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Abstract

GR2 is a hybrid knowledge-based system consisting of a Multilayer Perceptron and
arule-base system for hybrid knowledge representations and reasoning.

Knowledge embedded in the trained Multilayer Perceptron (MLP) is extracted in
the form of general (production) rules -- a natural format of abstract knowledge rep-
resentation. The rule extraction method integrates Black-box and Open-box tech-
niques on the MLP, obtaining feature salient and statistical properties of the training
pattern set.

The extracted general rules are quantified and selected in a rule validation process.
Multiple inference facilities such as categorical reasoning, probabilistic reasoning
and exceptional reasoning are performed in GR2.

Experiments have shown that GR2 is a reliable and general model for Knowledge
Engineering.

Key Words: Rule Extraction, Hybrid Knowledge-based System, Neural Network,
Rule Validation
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1. Why are Hybrid Knowledge-based Systems Important?

The combination of Artificial Neural Networks (ANNs) and Rule-based Systems (RBSs)
has become a fast growth subject [3-11, 13-19, 21-25]. This is because the two kinds of sys-
tems represent knowledge at different levels of abstraction, promising a complement of the
systems without compromising their individual strengths. An optimally organised hybrid sys-
tem, which includes both ANNS as the automatic knowledge acquisition facilities and a RBS
as a high level inference engine and user interface, provides some major advantages.

*It overcomes the knowledge acquisition bottleneck problem existing in knowledge engineering
where a RBS is used alone, enabling a completely automatic knowledge engineering process.

*It provides an explicit representation of the knowledge encoded in ANNS, in the form of, say,
production rules, solving the problem of opaqueness of knowledge representation suffered by
most ANNs. This explanatory capability will be beneficial in the following ways. People will
more willingly accept ANNs if it can be seen that the knowledge they have acquired concurs with
their domain knowledge at hand. ANNs will be capable of knowledge discovery for human study
in the application domains. Understanding connectionist model of cognition will be much easier.

*The knowledge encoded in a trained ANN presents a uniform property, whereas knowledge ac-
quired from human experts usually involves direct or indirect conflicts, which are very difficult to
detect and to avoid.

*Symbolic knowledge representation provides better approaches to improve further the knowl-
edge acquired by the ANNSs. For instance, generality of the rule set can be obtained and adjusted
even if the ANNs have been under-trained or over-trained. Accuracy of the rule set representing
of the application domain can be optimized through a process known as rule validation. Probabil-
istic representation and reasoning with rules lead to system robustness in noisy and redundant en-
vironments.

The central themes of hybrid system methodology include the followirfg two considera-
tions: (i) the optimal format of the symbolic knowledge representation and (ii) how the im-
plicit subsymbolic knowledge acquired by ANNSs can be translated into symbolic knowledge
format.

This paper presents a common symbolic knowledge format, general rules, in Section 2, be-
ing used in our hybrid knowledge-based system GR2. Section 3 introduces a novel and effi-
cient heuristic method to extract the knowledge from a trained Multilayer Perceptron. The
system GR2 is outlined in Section 4, which also includes rule validation and multiple infer-
ence functions. Experiments in some artificial and real-world applications are reported in
Section 5. The paper ends with a summary in the final section.

2. General Rules -- an Abstract Knowledge Representation

2.1 Definitions
We address binary problems in this paper.
Definition 1 A Boolean variable B, when it is instantiated, is represented in two forms:

*subsymbelic form: 1 or 0, indicating instantiations B=1 or B=0 respectively. Traditionally, these
are also referred to as positive or negative instantiations.

«symbolic form: B or ~B, indicating B positively or negatively instantiated respectively. Here
appears as the symbolic name of the variable.

