a multiobjective optimizer, most notably the concerted handling of
multiple candidate solutions. However, EAs are essentially unconstrained search
techniques which require the assignment of a scalar measure of quality, or fitness,
to such candidate solutions. :

After reviewing current evolutionary approaches to multiobjective and con-
strained optimization, the paper proposes that fitness assignment be interpreted
as, or at least related to, a multicriterion decision process. A suitable decision
making framework based on goals and priorities is subsequently formulated in
terms of a relational operator, characterized, and shown to encompass a number
of simpler decision strategies. Finally, the ranking of an arbitrary number of can-
didates is considered. The effect of preference changes on the cost surface seen
by an EA is illustrated graphically for a simple problem.

The paper concludes with the formulation of a multiobjective genetic algo-
rithm based on the proposed decision strategy. Niche formation techniques are
used to promote diversity among preferable candidates, and progressive articula-
tion of preferences is shown to be possible as long as the genetic algorithm can

recover from abrupt changes in the cost landscape.
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1 Introduction

Constraint satisfaction and multiobjective optimization are very much two as-
pects of the same problem. Both involve the simultaneous optimization of a
number of functions. Constraints can often be seen as hard objectives, which
need to be satisfied before the optimization of the remaining, soft, objectives
takes place. Conversely, problems characterized by a number of soft objectives are
often re-formulated as constrained optimization problems in order to be solved.

Despite having been successfully used to approach many ill-behaved problems,
the ﬁfét formulations of evolutionary algorithms were essentially 'sing.le-functio'n \
methods with little scope for constraint handling. Following the success of the
e\?olutionary approach, interest in how both constraints and multiple objectives
can be handled by evolutionary algorithms has rapidly increased.

Multiobjective and constrained optimization are introduced here separately,
first in general terms, and then in the context of evolutionary algorithms. Current
practices are then presented and discussed.

The formulation and characterization of a unified decision making framework
for multi-function optimization follows, encompassing both objectives and con-
straints. Finally, a Multiobjective Genetic Algorithm is described, and presented

as a method which can be used for progressive articulation of preferences.

2 Constrained optimization

Practical problems often see their solution constrained by a number of restric-

tions imposed on the decision variables. Constraints usually fall into one of two

different categories:

Domain constraints express the domain of definition of the objective function.
In control systems, closed-loop system stability is an example of a domain

constraint, because most performance measures are not defined for unstable




oo

’ systems.

L Preference constraints impose further restrictions on the solution of the prob-
lem according to knowledge at a higher level. A given stability margin, for

example, expresses a preference of the designer.

Constraints can usually be expressed in terms of function inequalities of the type

f(x)<g

where f is a, generally non-linear, real-valued function of the decision variable
vector x and g is a constant value. The inequality may also be strict (< instead

of <). Equality constraints of the type

fx)=g

can be formulated as particular cases of inequality constraints.

Without loss of generality, the constrained optimization problem is that of
minimizing a scalar function f; of some decision variable vector x in a universe
U, subject to a number n— 1 of conditions involving x, and eventually expressed

as a functional vector inequality of the type

(f2(X)s- s fa(¥)) < (92, 9n)

where the inequality applies component-by-component. It is assumed that there
is at least one point in & which satisfies all constraints. _
In many cases, satisfying constraints is a difficult problem in itself. When
constraints cannot be all simultaneously satisfied, the problem is often deemed
¢ to admit no solution. The number of constraints violated, and the extent to
which each constraint is violated, then needs to be considered in order to relax

the preference constraints.




3 Multiobjective optimization

Many problems are also characterized by several non-commensurable and often
competing measures of performance, or objectives. The multiobjective optimiza-
tion problem is, without loss of generality, the problem of simultaneously mini-
mizing the n components fi, k = 1,...,n, of a vector function f of a variable x

in a universe i, where

f(x) = (i(x),..., fa(x)).

The problem has usually no unique, perfect solution, but a set of equally efficient,
or non-inferior, alternative solutions, known as the Pareto-optimal set[1]. Still

assuming a minimization problem, inferiority is defined as follows:

Definition 1 (inferiority) A vector u = (uy,...,u,) is said to be inferior to

v = (v1,...,v,) iff v is partially less than u (v e< u), i.e.,
Vie{l,...,n}, miSwy A 3Jie{l,...,n}|v <y

Alternatively, v can be said to be superior to, or to dominate, u.

Definition 2 (nen-inferiority) Vectors u = (u,...,u,) and v = T
are said to be mon-inferior to each other if neither v is inferior to u nor u is

e a o akei o

inferior to v,

The notion of non-inferiority is only a first step towards solving an MO problem.
In order to select a suitable ccmpil-;'in;;oiﬂion from all non-inferior alternatives,
a decision process is also necessary.

Depending on how the computation and the decision processes are combined

in the search for compromise solutions, three broad classes of MO methods ex-

ist [2]:

A priori articulation of preferences The decision maker expresses preferences

in terms of an aggregating function which combines individual objective

—
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values into a single utility value, and ultimately makes the problem single-

objective, prior to optimization.

JA posteriori articulation of preferences The decision maker is presented by

\4

the optimizer with a set of candidate non-inferior solutions, before express-

ing any preferences. The compromise solution is chosen from that set.

