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GENETIC OPTIMISATION AND EXPERIMENTATION
FOR THE PUMA 560 MANIPULATOR

Q. Wang and A. M. S. Zalzala

Robotics Research Group
Department of Automatic Control and Systems Engineering
The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
Tel: ++44 (0)114 2825136, Fax: ++44 (0)114 2731729; Email: rrg @sheffield.ac.uk

Abstract:. The search for minimum-time motion of an articulated mechanical arm by
tessellating the joint space involves heavy computational burden. In this work, Genetic
Algorithms (GAs) are used to tackle this problem while considering different
optimisation criteria, namely, minimum motion time, constraints on torque commands
and constraints on end-point velocities. In addition, the search algorithm considers all
constraints imposed on the manipulator design, including bounds on motor torques. In
addition to reporting the simulation results of a number of case studies, experiments are
carried out using a transputer-based PUMA arm.

1. Introduction

A long standing issue in robot control has
always been how fast can a manipulator
execute a task from a start position to another
end position. This is not quite straight forward
to determine, considering the requirements for
different control modules including task
planning, motion planning, motion control,
perception and intelligence. Although these
issues are fascinating for academics from a
research point of view, much is of interest to
industry as it is directly linked to the
productivity of the plant.

Trajectory planning of manipulators
requires providing a time-history of motion for
the arm to accomplish a specific task.
However, there are infinite trajectories, in the
joint space, for a robotic manipulator to move
from one position to another, and a decision
should be made on which trajectory to use
according to some agreed criteria. In addition to
other criterion, the motion may be optimised
considering  the travel time, energy
consumption and/or environmental constraints.
Nonetheless, the need to combine more than
one criteria in the optimisation process may
prove difficult due to the often conflicting
natures of the considered criteria.

Fu et al. [1] discussed the basic
concepts on how to plan the manipulator's
trajectories in the joint space. Normally, each
joint space trajectory is set up following a
certain  pattern, ie.  Acceleration-Zero

acceleration-Deceleration,  for  simplicity.
During the Acceleration period, the joint gains
speed, preferably reaching its maximum (or
near-maximum) limit. Then follows a cruising
zone during which constant velocity (i.e. zero-
acceleration) is maintained. Finally, during the
deceleration period, the manipulator decreases
its speed and finally rests at its goal position.
Typically, a combination of 4-3-4 or 3-5-3
polynomials is used for planning a trajectory
where the entire segment is divided into three
sub-sections with four points, i.e. start, lift-off,
set-down and finish positions.

Optimum trajectory planning was
attempted by many researchers. Some of the
early works on minimum-time motion used
either a simplified dynamic model (e.g., Kahn
and Roth [2]) or no dynamics at all (e.g., Lin et
al. [3])). In the latter, an attempt was made to
find a sequence of time intervals that minimises
the total time spent between two points.
Nonetheless, the constraints consisted of purely
kinematic bounds on positions and their
derivatives. Later, a joint-space tessellation and
a graph search scheme was presented by Sahar
and Hollebach [4], planning for optimal-time
motion via an exhaustive search method. The
full dynamic model of the manipulator and
actuator torque limits were both taken into
consideration in arriving at the time-optimal
trajectory. However, only a two-joint arm was
considered and the authors reported a vast
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increase in the search time when the tessellated
grid increases in size. This approach in [4]
appears to be the ultimate solution for this type
of planning problem, but seems to be rendered
inefficient by the excessive computations
involved.