Definition 2 L boolean variables constitute an L dimensional binary space, BL={0,] JH A
element of the binary space is a vector of length L. A vector also has two forms: i
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ssubsymbolic form: <E,,-52,..,BL>, where b; is either 1 or 0, corresponding to the ith boolean var-
iable instantiated

ssymbolic form: <B,,B,....B.>, where B is either B, or ~B;, depending on the symbolic form of
the instantiation of the ith boolean variable

Definition 3 A binary problem is a triple: (I, O, F), where
*lis an N dimensional binary space, the input space, comprising N boolean variables;
*0 is a M dimensional binary space, the output space, comprising M boolean variables;

°Fis a function, which is a set of mappings {T0 — Y}, where @ is a vector from I and yis an in-
stantiated variable from O. Note, Y is not a vector.

Given a binary problem, representation of the function F in an effective, abstract format is
the central target of an inductive learning system. An artificial neural network encodes the
function in a subsymbolic, implicit representation. A rule-based system, on the other hand,
describes the function in a symbolic and explicit representation.

Definition 4 An MLP in this paper is a Multilayer Perceptron network having one layer of
hidden units. Completely weighted connections are used for any adjacent unit layers. The in-
put, the hidden and the output layers of units are denoted as {I}, {H,} and {0,) respectively,
where the indices i=1..N, h=1..Q, and 0=1..M respectively. The two layers of weight connec-
tions from the input to the hidden layer and from the hidden to the output layer are W,={w, )
and Wy={w,,} respectively. An MLP can approximate the function in a binary problem.

Definition 5 A Sole Pattern, P=(1, O,), is an input vector from the input space, taken togeth-
er withone instantiated output variable. When the output variable is instantiated by 1, the sole
pattern is positive; otherwise, it is negative.,

Sole patterns collectively describe a function of a binary problem, and also the function of
the MLP. A set of sole patterns can appear contradictorily in a binary problem with noise, i.e.
an input vector may correspond to different values of an output variable. Sole patterns gen-
erated by the MLP are uniform, because there is a unique output corresponding to any input
vector from an ANN, if it is not further modified. GR2 uses sole patterns generated by the
trained MLP, and retains the uniformity of the acquired knowledge.

Definition 6 A Rule is constituted with a premise part and a conclusion part, having the form
IF (04, Q... 0y) THEN (Y)

where O<L<N, 0ys and Y are instantiated boolean variables, in a form either positive or neg-
ative (headed with a ~). An Oy, an instantiated input variable, is called a premise, attribute or
feature. Oys are conjunctively related. The Y an instantiated output variable, is a conclusion
or consequence. If Y is positive, the rule is a positive rule. If the Y is negative, the rule is a

negative rule. This form of rules is equivalent to the Horn Clause Format.

Definition 7 To a binary problem with N input variables, a rule having N premises is a spe-
cial rule. A special rule is the symbolic representation of a sole pattern. A rule R having L
premises, where 0<L<N, is a general rule. A general rule represents a set of special rules
whose conclusion is the same as that of the general rule, and whose premises are those of the
general rule conjunctive with any possible combinations of the absent premises in the general
rule. In other words, a general rule includes a set of special rules, or it covers a set of sole
patterns. In a general rule, the present premises preserve the essential attributes which are
commonly held in the set of sole patterns in its coverage, by which this set is distinguished
from other sole patterns. The absent premises in a general rule are not significant and thus
may be ignored.

Definition 8 Given two general rules R, and R, R, is more general than R, if R, represents
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a set of special rules subsuming the set of special rules represented by R,. Given any two gen-
eral rules R, and R; on the same binary problem, the necessary and sufficient conditions for
R; to be more general than R; are, (a) R; and R; have the same conclusion; AND (b) R’s
premises form a subset of R;’s. Obviously, the fewer premises a general rule possesses, the
more general it is. Two general rules are incomparable if (a) they have different conclusions
(either with a different variable, or with the same variable but instantiated by different val-
ues); OR (b) their premises mutually do not subsume.

Definition 9 A non-redundant set is a set of general rules, any pair of which are incompa-
rable.

Sole patterns and rules are two different representations of the same objects. GR2 uses both
representations for its hybrid components. Knowledge from a trained MLP is translated into
a non-redundant set of general rules.