Progressive ar}tlculat}lon of preferences Decision making and optimization
occur at intiﬂé_ayf.d steps. At each step, partial preference information is
supplied by the decision maker to the optimizer, which, in turn, generates
better alternatives according to the information received.

i -

1
A o
| A"

P ?f{\("
3.1 Preference articulation
Independently of the stage at which it takes place, preference articulation im-
plicitly defines a so-called utility function which discriminates between candidate
solutions. Although such a utility function can be very difficult to formalize in

every detail, approaches based on the following have been widely used.

Weighting coefficients are real values which express the relutive importance of
the objectives and control their involvement in the overall utility measure.
The weighted-sum approach is the classical example of a method based on

objective weighting [2].

be optimized, according to their importance. The lexicographic method [1],

for example, requires all objectives to be assigned different priorities.

Goal values indicate desired levels of performance in each objective dimension.
The way in which goals are interpreted may vary. In particular, they may
represent minimum levels of performance to be attained, utopian perfor-

mance levels to be approximated, or ideal performance levels to be matched




as closely as possible [3]. Goals are usually easier to set than weights and
priorities, because they relate more closely to the final solution of the prob-

lem.

3.2 Constraint satisfaction as a multiobjective problem

The problem of satisfying 2 number of violated inequality constraints is clearly the
multiobjective problem of minimizing the associated functions until given values
(goals) are reached. The concept of non-inferiority is readily applicable and
particularly appropriate when constraints are themselves non-commensurable.
When not all goals can be simultaneously met, a family of violating, non-inferior
points is the closest to a solution of the problem.

Goal-based multiobjective optimization extends simple constraint satisfaction
in the sense that the optimizaﬁic:n céntiﬁues even- .a.fter all goals are met. In this

case, solutions should both be non-inferior and meet all goals.

4 Overview of evolutionary approaches to multi-
function optimization

The term Evolutionary Algorithms (EAs) is used to refer to a number of search
and optimization algorithms inspired by the process of natural evolution. Current
evolutionary approaches include Evolutionary Programming (EP) [4], Evolution
Strategies (ESs) [5], Genetic Algorithms (GAs) [6] and Genetic Programming
(GP) [7]. A comparative study of the first three approaches can be found in [8].

Evolutionary algorithms maintain a population of candidate solutions (the
individuals) for a given problem. Individuals are evaluated and assigned fitness
values based on their relative performance. They are then given a chance to re-
produce, i.e. replicate themselves a number of times proportional to their fitness.

The offspring produced are modified by means of mutation and /or recombina-




tion operators before they are evaluated, and subsequently re-inserted in the
population. Several re-insertion strategies exist, ranging from the unconditional
replacement of the parents by the offspring to approaches where offspring replace
the worst parents, their own parents or even the oldest parents.

The multiple performance measures provided by constrained and multiobjec-
tive problems must be converted into a scalar fitness measure before EAs can be
applied. So far, constrained optimization has been considered separately from
multiobjective objectife optimization in EA literature, and, for that reason, the

two are reviewed separately here.

4.1 Constraint handling

The simplest approach to handling constraints in EAs has been to assign infeasible
individuals an arbitrarily low fitness [6, p. 85]. This is possible given the abiiity
of EAs t_o_ cope with discontinui;;f;s-; which arise on the constraint boundaries.
In this approach, provided feasible solutions can be easily found, any infeasible
individuals are selected out and the search is not affected much.

Certain types of constraints, however, such as bounds on the decision variables
and other linear constraints, can be handled by mapping the search space so
25 to minimize the number of infeasible solutions it contains and/or designing
the mutation and recombination operators }carefully in order to minimize the
production of infeasible offspring from feasible parents [9]. This and the previous
approach are complementary and often used in combination with each other.

In the case where no feasible individuals are known, and cannot easily be
found, simply assigning low-fitness to infeasible individuals makes the initial
stages of evolution degenerate into a random walk. To avoid this, the penalty
imposed onto infeasible individuals can be made to depend on the extent to
which they violate the constraints. Such penalty values are typically added to

the (unconstrained) performance value before fitness is computed [6, p. 851].




Although penalty functions do provide a way of guiding the search towards
feasible solutions when these are not known, they are very much problem depen-
dent. Some infeasible solutions can, despite the penalty, be seen as better than
some feasible ones, which can make the population evolve towards a false opti-
mum. In response to these difficulties, guidelines on the use of penalty functions
have been described by Richardson et al. [10].

One of the most recent approaches to constraint handling has been proposed
by Powell and Skolnick [11] and consists of rescaling the original objective function
to assume values less than unity in the feasible region, whilst assigning infeasible
individuals penalty values greater than one. Subsequent ranking of the population
correctly assigns higher fitness to all feasible points than to those infeasible. This

perspective is supported and extended in the present work.

4.2 Multiple objectives

In problems where no global criterion directly emerges from the original multi-
objective formulation, objectives are often artificially combined by means of an

aggregating function. Many such approaches, a.lthoug_h initially developed to be

used with other optimizers, can also be used with EAs.