Genetic  algorithms are stochastic
algorithms mimicking the Darwinian theory of
the strife for survival. As an optimisation
method, a GA initially generates a finite set of
solutions for the problem (i.e. an initial
population), each represented by a string
structure, followed by an iterative search
procedure. During each iteration, random
exchange of information among the set of
solutions produces a new set of solutions (i.e. a
new generation). This randomised, although
structured, exchange mechanism exploits
historical information to speculate on new
search points with expected improved
performance. The direction of the search is
influenced only by the objective function
associated with the individuals’ fitness levels.
GAs search for optimum solutions globally,
thus avoiding being trapped in a local
minimum, which is a common handicap in
conventional methods [5]. Other benefits in
using GAs includes their feasibility to be
paralleled on a distributed multi-processor
system [6], thus providing for one main
requirement in a real-time implementation. For
further discussion of the origins and different
approaches for using GAs, the reader is
referred to Michalewicz’s [7] and Goldberg’s
[5] texts. :

In robotics, GAs have mainly been used
in path planning and decision-making on
collision avoidance. Davidor [8] was one of the
first to introduce the use of GAs in the motion
planning of robots. In his pioneering work, he
used GAs to minimise the Cartesian position
error of redundant manipulators. However, due
to the nature of the problem, the problem was
purely solved based on kinematic analysis and
no consideration of the dynamics of the
manipulator was necessary.

The Robotics Research Group at the
University of Sheffield has investigated the use
of GAs for optimum motion of mobile vehicles
[9], static arms [10], mobile arms [11] and
multi-arms'. Although the previous work on
static arms [10] considered only a two-joint

'S. Sun and A. Rana, unpublished works.

robot, it was conc‘ludefi that GAs lead tq 4
tremendous reduction in the Planning time,
Thus, for a case study similar to that reported ip
[4] and while considering the dynamic mode] of
the arm, searching a grid of size 10x10 usip

the GA required one twentieth of the Planning
time required by the exhaustive search routine.

In this paper, the research on GA
motion planning for static arms is further
extended for a 6-joint PUMA arm. In addition,
the criteria for motion optimisation are
minimum-time, bounded-torques and bounded
end-point velocity. Further, experimentations
are reported for applying the planned motion to
the PUMA via a transputer-based system.

This paper is organised as follows.
Section 2 briefly describes the PUMA
transputer interface. In section 3, the problem
of optimum-motion is illustrated for a simple
single-ink system. The genetic motion planning
procedure 1s illustrated in section 4, with the
dynamic scaling scheme illustrated.
Comprehensive simulation results are reported
in section 5 for different optimisation criteria.
PUMA experimentations are given in section 6,
while conclusions are given in section 7.

2. The PUMA transputer interface

The experimentation is carried out on a new
transputer-based PUMA control system, which
subsequently deserves a brief description.

The controller of the PUMA-560 robot
can be enhanced by the addition of an external
computer system. Basically, there are two
levels in the existing controller (see Figure 1).
One is the lower level which consists of a
digital servo board, the 6503 microprocessor,
an analogue servo board and a power amplifier
for each joint. In this lower level, a PD
controller which samples motion data at a
period of 0.875 ms, while the manipulator
dynamics is resolved in the PD controller
design. There is an independent loop for each
of the arm’s six joints. The higher level, which
is also called the supervisory level, consists of a
LSI-11 computer. This supervisory computer
mainly functions as a management system
using VAL, and ensures that new data for the
lower level are sent every 28 ms. Kinematics
transformation, path planning, error handling
and man-machine interfacing etc. are all
processed by this computer, which presents
many limitations.
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Several

interface alternatives to the

PUMA controller, with or without VAL, are

possible and some

have

already been

alternatives differ in terms of the extent to
which the existing controller hardware is
replaced and the capabilities of the external

implemented by various researchers. These computer used (see Goldenberg [12]).
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Figure 1 Interface hardware layout

The system described here uses the
PUMA’s Arm Interface Board to interface with,
where the T805 transputer network is used to
replace the LSI-11. A Sun-SPARC workstation
1s used to provide the man-machine interface to
develop and store the control software system.
The transputer system consists of a
motherboard housing TRAM modules which
are linked together by high speed (20MBaud)
serial links. One of the TRAMs is the master
which provides communications with the Sun
while managing and controlling the slave
TRAMs.