2.2 Generality vs. Accuracy

Accuracy and generality are essential criteria for machine learning. For GR2, accuracy is
the ratio of the sole patterns correctly covered or classified by the general rules in the given
training set. Generality is the degree of abstraction at which the general rules represent the
property. Generality is characterised by the average and the standard deviation of the num-
bers of the premises in the general rules.

Learning capability is attributed to generality provided that accuracy is at an acceptable lev-
el. As shown in Figure 1, an ellipse indicates a rule’s coverage in the input space. The Figure

Negative Sole Patterns Positive Sole Patterns
Input Space Input Space

Training Set

Untrained Set

Rule’s coverage
Figure 1. Generality leads to better learning capacity in the untrained set range

1 illustrates the fact that a few general rules (corresponding to the two large ellipses) can cov-
er the range whereas otherwise many more less general rules (corresponding to the four small
ellipses) are required. The importance of this is that the more general the rules are, the more
likely they evenly cover both ranges corresponding to the trained and the untrained (i.e. those
not used in training the MLP) sole pattern sets, embodying higher learning capability. A less
general rule, however, is unlikely to cover any sole pattern bevond the particularly predeter-
mined range of the training set.

However, a rule more general than necessary is more likely to lose the uniformity of its cov-
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erage. It may misclassify some sole patterns. As shown in Figure 2, the two large ellipses cov-

Negative Sole Patterns  Positive Sole Patterns
Input Space Input Space

m Training Set
Ny
\L‘ Untrained Set

Rule’s coverage
g

Figure 2. Generality may cause partial misclassification too

er the ranges across the boundary of Negative/Positive Sole Patterns. In other words,
accuracy decreases as generality increases. The relationship between generality and accuracy
is depicted in Figure 3.

100%

(@

=T

0
GENERALITY >

Figure 3. The relationship between generality and accuracy

Optimization on knowledge representation is beneficial to trade off between accuracy and
generality. Section 2.3 and 2.4 discuss some attempts at such optimization, by which accura-
cy will not be harmed much as generality increases to a certain extent.

Control of generality is easy in GR2 by varying a threshold (see later). Obtaining accuracy
is however much more complicated. Many factors for this are beyond the scope of this paper.
Note, an accuracy of 100% is usually not ideal, and may be impossible in a practical data set
which includes some noisy cases.

2.3 Probabilistic Rules

The rule previously mentioned is categorical whose coverage is assumed to be uniform. A
probabilistic rule is a rule to which the uniform assumption on its coverage is not held. A Con-
fidence Factor is the additional component to a probabilistic rule. It counts on the sole patterns
correctly classified or misclassified in the rule coverage.

cf(R,)=(cc-ec)/(cc+ec)
where cc is the number of sole patterns correctly classified, and ec is the number misclas-

sified. The value range is [-1, 1]. When the confidence factor is 1, the rule is equivalent to a
categorical rule. Categorical rules are a special case of probabilistic rules.

The confidence factor provides a better capability for classification under uncertainty. GR2
classifies sole patterns in two consequential procedures:

» Categorical Reasoning: If an input vector is covered by a set of categorical rules which have
the same conclusion, the conclusion of the rules is the class the input vector belongs to. Otherwise

A Heuristic for General Rule Extraction from an MLP 5



* Probabilistic Reasoning: if the vector is covered by a set of rules which have different conclu-
sions, its class is decided by the conclusion of those rules whose confidence factors, when
summed, are more than those of the opposing rules.

2.4 Exceptional Reasoning

GR2 usually generates both positive and negative rules for every output variable. However,
as training patterns occasionally appear with features not sufficiently distinct in every aspect,
the rules for an output variable are provided by only either a positive or a negative form. GR2
performs Exceptional Reasoning to cope with this situation.

Exceptional Reasoning: check the input vector by the existing rules. If it is covered by any
of the rules, the class is decided by the conclusion of the rules. Otherwise, the class is the op-
posite of the conclusion in the existing rules.