. Optimizing a combination of the objectives has the advantage of producing
a single compromise solution, requiring no further interaction with the decision
maker. However, if the solution found cannot be accepted as a good compromise,
tuning of the aggregating function may be required, followed by new runs of
the optimizer, until a suitable solution is found. As a workaround, of the many
candidate solutions evaluated in a single run of the EA, those non-dominated
solutions may provide valuable alternatives [12, 13]. However, since the algorithm
sees such alternatives as sub-optimal, they cannot be expected to be optimal in

any sense,

Aggregating functions have been widely used with EAs, from the simple



weighted sum approach, e.g., [14], to target vector optimization [15]. An im-
plementation of goal attainment, among other methods, was used by Wilson and

Macleod [12].

4.2.1 Non-Pareto approaches

Treating objectives separately was first proposed by Schaffer [16], as a move
towards finding multiple non-dominated solutions with a single algorithm run.
In his approach, known as the Vector Evaluated Genetic Algorithm (VEGA),
appropriate fractions of the next generation, or sub-populations, were selected
according to each of the objectives, separately. Crossover and mutation were
applied as usual after shuffling all the sub-populations together. Non-dominated
individuals were identified by monitoring the population as it evolved.

In a more application oriented paper, Fourman [17] also chose not to combine
the different objectives. Selection was performed by comparing pairs of individ-
uals, each pair according to one objective selected at random. Fourman first
experimented with assigning different priorities to the objectives and comparing
individuals lexically, but found selecting objectives randomly to work “surpris-
ingly” well.

However, shuffling sub-populations together, or having different objectives af-
fecting different tournaments, corresponds to averaging the fitness components
associated with each of the objectives. Since Schaffer used proportional fitness
assignment, the resulting expected fitness corresponded, in fact, to a linear com-
bination of the objectives with variable weights, as noted in [10]. Fourman’s
approach, on the other hand, corresponds to an averaging of rank, not objective,
values. Different non-dominated individuals are, in both cases, generally assigned
different fitness values, but the performance of the algorithms on problems with

concave trade-off surfaces can be qualitatively different [18].

Another approach to selection based on the use of single objectives in alter-




nation has been proposed in the context of ESs by Kursawe [19]. Hajela and
Lin [20] elaborated on the VEGA by explicitly including sets of weights in the

chromosome.

./4.2.2 Pareto-based approaches

Another class of approaches, based on ranking according to the actual concept
of Pareto optimality, was proposed later by Goldberg [6, p. 201], guaranteeing
equal probability of reproduction to all non-dominated individuals. Problems
with non-convex trade-off surfaces, which present difficulties to pure weighted-
sum approaches, do not raise any special issues in Pareto optimization.

This paper elaborates on Pareto-based ranking by combining dominance with
pf_eféfénce information to produce a suitable fitness assignment strategy. The evo-
lutionary optimization process is seen as the result of the interaction between an
artificial selector, here referred to as the Decision Maker (DM), and an evolution-
ary search process. The search process generates a new set of candidate solutions
according to the utility assigned by the DM to the current set of candidates.

Whilst the action of the DM influences the production of new individuals,
these, as they are evaluated, provide new trade-off information which the DM
can use to refine its current preferences. The EA sees the effect of any changes in
the decision process, which may or may not result from taking recently acquired
information into account, as an environmental change. This general view of
multiobjective evolutionary optimization has been proposed by the authors in
earlier work [21] and is illustrated in Figure 1. The DM block represents any
utility assignment strategy, which may range from an intelligent decision maker
to a simple weighted sum approach.

The EA block is concerned with a different, but complementary, aspect of the
optimization, the search process. Evolutionary algorithms, in the first instance,

make very few assumptions about the fitness landscape they work on, which jus-

A\




utility

a priori
knowledge :> DM :> EA :> results

It

(acquired knowledge)

objective values

Figure 1: A general multiobjective evolutionary optimizer

tifies and permits a primary concern with fitness assignment. However, EAs are
not capable of optimizing arbitrary functions [22]. Some form of characteriza-
tion of the multiobjective fitness landscapes associated with the decision making
strategy used is, therefore, important, and the design of the EA should take that

information into account.

5 Multiobjective decision making based on given
goals and priorities

The specification of goals and priorities can accommodate a whole variety of
constrained and/or multiobjective problem formulations. Goal and priority in-
formation is often naturally available from the problem formulation, although
not necessarily in a strict sense. Therefore, the interpretation of such informa-
tion should take its partial character into account. This can be accomplished by
allowing different objectives to be given the same priority, and by avoiding using
measures of the distance to the goals, which inevitably depend on the scale in
which the objective values are presented.

An extension of the decision making strategy proposed by the authors in [21]
is formulated here in terms of a relational operator, which incorporates the pref-
erence information given, and characterized. The ranking of a whole population

based on such a relation is ther\z described.
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5.1 The comparison operator

Consider an n-dimensional vector function f of some decision variable x and two
n-dimensional objective vectors u = f(x,) and v = f(x,), where x, and x, are

particular values of x. Consider also the n-dimensional preference vector

g = [gl!"')gp]

= [(91.11' .. sgl.nx),- .- ’(gp,h- .- :gp.ﬂ-p)]

where n; € {0,...,n} fori=1,...,p, and

P
z'n,,-=n.

i=1
Similarly, u may be written as
U o= [ oWy
= [(wagystam)y e (Upay oy Upmy)]
and the same for v and f.
The sub-vectors g; of the preference vector g, where ¢ = 1,...,p, associate

priorities ¢ and goals g;;,, where j; = 1,...,n;, to the corresponding objective
functions f;;;, components of f;. This assumes a convenient permutation of the
components of f, without loss of generality.