The interactions between the transputer
and the out-side world (e.g. other peripherals)
are achieved using the Inmos CO11 Ilink
adapter. The link adapter is currently linked to
the master TRAM at the same baud rate as the
internal links between TRAMs. The function of
a link adapter is to transfer serial signals to
parallel ones, which are TTL compatible and
can be manipulated according to the user's
requirements,

One custom-built hardware required for
the new control system is the PUMA-

Transputer Interface Board (TIB). Transputers
differ significantly from LSI-11 in the hardware
used to interface to external devices. The LSI-
11 uses a DEC product, the DRV-11 parallel
interface board, to communicate with the
PUMA’s Arm Interface Board (AIB). In order
to use the transputer system, the TIB must be
compatible with the low-level control section
AlB, as a DRV-11 is, to provide proper data
and control signal transfer and buffering.
Further details on the hardware design are
documented [13] including technical drawings®. )
The programming language used to
implement the control software is ANSI C
running under the Inmos tool-sets, which offers
dedicated functions especially for link
communications and parallel  processing
purposes. The whole software system is written
in this high level language, which enables it to
be easily transported to other platforms for
more convenient debugging and developments
[13]. The software system is organised in a
hierarchical way, where the upper levels can

g Wang, unpublished progress report.




make use of the routines in the lower levels to
implement more sophisticated functions.

3. Minimum-time Path Planning

This section tries to answer the question asked
in the introduction section by demonstrating a
simple example. A one joint manipulator,
shown in Figure 2, is considered here, which,

% for a link length of 1 m and a mass of 12.5 kg,
has the following mathematical model:
T=125%6 1)
&Y
T

L

Figure 2 A one-joint arm

The effect of friction is ignored, and no
gravitational effects are considered. The motor
bound torques are assumed o be #200 N.m.
The physical range of motion is set from 6 =0
toB=n/2.

It must be emphasised that in order to
move the manipulator in the quickest way, the
upper-bound torque should be applied all the
time. However, although the motion time will
be the shortest the joint actuator can achieve,
the motion is not quite practical as a
predetermined final sate (e.g. zero velocity) is
normally imposed by the user. Therefore, a
bang-bang motion would be more appropriate
to ensure the arm reaching a particular state at
the endpoint.

In theory, if there are no friction and
brakes, applying a reverse torque will be the
only way to bring the manipulator to a rest
when it has reached its final position. Thus, for
this simple system, the lower-bound torque (i.e.
-200 N.m) must be applied. The situation is
shown in Figure 3 in the form of the motion
profiles for both acceleration and velocity over
a time period T. Hence, the acceleration can be
calculated from equation (1) as a = 200/12.5 =
16 m/s’,

Considering that the period T is shared
equally by the acceleration and deceleration
portions of motion, the motion equation is as

s _1 (1 i

>=33) W
where s is the total angular displacement, i.e.
T /2. So the shortest travel time is

1= 2\E = (0.627 seconds
a

Although the dynamics of a multi-joint arm
would be much more complicated than this
simple case, due to the coupling and coriolis
effects, this bang-bang pattern of motion is
necessary to achieve minimum-time motion,
with one motor (at least) reaching its bounds at
any point in time during motion.

acceleration

o~

deceleration

velocity profile

Figure 3 Acceleration and velocity profiles

4. Motion Planning Using GAs
One well established approach for robot motion
planning employs a heuristic exhaustive
technique to search the work space of the arm.
The main idea of the algorithm is to tessellate
joint space into a grid of possible motion nodes,
where at each option node, given the position
and velocity at the previous node, possible
velocity values are constrained by the dynamics
of the arm. The most comprehensive
formulation is reported by Sahar and
Hollerbach [4].

However, the complexity of this
approach 1s 0(4"), n being the grid size, which




results in rather heavy computations. However,
based on the results obtained earlier, GAs are
used in this work for the motion planning of the
PUMA s six joints in the configuration space.

4.1 Decoding the problem

Manipulator trajectories consist of finite
sequence of positions (joint angles) and it is
suitable to code these into a string of the
format:

[611:821,--81:012.0 21,8230 1.8 21O
where 6 j; is the jth intermediate position node

of the ith link, n is the number of intermediate
position nodes and m is the number of joints.