3. How are the General Rules Extracted?

General rules are extracted from a trained MLP by two techniques in two approaches. In
the Open-box approach, the weight matrices are explored and a linear statistical property of
the MLP is obtained. In the Black-box approach, the MLP is taken as a black-box, and only
its Input/Output behaviour is observed for examining the salient individual features from the
trained pattern set. Gathering these two sorts of properties, the rule extraction algorithm gen-
erates the rules and controls the generality degree of the rule set with a threshold. The details
are explained in the following three sections respectively. This method is first introduced by
us in [15], and improved in this paper. This method does not require any special change on
the ANN and is effective in both information dense cases such as two or more bit AND, OR,
and parity problems, and real-world domains of large scale in noisy and redundant circum-
stances.

3.1 Potential Default Set

The contributive relationship from the input units to the output units of the MLP can be par-
tially observed by the matrix L = (W,W,)T . Anelementof L, L,; = ;w;h "%y, is the summed
link strength between the irh input unit I; and the otk output unit O,

Analysis of the contributive relationship from the input units to the output units is also
based on two foundations: (a) the monontonicity of the sigmoid function the MLP uses for
computing the activations of its units; (b) the fact that the activations of the output units al-
ways fall in the tolerance range, either in [0, 8] or in [1-8, 1], when the input vectors in the
training patterns are fed to the MLP. The § is the tolerance used in the MLP test (classifica-
tion) process. Note: point (a) is always true for MLPs; point (b) can always be held too, since
0 can be loosely assigned as long as all patterns for test are uniquely classified, rather than
being as restrict as A, the tolerance for MLP training.

Observation is isolated only upon units I; and O,. If L >0, O, tends to increase its activation
as I; switches from O to 1, and to decrease as I, switches from 1 to 0. However, if O,’s activa-
tion is in the range [1-0, 1] and I, is O, switching I, will not impact the classification result
reflected by O,. I; is ignorable in this circumstance. Similarly, if I, is 1, switching I; may not
change the result as O, is in the range [0, 8], I, is therefore ignorable. The situations are re-
versed as L,;<0. The situations where the I; is ignorable are summarised in Table 1.

Table 1: Situations where I, may be ignorable

Loi Ii Oo
>0 Y L1-0, 1]

A Heuristic for General Rule Extraction from an MLP 6



Table 1: Situations where I, may be ignorable

Lui Ii Oo
>0 1 [0, 8]
<0 T [ [1-5, 1]
<0 0 [0, 9]

Let@; (i=1..N) denotes the itk input variable. The Potential Default Set is defined to identify
the subset of an input vector which is possibly not influential on the classification result of a
particular output value, based on the foregoing analysis.

Given oth row from matrix L, Lo={Loi}, we define two sets:

Zy=(o] L 20) Ni=(oy| L < 0)
Given an input vector I={I;}, we define another two sets:
Zo={0ti [ Ti=1) Ne=({0ti | Li=0)

A Potential Default Set (PDS) of the input vector I, with respect to the output variable (0
(ZoMN)) U (N, NZ))  if O,=1 orin[1-8, 1]
(ZyMZ,) U (NyNN,) if O,=0 or in [0, 8]

The elements of the PDS are the candidates possibly absent from the rules extracted from
a sole pattern (I, O,).

The PDS represents a statistical property of the trained MLP. It is on average half the size
of the input vectors from empirical observations. Hence the dimensionality of the test space
on the input values may be reduced by up to half. However, PDS has the linear limitation.

3.2 Feature Salient Degree

Concerning all sole patterns {P;} with respect to the an output variable O,, the Feature Sa-
lient Degree (FSD) is a matrix
d
D w OB __
F max (fsd)
where max(X) is the value of the maximal element of the matrix X. The fsd is a matrix
whose jith element is

fsd g1, =
ti(ivk 0w ot 1,1, )
where Iji and I are the ith input values respectively in sole patterns P; and P,; O, and 0.
are the output values involved in P; and P,. The function dist(P;,P,) is the Euclidean distance
between the input vectors in P, and P,. The definition of fsd; tells: for the izh instantiated input
variable of pattern P, the summation counts for those P,s, which include both the output var-
iable and the ith input variable instantiated by different values from those in Py oGP g

dicates that the fewer different input values the pair of patterns P, and P, have, the greater
effect P, gives to fsd;;.