Generally, each sub-vector u; will be such that a number k; € {0,... ,ni} of
its components meet their goals while the remaining do not. Also without loss of

generality, u is such that, for ¢ = 1,...,p, one can write

\

Ik €{0,...,n} | VLE{L,... K}, Yme{k+1,...,n},

(uig < gig) A (Uim > Gim) (1)

11




For simplicity, the first k; components of vectors u;, v; and g; will be represented
as u;y’ , v;"l' and g:‘l' , respectively. The last n; — k; components of the s-a.me vectors
will be denoted u;l'l‘, V;g‘ and g;ll, also respectively. The smile (=) and the frown
(M), respectively, indicate the components in which u either does or does not

meet the goals.

Definition 3 (preferability) Vectoru = [uy,...,u,] s preferable to v = [vy,...,V,)

given a preference vector g = [g1,...,8,) (U 3 v) iff

u_on u_ @ [w_, w.oouw
p=1 = (u KVP)V{(UP =vHA [vE g g2y vl p<v,,)]}

and

2 ! 2 BT B =
p>1 = (u e<v))V {(up =vy )A (v, £8, )V (ur,. . p1 e, Vi,.p-1)
where Uy, p-1 = [U1,...,U,_1] and similarly for v and g.

In simple terms, vectors u and v are compared first in terms of their com-
ponents with the highest priority, that is, those where ¢ = p, disregarding those
in which u, meets the corresponding goals, u;l'l' . In case both vectors meet all
goals with this priority, or if they violate some or all of them, but in exactly the
same way, the next priority level (p — 1) is considered. The process continues
until priority 1 is reached and satisfied, in which case the result is decided by
comparing the priority 1 components of the two vectors in a Pareto fashion.

Since satisfied high-priority objectives are left out from comparison, vectors
which are equal to each other in all but these components express virtually no
trade-off information given the corresponding preferences. The following sym-

metric relation is defined:

Definition 4 (equivalence) Vectoru = [uy,...,u,)] is equivalent tov = [v,,...,v

gwen a preference vector g = [g1,...,8, (U = v)iff

- S NI S u
(W7 =v)A(uy =) A (Va5 S Bip)-

12
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The concept of preferability can be related to that of inferiority as follows:

Lemma 1 For any two objective vectors u and v, if u p< v, then u is either

preferable or equivalent to v, given any preference vector g = [g1, ..., g5).

The proof of this lemma, and that of the following one, can be found in the

Appendix.

Lemma 2 (transitivity) The preferability relation is transitive, i.e., given any

three objective vectors u, v and w, and a preference vector g = [g1,..., &),

U<V<LW = u=<w,
E & E ['4

5.1.1 Particular cases

The decision strategy described above encompasses a number of simpler multi-
objective decision strategies, which correspond to particular settings of the pref-

erence vector.

Pareto (Definition 2) All objectives have equal priority and no goal levels are
given' E= [gl] = [(_001 EX: ,—OO)]

Lexicographic [1] Objectives are all assigned different priorities and no goal

levels are given. g = [g1,...,8x) = [(=0),...,(=00))].

Constrained optimization (Section 2) The functional parts of a number n of
inequality constraints are handled as high priority objectives to be mini-

mized until the corresponding constant parts, the goals, are reached. The

objective function is assigned the lowest priority. g = [g1, g2] = [(—00), (92,1, - - » G2,m. )].

Constraint satisfaction (or Method of Inequalities [23]) All constraints are
treated as in constrained optimization, but there is no low priority objective

to be optimized. g = [82] = [(92.1,--- y92,m))-

13




Goal programming Several interpretations of goal programming can be imple-
mented. A simple formulation, described in [2], consists of attempting to

meet the goals sequentially, in a similar way to lexicographic optimization.
g = [gll e ?gﬂ] = [(91|1)3 L | (gﬂ'll)]'

A second formulation attempts to meet all the goals simultaneously, as with

constraint satisfaction, but requires solutions to be satisfactory and Pareto

optimal. g= [g1] = [(.91.1, cen :Ql.n)]-

Aggregating functions, such as weighted sums and the maximum of a number of
objectives, can, of course, be used as individual objectives. Although this may
be appropriate in the case where they express some global criterion, e.g., finan-
cial cost, they do have the disadvantage of hiding information from the decision
maker. It is especially worth pointing out that, as the number of objectives in-
creases, it becomes more likely that some ob jectives are, in fact, non-competing,
at least in portions of the trade-off surface. The understanding that some objec-
tives are non-competing constitutes a valuable insight into the problem, because

the number of dimensions involved in the trade-off is reduced.

5.2 Population ranking

As opposed to the single objective case, the ranking of a population in the mul-
tiobjective case is not unique. This is due to concepts such as dominance and
preferability not defining total, but partial orders. In the present case, it is desired
that all preferred individuals be assigned the same rank, and that individuals be
placed higher in the rank than those they are preferable to.

Consi;ier an individual x,, at generation ¢ and with corresponding objective
vector u, and let r&t ) be the Iiumber of individuals in the current population which
are preferable to it. The current position of xy in the individuals’ rank can be
given simply by

rank(xy, t) = »{?

14




which ensures that all preferred individuals in the current population are assigned

rank zero.

In the case of a large and uniformly distributed population with N individ-
uals, the normalized rank 7(//N constitutes an estimate of the fraction of the
search space preferable to each individual considered. Such a fraction indicates
how easily the current solution can be improved by pure random search and, as a
measure of individual cost, it does not depend on how the objectives are scaled.
This interpretation of ranking, also valid when there is only one objective, pro-
vides a way of characterizing the cost landscape associated with the preferences
of the DM. It is not applicable to the ranking approach proposed by Goldberg [6,
p. 201].

In the general case of a non-uniformly distributed population, a biased es-
timate is obtained which, nevertheless, preserves the strict order relationships

between individuals, as desired.

Lemma 3 If an objective vector u = f(xy) associated with an individual Xy
is preferable to another vector v = f(xy) associated with an individual Xy in
the same arbitrary population, then rank(xy,t) < rank(xv,t). Equivalently, if

rank(xy,t) > rank(xy,t), then u is not preferable to v.

The proof follows from the transitivity of the preferability relation (Lemma 2).
Figure 2 illustrates the ranking of the same population for two different pref-
erence vectors. In the first case, both objectives are given the same priority. Note .

that all sa,tlsﬁcmg individuals (the ones which meet the1r goals) are preferable

to, and therefore have lo'-wer rank than all of the remaining ones. In the second
‘c“ase, objective 27is given a hxgher prmnty, reﬂectmg, for example, a feasibility
constraint. In this case, individuals which do not meet goal g; are the worst (they
are infeasible), independently of their “theoretical” performance according to f;.
Once g; is met, f; is used for ranking. Individuals which meet both goals are

satisficing solutions, whereas those which meet only g, are feasible, but unsatis-

15
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(a) f2 has the same priority as f;
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(b) f2 has greater priority than f;

Figure 2: Multiobjective ranking with goal values (minimization).
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factory. Note how particular ranks need not be represented in the population at

each particular generation.

5.3 Characterization of multiobjective cost landscapes

The cost landscape associated with a problem involving multiple objectives de-
pends not only on the objectives themselves, but also on the preferences expressed
by the DM. Their effect can be more easily understood by means of an example.

Consider the simple bi-objective problem of simultaneously minimizing

fi(z1,22) = 1—exp (-—(.7:1 —1)? = (22 + 1)2)
fa(mi2s) = 1-exp(~(z1+1) = (22— 1)?)

As suggested in the previous subsection, the cost landscape associated with a
given set of preferences can be inferred from the ranking of a large, uniformly
distributed population, and since the problem involves only two decision variables,
visualized.

Pareto rankmg assigns the same cost to all non-dominated individuals, pro-

ducing a long ﬂat 1nverted mdge as is shown in Fxgure 3. If achievable goals are
spec1ﬁed a d1scontmu1ty arises where solutions go from satisficing to unsatisfac-
tory (Figure 4). A ridge, though shorter than in the previous case, is produced
by those satisfactory solutions which are also non-dominated.

Giving one objective prlorlty over the other conmderably alters the landscape
In this case, the discontinuity corresponds to the transition from feas:ble to infea-
sible, and it happens to occur in the neighbourhood of the optimum (Figure 5).
Finally, if both objectives are made into hard constraints, the feasible region
becomes totally flat (Figure 6). This is because, in the absence of any other
objectives, all solutions which satisfy both constraints must be considered equiv-

alent.
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Figure 3: The cost landscape defined Figure 4: The effect of specifying two
by Pareto-ranking (the contour plots goals with the same priority.

are those of the individual objective

functions f; and f;).

Despite the underlying objectives being continuous,  smooth and unimodal, the
landscapes can be seen to exhibit features such as diséo_gtinuitips, non-smoothness
and flat regions. Optimizers capable of coping with such features are necessary
for the decision making approach proposed to become useful, and EA-based op-

timizers are certainly eligible candidates.

6 Multiobjective Genetic Algorithms

The ranking of a population provides sufficient relative quality information to
guide evolution. Given the current population ranking, different EAs will pro-
ceed with different selection and reproduction schemes, to produce a new set of
individuals to be assessed.

This section will be concerned with the formulation of a Multiobjective Ge-

netic Algorithm (MOGA), based on the ranking approach described earlier.
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6.1 Fitness assignment

Fitness is understood here as the number of offspring an individual is expected
to produce through selection. It differs from individual utility, which reflects the
result of the decision making process. The selection process determines which
individuals actually influence the production of the next generation and is, there-
fore, a part of the search strategy.

The traditional rank-based fitness assignment is only slightly modified, as

follows:
1. Sort population according to rank.

2. Assign fitness by interpolating from the best individual (rank = 0) to the
worst (rank = maxr(*) < N) according to some function, usually linear or

I
exponential, but possibly of other type.

3. Average the fitness assigned to individuals with the same rank, so that all
of them are sampled at the same rate while keeping the global population

fitness constant.