~dist (P, P,)
e

The FSD is a measure of the amount of information carried by the input units in the context
of the training set. It represents the correlation of the changes on an instantiated input variable
and an instantiated output variable, estimating the possibility of a change of the output valye
when the input variable is switched.

The MLP is used as a black-box in computation of the output values of the sole patterns.

A Heuristic for General Rule Extraction from an MLP 7



3.3 Rule Extraction with PDS and FSD

There is a key parameter, FSD threshold 7, as the control of generality of the rule set ex-
tracted. T is used to decide if (i) an individual input bit, (ii) a set of input bits is preserved for
forming premise(s) in the extracted rules. It should be within the FSD range [0,1]. We rec-
ommend a rational range [0.3,1], and a default value 0.6 for T.

General rules are extracted from a sole pattern P=(I, O,), where I is an input vector
<I,,L,,..,Iy>, in the following steps. Remember: I;s are instantiated variables, not only values.

1. Compute PDS and FSD;=(FSD;;} for P; (FSD; is given as the matrix FSD is built).
2. Generate a set y={]; l FSD; 2T}

3. Generate a set of “smallest subsets” @={6, | 36, € ©: 6,26, =(6, @6, 6, z6,)},
which says that all the elements 8, s are mutually exclusive, where

6,=(I; I I; ¢ PDS, FSD;<T, ZFSDjiZmin(A, T/N'2)}, Ais the tolerance in the MLP training.

4. Construct general rules by all pairs (y U8y, O,). The former, y U6, a set of instantiated
input variables, are symbolized into premises. The latter, one instantiated output variable, is
symbolized into the conclusion. The word “symbolize” means: if a variable is instantiated by
1, it presents by its corresponding symbol in the rule. If it is by 0, the symbol is headed with
a ~, the sign for negation.

The algorithm takes computation of O(N2xMxP?), where N is the input vector size, M is
the output vector size, and P is the number of the training patterns (not of the sole patterns).
Details of this are given in [15]. In fact, the computation is most consumed in P times of recall
of the MLP for the output values of the sole patterns, and secondarily most used in step 3,
looking for the subsets. The generality of the rule set is decided by the expression min(A,7/
N'2), where only the FSD threshold 7 is changeable. The higher the 7, the more general the
rule set is, and vice versa.

4. GR2 System Architecture

GR2 system is depicted in Figure 4. The first component, an MLP is in a common archi-
tecture defined in Section 2.1. After training, the MLP will not be changed at all. The second
component for Rule Extraction executes the algorithm described in Section 3.3. Categorical
rules are generated.

The third component is for Rule Validation. Rule validation is a process to determine if the
rules perform at an acceptable accuracy rate over the training pattern set. We also include
rule-base maintenance in it. The Rule Validation process includes several functions:

«Computation of the confidence factors for rules by checking rules in the training pattern set
(Section 2.3);

«Elimination of those rules whose confidence factor < A, the training tolerance;
«Prevention of redundancy by deleting rules more special than any other rules;

«Generalising rules by combination of similar rules if possible.

The fourth component, Inference by Rules, is the inference engine classifying input vectors
by rules. The inference is simple because the rules are direct mapping from the input space
to the output space, no intermediate variables being involved. The inference process is

Do exceptional reasoning if necessary. Otherwise, do reasoning by direct matching. In both
cases, the following two steps are executed:

«If the input vector is covered by categorical rules, do categorical reasoning. Otherwise,

A Heuristic for General Rule Extraction from an MLP 8



Do probabilistic reasoning.
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i g))g\gtiéll}g Query i Inference by Rules

wd | = |-

....................................

- (lassification Conclusions

END
Current Component C__ O

Component to be Implemented
Figure 4. GR2 System

5. Examples

GR2 has been successfully experimented on many typical artificial binary problems and
two real-world medical problems. The artificial problems are always information dense. Cat-
egorical reasoning is sufficient in those situations. Real-world domains are usually informa-
tion sparse, where probabilistic reasoning and the tradeoff between generality and accuracy
are useful.

In Section 5.1, simple logic domains are used to demonstrate the rule extraction process. A
four bit parity with an incomplete training set is presented in Section 5.2. One of the real-
world domains is discussed in Section 5.3. The other has been presented in [15].

A Heuristic for General Rule Extraction from an MLP 9



5.1 Two Bit AND and XOR

5.1.1 Two Bit AND
Two bit AND is represented as:

Table 2: Representations of Two Bit AND

Subsymbolic Form ]
= = = Symbolic Form
0 0 0 IF(~A, ~B) THEN (~C)
0 1 0 1F(~A, B) THEN (-C)
1 0 0 IF(A, ~B) THEN (-C)
1 1 1 IF(A, B) THEN (C)

where A, B are one bit inputs, and C is one bit output. Although it is well known that hidden
units are not necessary to the simple domain, we use them for the purpose of demonstration.

Using an MLP architecture with 2 input units, 2 hidden units, and 1 output unit, with one
bias to each of the hidden units and tq the output unit, the weight matrices after training are:

_ |-0.294 -0.351 _ |-3.42
1 120005 0.826 "2 7 11 104
Now we calculate the PDSs. Since both elements iff L

T .
L = (wywy) = [0.585 1.002] are positive,

w

Z,={A, B} Ny={}
For the first sole pattern (<0, 0>, 0),
Zo={) No={A,B)

As the output bit O,=0, the PDS for pattern 1 is

PDS; = (Zy MZ;) U (NgMN)) = {)
For the second pattern (<0,1>, 0),

Zy={B} Ng={A}) PDS,={B}
For the third pattern (<1,0>,0),

Zy={A) No={B} PDS3=(A]
For the fourth pattern (<1,1>, 1),

Zy={A, B} No={}

As the output bit O,=1,
PDS,=(Zy MN}) U Ny MZ;) = (AB)

Delete the PDSs from the full set of input symbols, we have the following remain-
der matrix, where an o means absence:

A B

The FSD matrix is: {0.269 0.269 A o
0731 O o B

0 0731 i ¢

1 1
Set FSD threshold 7=0.6. There i$ no rule generated from the first pattern since the FSD,,
and FSD,, are below T, even though both A and B are not in the PDS.

From pattern 2, (<0,1>,0), A=0 remains. A rule is generated,
IF (~A) THEN (-C)

From pattern 3, (<1,0>,0), B=0 remains, generating a rule
IF (~B) THEN (~C)

A Heuristic for General Rule Extraction from an MLP 10



From patiemn 4, (<1,1>,1), even if both input bits are in the PDS,, the FSD,4 =[1 1] is however greater than the threshold
T. Both input variables are hence retained for premises, generating a rule

IF (A.B) THEN (C)
Similarly to AND, the two bit OR was generated by rules
IF (~A, ~B) THEN (~C); IF (B) THEN (C); IF (A) THEN (C);
5.1.2 XOR
The XOR problem is
Table 3: XOR
Subsymbolic Form Symbolic F
A B C AR
Y 0 0 IF(~A., ~B) THEN (~C)
0 1 | IF(~A, B) THEN ([C)
1 0 1 TF(A, ~B) THEN (C)
1 | 0 IF(A, B) THEN (=C)
The FSD for XOR is | | ;
1
1 1
1 1

Setting any threshold 7<1, all elements of the FSD are greater than the threshold. All input
variables are retained for premises. Therefore the extracted rules are the same as those in the
symbolic form. Parity problems are always given FSDs of unity in GR2, resulting in a full list
of the original symbolic form as the rules extracted, as they should be.

5.2 Incomplete Training Set for a four Bit Problem

Learning capability is assessed by the accuracy of recognition on the patterns without the
training set. This Section shows how GR2 tackles this situation.