Rank-based fitness assignment, as described, transforms the cost landscape
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defined by the ranks into a fitness landscape which is also independent from

objective scaling.

6.2 Niche induction methods

In multimodal fitness landscapes, local optima offer the GA more than one oppor-
tunity for evolution. Although populations are potentially able to search many
local optima, a finite population tends to settle on a single “good” optimum, even
if other equivalent optima exist. This phenomenon is known as genetic drift, and
has been well observed in natural, as well as artificial, evolution. -

In the present case, where all non-dominated/preferred points are considered
equally fit, the population of a GA can be expected to converge only to a small
region of the trade-off surface, unless specific measures are taken against genetic
drift [6, 21].

Niche induction methods [24] promote the simultaneous sampling of several
different optima by favouring diversity in the population. Individuals tend to

distribute themselves around the best optima, forming what is known as niches.

\

6.2.1 Fitness sharing "'

Fitness sharing [25] models individual competition for finite resources in a ge-
ographical environment. Individuals close to one another (according to some
metric) mutually decrease each other’s fitness. Even if initially considered less
fit, isolated individuals are thus given a greater chance of reproducing, favouring
diversification.

Finding a good trade-off description means achieving a diverse, if not uniform,
sampling of the trade-off surface in objective function space. In the sharing scheme
proposed here, share counts are computed based on individual distance in the
objective domain, I;;tﬁéjn_ly _betﬁeen individuals with the same rank. Sharing

works by providing an additional selective pressure to that imposed by ranking,
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which counters the effects of genetic drift. Genetic drift becomes more important

as more individuals in the population are assigned the same rank.

6.2.2 Setting the niche size ¢

The sharing parameter Tabase establishes how far apart two individuals must be
in order for them to decre;;e each other’s fitness. The exact value which would
allow a number of points to sample a trade-off surface whilst only tangentially
interfering with one another depends on the area of such a surface. The following
results assume that all objectives have the same, low priority, but can also be
applied to a certain extent when there are multiple priority levels.

When expressed in the objective value domain, and due to the definition of
non-inferiority, an upper limit for the size of the trade-off surface can be calculated
from the minimum and maximum values each objective assumes within that
surface. Let S be the trade-off set in the decision variable domain, f(S) the

trade-off set in the objective domain and y = (y1,...,yn) any objective vector in

f(5). Also, let

m = (m&inyl,...,myinyn) = [y ¢ cr M)

M = (m;.xy;,...,myaxy,.,) =(M,...,M,)

as illustrated in Figure 7.

The definition of non-dominance implies that any line parallel to any of the
axes will have not more than one of its points in f(5), i.e., each objective is a
single-valued function of the remaining objectives. Therefore, the true area of
f(S) will be less than the sum of the areas of its projections according to each
of the axes. Since the maximum area of each projection will be at most the area

of the corresponding face of the hyperparallelogram defined by m and M, the
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which is the sum of the areas of each different face of a hyperparallelogram of
edges A; = (M; — m;) (Figure 8).

The setting of oynare also depends on how the distance between individuals
is measured, and namely on how the objectives are scaled. In fact, the idea of
sampling the trade-off surface uniformly implicitly refers to the scale in which
objectives are expressed. The appropriate scaling of the objectives can often be
determined as the aspect ratio which provides an acceptable visualization of the
trade-off, or from the goal values. In particular, normalizing objectives by the
best estimate of A; available at each particular generation seems to yield good
results (see the a;;fication examples in Part II [26]). This view is also expressed
in a recent paper [27].

Assuming objectives are appropriately scaled, and using the co-norm as a

measure of distance, the maximum number of points that can sample area A
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without interfering with each other can be computed as the number of hypercubes
of volume ¢j},,. that can be placed over the hyperparallelogram defined by A
(Figure 9). This can be estimated from the difference in volume between two
hyperparallelograms, one with edges A; + Oynare and the other with edges A;, by

dividing it by the volume of a hypercube of edge ogpare, i-e.,

Conversely, given a number of individuals (points), N, it is possible to estimate

Oshare Dy solving the (n — 1)-order polynomial equation

n-1 1=1 —
Nglhare - =0
Oshare

H (Ai + o'sha.re) - '1—-[1 JAY,

for G > 0.
When there are objectives with different priorities and there are known so-

lutions which meet all goals with priority higher than 1, trade-offs will involve
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Figure 9: Sampling area A. Each point is oypare apart from each of its neighbours
(oo-norm)

only priority-1 objectives. The sharing parameter can, therefore, be computed
for these only, using the expression above. This should be the case towards the
end of the GA run in a problem where high-priority objectives can be satisfied.
Similarly, if the highest level of priority, ¢, which the preferred solutions,
known at any given time, violate is greater than 1, the trade-offs explored by the
preferability relation will not involve objectives with priority higher than . Again,
sharing may be performed while taking into account priority-i objectives only. It
is a fact that objectives with priority lower than ¢ may also become involved in the
decision process, but this will only happen when comparing vectors with equal
violating priority-i components. If this is the case, and the DM decides to move
on to consider objectives with priority i —1, then the relevant priority-: objectives
should either see their associated goals changed, or be associated priority ¢ — 1

by the DM for sharing to occur as desired.