Given a training set with four bit inputs, named A B C D, and one bit output, named E, it
includes 11 patterns instead of 16 patterns in the complete set. The included patterns in the
training set are assigned as a part of four bit parity problem. The patterns are listed in Table
4 except for those shaded columns.

Table 4: Patterns of Incomplete 4 Bit Domain (shaded patterns are not in the training set)
Label |Pat1|Pai2fPas3{Paid [PesSiPai6]Par 7

OO O d
oo O -4

rlUOW>

After training, the MLP, sized of 4:3:1 to the input/hidden/output layers, classified all 16
inputs as shown in Table 4. The conclusions were rounded into integers, including those pat-
terns absent in the training set. The General Rules extracted from this trained MLP were

IF (~A, ~C, ~D) THEN (~E),IF (B, ~C, ~D) THEN (~E);  IF (~A, B, ~D) THEN (~E);
IF (~A, B, ~C) THEN (~E); IF (A, B, C, D) THEN (~E) IF (A, ~B) THEN (E);

IF (A, C,~D) THEN (E);  IF (~B, D) THEN (E); IF (A, ~C, D) THEN (E):
IF (~B, C) THEN (E): IF (~A, C, D) THEN (E);

A Heuristic for General Rule Extraction from an MLP 11



All the rules were valid and the confidence degree for each rule was 1, because each rule
correctly covered some training patterns and there were no training patterns conflict to it.

Now apply the rules to the untrained patterns:

For input <0 1 0 0> in Pat3, there are 4 rules covering it, concluding ~E:
IF(~A, ~C, ~D)THEN(~E); IF(B, ~C, ~D)THEN(~E);
IF(~A, B, ~-D)THEN (~E); IF(~A, B, ~C)THEN(~E);

For <0 0 1 0> in Pat5, 1 rule covers it, concluding E:
IF (~B, C) THEN (E);

For <1 0 1 0> in Pat6, 3 rules cover it, concluding E:
IF (A, C, ~D) THEN (E); IF (~B, C) THEN (E); IF (A, ~B) THEN (E);

For <1 0 0 1> in Pat10, 3 rules cover it, concluding E:

IF (A, ~B) THEN (E); IF (~B, D) THEN (E); IF (A, ~C, D) THEN (E);
For <00 1 1> in Patl3, 3 rules cover it, concluding E:
IF (~B, D) THEN (E); IF (~B, C) THEN (E); IF (~A, C, D) THEN (E),

The rules were uniformly used in inference at every case. All conclusions were the same as
given by the MLP as desired.

5.3 Diagnosis of Acute Myocardial Infarction (Heart Attack)

The early identification of patients with acute ischaemic heart disease remains a great chal-
lenge in emergency medicine. The ECG only shows diagnostic changes in about half of acute
myocardial infarction (AMI) patients at presentation [2, 20]. None of the available biochem-
ical tests becomes positive until at least three hours after symptoms begin, making such meas-
urements of limited use for the early triage of patients with suspected AMI [1]. The early
diagnosis of AMI, therefore, relies on an analysis of clinical features along with ECG data.
An MLP has been shown to be a good method for combining clinical and electrocardiograph-
ic data into a decision aid for the early diagnosis of AMI [12]. The data used in this study
were derived from consecutive patients attending the Accident and Emergency Department
of the Royal Infirmary, Edinburgh, Scotland, with non-traumatic chest pain as the major
symptom. The relevant clinical and ECG data were entered onto a purpose-designed profor-
ma at, or soon after, the patient's presentation. The study included both patients who were ad-
mitted and those who were discharged. 970 patients were recruited during the study period
(September to December 1993). The final diagnosis for these patients was assigned independ-
ently by a Consultant Physician, a Research Nurse and a Cardiology Registrar. This diagnosis
made use of follow-up ECGs, cardiac enzyme studies and other investigations as well as clin-
ical history obtained from review of the patient's notes.

The input data items for the MLP were all derived from data available at the time of the
patient's presentation. In all, 35 items were used, coded as 37 binary inputs. For the purposes
of this application, the final diagnoses were collapsed into two classes termed “AMI” (Q
wave AMI and non-Q wave AMI) and “not-AMI” (all other diagnoses). AMI cases were as-
signed as positive diagnoses, not-AMI cases as negative diagnoses. The MLP was construct-
ed with 37:13:1 as the sizes of the input:hidden:output layers respectively. The error tolerance
was A=0.1. The 970 patient records were divided into two data sets, 670 randomly selected
as the training set, and the remaining 300 as the test set.

The experimental criteria are:
FSD Threshold is selected in the range [0.4, 1].
Total Rules and Valid Rules respectively indicate the numbers of total and valid rules.

Ave Premises is the average number of the premises of the valid rules.

Std Deviation of Premises is the standard deviation of the numbers of premises of the val-
id rules.
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There are also three performance criteria on the training set and the test set respectively,
being used in the medical community.

Sensitivity is defined as the ratio of the number of correct positive diagnoses to the number of positive outputs. This
is most important as the disease is life-threatening,

Specificity is defined as the ratio of the number of correct negative diagnoses to the number of negative outputs. This
is important as treatment is expensive and can be risky.

Accuracy is defined as the ratio of the number of correct diagnoses to the total number.
The statistical results are listed in Table 5

Table 5: GR2 Experiment Results on AMI Records

FSD Threshold 085 T 07 | 065 0.6 0.55 T 0.5 J_%%_
Total Rules o1 06 51 05 Y6 112
Valid Rules 15 31 20 31 60 68 124
Ave Premises 2.33 2.81 2.35 2.61 2.83 293 294
Std Deviation of Premises 0.235 1.03 0.682 0.443 0.65 0.905 0.623
Sensitivity on Training Set (%)| &7 15.6 159 63.3 61 60.2 36.6
Specificity on Training Set(%) | 87.7 69.3 71.1 85 9472 954 99,
Accuracy on Training Set{(%) 87.5 70.6 71.9 52 88.1 89 8/.6
Sensitivity on Test Set(%) 90 72.5 69.4 65.5 59.5 35.1 31.7
Specificity on Test Set(%) 82.7 70.6 754 84 931 944 99.6
Accuracy on Test Set(%) 84 71 74 80 85.3 85.3 85.3

The extracted rules are not given in this paper because of the space limit.

The best case was at FSD Threshold=0.85, where exceptional reasoning was performed. All
extracted rules were negative.

The rule extraction processes took between 6 and 46 seconds on Sun Sparc10; Rule Vali-
dation processes took 4 - 11.66s; and Rule Reasoning processes on all the test set took 0.33
to 7.7s.

These results are comparable to those experimented on C4.5 [20], shown in Table 6.

Table 6: C4.5 Experiment Results on AMI Records

By Decision Tree By Extracted Rules
Sensitivity on Training Set (%) 84 97.6
Specificity on Training Set(%) 97 61
Accuracy on Training Set(%) 94 6/.3
Sensitivity on Test Set(%) 13 95.7
Specificity on Test Set(%) 96 66.2
Accuracy on Test Set(%) 92 13

6. Conclusion and Further Work

The general rule is a format representing only important data features, ignoring superfluous
ones. This representation of knowledge provides the capabilities of generalisation, simplicity
and efficiency in knowledge engineering. It is feasible for probabilistic representation and
multiple inference utilization, providing systematic robustness.

GR2 extracts knowledge from an MLP in the form of general rules via an Open-box method
for obtaining the linear statistical property, and a Black-box method for collecting individual
feature salient properties. Generality of the rule set extracted is easily adjustable by varying
the threshold of the feature salient degree.

We intend to expand GR2 with more functions such as on-line knowledge acquisition and
explanation. The former guides users by giving queries sensitive to dynamic context, archiv-
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ing time-labour efficiency. The latter provides a quantitative premise-conclusion causal rela-
tionship, which will be valuable information to system optimization in applications.
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