6.2.3 Mating restriction

Mating restriction [24] tries to address the fact that individuals too different from

each other are generally less likely than similar individuals to produce fit offspring
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through mating, by favouring the mating of similar individuals. In particular,
the mating of distant members of the Pareto set can be expected to be inviable.

Mating restriction can be implemented much in the same way as sharing, by
specifying how close individuals should be iniorderito mate. The corresponding
parameter, Omate, can also be defined in the objective domain. After selection,
one individual in the population is chosen, and the population searched for a
mate within a distance omate. If such an individual can be found, then mating is
performed. Otherwise, a random individual is chosen [24].

Mating restriction assumes that neighbouring fit individuals are genotypically
similar, so that they can form stable niches. Extra attention must therefore be
paid to the coding of the chromosomes. Gray codes, as opposed to standard
binary, are known to be useful for their property of adjacency. However, the
coding of decision variables as the concatenation of independent binary strings
cannot be expected to consistently express any relationship between them.

On the other hand, the Pareto set, when represented in the decision variable
domain, will certainly exhibit such dependencies, as is the case in the exam-
ple shown earlier in Figure 3. In that case, even relatively small regions of the
Pareto-set may not be characterized by a single, high-order, schema and the abil-
ity of mating restriction to reduce the formation of lethals will be considerably
diminished. As the size of the solution set increases, an increasing number of indi-
viduals is necessary in order to assure niche sizes small enough for the individuals
within each niche to be sufficiently similar to each other.

Alternatively, the DM can reduce the size of the trade-off set by appropriately
refining the current preferences. The GA must then be able to cope in some way

with the corresponding change in the fitness landscape.
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6.3 Progressive articulation of preferences

Setting aspiration levels in terms of goals and associated priorities is often diffi-
cult if done in the absence of any trade-off information. On the other hand, an
accurate global description of the trade-off surface tends to be expensive, or even
impossible to produce, since the Pareto set may not be bounded. Interactively
refining preferences has the potential advantage of reducing computational effort
by concentrating optimization effort on the region from which compromise so-
lutions are more likely to emerge, while simultaneously providing the DM with
trade-off information on which preference refinement can be based.

From the optimizer’s point of view, the main difficulty associated with pro-
gressive articulation of preferences is the changing environment on which it must
work. Consequently, the action of the DM may have to be restricted to the tight-
ening of initially loose requirements, as with the moving-boundaries process [23].
In this case, although the overall optimization problem may change, the final
solution must remain in the set of candidate solutions which satisfy the current
preferences at any given time.

|When EA-based optimizers are used, the DM may gain more freedom and
actually decide to explore regions of the trade-off surface not considered in the
initial set of preferences.\"i The continuous introduction of a small number of
random immigrants in thé’h current population [28], for exa,n;lple;héé_"'gééﬁ"shown
to improve the resl;;ans*eﬁo?(i}Asto sﬁddeﬁ c.h.anges in the objective function, while
also potentially i-rz.ilr:ﬁ;bvi‘ﬁ-grhfheir performance as glc;bé.i optimizers.

Although there is no hard limit on how much the DM may wander away from
preferences set originally, it must be noted that EAs will work on the utility
function implicitly defined by the preference vectors the DM specifies. Any EA
can only converge to a compromise solution if the DM comes to consistently prefer

that solution to any others.

Giving the DM freedom to specify any preferences at any time also raises the
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question of what information should be stored during a run, so that no trade-
off information acquired is lost. From Lemma 1, the non-dominated set of a
particular problem contains at least one vector equivalent to any vector in the
preferred set of the problem, defined by a given preference vector. Therefore,
only the non-inferior individuals evaluated during a run of the algorithm need
to be stored. A database of individuals currently non-dominated is also useful
in setting the appropriate niche sizes for sharing and mating restriction, since
it includes the relevant individuals from previous generations in the niche-size

estimation process.

7 Concluding remarks

Soft objectives and constraints have been presented as individual aspects of a
more general multi-function optimization problem. A decision making approach
based on goal and priority information, which can be explored by evolutionary
techniques such as genetic algorithms, has been formalized in terms of a transi-
tive relation, here called preferability. The decision approach was then extended
to the case where there are more than two alternatives to chose from, which
also provided a means of visualizing the cost surfaces associated with the given
decision approach over a search space.

Evolutionary algorithms, known to perform well on broad classes of ill-behaved
problems, possess several properties desirable in a multiple objective optimizer.
In particular, their simultaneous handling of multiple candidate solutions is well
suited to the multiple solution character of most multiobjective problems. Mech-
anisms to promote diversity in the population were extended from the single-
objective genetic algorithm with the generation of rich trade-off information in
mind.

Trade-off information generated during a run of the algorithm can, in turn,

be used to refine initial preferences until a suitable compromise solution is found.
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Optimization effort may, in this way, be concentrated on the region of interest.
The flexibility provided by EAs can also be explored at this level: on-line artic-
ulation of preferences implies non-stationary cost surfaces which the optimizer
must handle satisfactorily.

Finally, the characterization of the multiobjective cost surfaces should prove
useful in tailoring evolutionary algorithms to suit the needs of multiobjective
optimization, such as the ability to handle ridges in the cost landscape in prob-
lems involving a large number of decision variables. However, standard GAs
can already make good use of the preferability relation, as application examples

presented in the second part of the paper [26] and elsewhere [29] demonstrate.
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A Proofs

A.1 Proof of Lemmal

It suffices to show that

for all2 =1,...,p and all p € N, which can be done by induction over . The

proof of the lemma is obtained by setting i = p.
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Base clause (i1 =1)

ur<v -—_? (ulzvl) V (ulé:—:vl)

Proof

From Definition 1 (inferiority), if an n-dimensional vector v is inferior to another
vector u, then any component u; of u will be less than or equal to the correspond-
ing component v of v, with k = 1,...,n. This also implies that any subvector
of u will either dominate or be equal to the corresponding subvecter of v. In

u u
particular, for ui™ and v,

u u u u
ur<v = (u p<vy)V(uy =vl

u u u u
If ul” < vi, then, by Definition 3, u; is preferable to v;. Otherwise, uy = vy,

and, similarly, one can write:

¥ @8 u
urcv = (u" < vV (uy =v;

u u u
Again by Definition 3, if ul” p< vy, then u; " =< vy. Otherwise, uy” is equal to
Ljuss \P

u
vi” and, by Definition 4, u; is equivalent to v;.

Recursion clause (1 <i < p)

If
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then

..... o, Vired)

Proof

As before, one can write:

}l n n b2
ur< v =g,-‘- (uf p< V] )V (uT =v)
If u,’.H p< v;‘i, then, by Definition 3, u,,.; is preferable to v, ;. If, on the

u u u u
other hand, u™ = v{", then either v;” £ g;7, in which case u;,__; g}-< V1,4 OF

u
St
i -

vi<g

In the latter case, and if the first alternative of the hypothesis is true, then
uy,.; is preferable to v, ;. Otherwise, the second alternative of the hypothesis
is that uy, ;-; is equivalent to v;,__;_;. Since u;":‘ = v?‘ and v‘-‘y’ < g.}l'l’, the

equivalence between u;,; and v;, _; follows from Definition 4. )

A.2 Proof of Lemma 2

The transitivity of the preferability relation will be proved by induction over p.
The proof will be divided into three parts, the first two of which apply to both
the base clause (p = 1) and the recursion clause (p > 1). In the third part, the

appropriate distinction between the two clauses is made.

Base clause (p =1)
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Recursion clause (p > 1)

If
U .. o- < Vip-1_. = Wi o1 U, p-1_ = Wi _ o
Liia 181.....:»—1 "PTR gt Lisiail Bi..p-1 DR ey ey Liuiged
then —
Up..p < Vi.p =< Wi . = U ., < Wi,
P Bi..p pgl.---.p el Bi...p o B1,...p 2
Proof

From Definition 3,

u

u
~ ~
Ui g = Viep = Uy SV

<
<

~—~ ~
Vi EI—< . Wi = V, SW,

for all p > 1. On the other hand, since u;g‘ > g;l'l“,

5 = 2 2
u v, = Vv, > g,

u v
which means that all components of v, are also components of v, and, similarly

u v
for w," and w;". Therefore,

u
CaseI: u »<v

b

= X A A X 2
(U <V )A(V, Sw) = ug p< W,

which implies u;,_, . < Wy, . forallp>1.
P, .
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Case II: (u;‘l = V;g) A (Vf’ S S;E)

A 2 3 2 3 3
(U =v; )A(vy Sw;) = u, <w,

u u
Ku p<w,, thenu <w,
g
- u u u u
Ifu” = w.", one must also note that v}~ £ g, implies that there are at least

v u v u
some components of v in v.”, and similarly for w;* and w, . Consequently,
2 . X = B o
(V-p ggp )A(Vp Swp ) = wp ﬁgp
The preferability of u;,., over w; __, follows from
i L2 L] 3
(v =w)A(w, £g;) (2)

for all p > 1.

u u u u
Case III:  (u; =v; " )A (v, <g;)

g u L] . = ¥
In this case, x;° and X, designate exactly the same vectors as x, and x,

v v
respectively, for x = u,v,w, g. In the case where v, p< W_", one can write:

2 A 2 A 2 A
(0 = v )A (v < wy') = ue<wg

which implies u, ., " < Wi, p forallp>1.
lo..p

v v u u : .. A v
If v;* = w.", then also u7” = w". If, in addition to that, w, £ g, one can
write

1 n L,
(0 =w)A(w, £g;)

which implies that uy,. , is preferable to wy, p given g1,..p, for all p > 1.
If W;Y' < g;\'r‘ , the base clause and the recursion clause must be considered

separately.
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Case III(a): (p=1)

u u u u u u
(v A = v A (e <gd) = (@ eevd)
= 4 WA b/ & b
(V1§§W1)/\(V1 =wi)A(vi <gr) = (vie<wy)
B 8
= (vi < wy)
From the above, and given the transitivity of the inferiority relation, it follows

u u
that u;” p< wy”, which implies that u, is preferable to w; given g;, and proves

the base clause.

Case ITI(b): (p > 1)

From the above, and if the hypothesis is true, then u;, _,-; 8 < Wi,.p-1, Which
ey p=-1
implies that u;, , is preferable to w;, , given g1,..p, and proves the recursion

clause. 0
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