For each joint, the motion is divided
into a nxn grid. The joint angles are evenly
divided while the time is not as will be
discussed in a later section. The motion steps in
a trajectory are generated using a relative
transitional scheme as shown in Figure 4,
where, from any one node, the arm’s joint is
restricted in moving to only six neighbouring
nodes. In addition, the space was tessellated
such that a transition has a higher probability of
moving towards the end point.

end

Angle 1
(degree) 2
. Wik
4
L
start time (sec)

Figure 4 Relative transition scheme

To create the initial population, one trajectory
is generated randomly using the relative
transition scheme starting from the srart
position, while another starts from the end
position. If the two meet together, the combined
trajectory forms a valid path, as shown in
Figure 5.

4.2 The Dynamic Scaling Scheme

A population of trajectories are generated by
the method described in the previous sub-
section, characterised as trajectory
chromosomes. From these trajectories, it is

possible to calculate the travel time for each of
these trajectories using the dynamic scaling
scheme [15], which can be summarised by the
following steps.

-
2 A
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e pond. §
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-
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& Two rmeciones
-
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Figure 5 Generating a valid trajectory

1. For a trajectory, the average velocity and
average acceleration of the jth segment can be
calculated as follows:

. 49,

] 3
= (3)

. 2 (48
J=—[ —J )

hj hj

where A8 ; is the joint angular displacement of

Jth segment which is decided by the trajectory
planning described in the former sub-section,
h; 1s some time interval chosen before the

dynamic scaling. It is chosen in such a way to
reflect what have already discussed in section 3
so as to guide the GA search. For the first part
of the motion (i.e. acceleration), the interval is
set to 0.01, while for the deceleration part of
the motion, it is set to 0.5. In [4], the total time
interval was chosen as 1. Also, v denotes the
final velocity of the previous segment (note that
it is different from the average speed as defined
in (3)).




2. The calculation has to be carried out for all
six joints. Once this being done, six joint
torques can then be calculated using the PUMA
dynamics package developed earlier by the
group. The torque may be too larger (e.g. in the
acceleration period) or too small (e.g. in the
deceleration period). This illustrates why the
dynamic scaling scheme is necessary:

Yty —g)+ 2 Hy—[( (t—9 +2H)=0  (5)

where 1, is the vector of given torque bounds.

3. Solve for every one of the bounds to find all
possible new time interval ;.

4. The new torque t for the new time interval
can be found out by scaling the old torque 1 as

follows:

2

ey h;—h,
T =|L| (1-g)+g+2——LHv (6)

2
h (h})

5. From the time/torque combinations that do
not exceed the bounds, choose the shortest time

interval for jth segment denoted as h; .

6. Recalculate the average velocities and
accelerations from equations (3) and (4) using
the new time interval.

7. The permitted velocities at the end of the
segment can be calculated as:

y=08 hi +v
8. Carry the above steps until j=n (end of gird).

4.3 The genetic operators
An initial population of trajectories is
generated, as illustrated in section 4.1. During
reproduction, the number of occurrences of the
same trajectories selected for crossover is
limited, which encourages higher interaction
among different trajectories. To prevent any
path dominating the population leading to pre-
mature convergence, only a specific number of
copies of the same trajectory are allowed to
remain in the population after reproduction, and
extra copies are replaced by new trajectories.
Single point crossover was adopted as
an initial study. After choosing a cross site in
one parent string, crossover is performed only

if the crossover site of the second parent is
within a certain proximity of the circle centred
at the first crossing site.

Mutation has a destroy-trajectory
operator which, when active, replaces the
selected trajectory with a randomly generated
one so as to give rise to new search space.
Another mutation operator, the position
operator, varies slightly the position of one or
more nodes in a path. This operator helps to
find trajectories which may or may not be
better around a 'good’ trajectory found by the
Crossover operator.

Reproduction was controlled to prevent
pre-matured convergence, the analogous
crossover  directed sensible  crossover
operations and specially shaped mutation
operators promoted new search space. The
algorithm has proven to be far more efficient
and is about twenty times quicker than the
conventional heuristic search technique. This
will be further illustrated in section 5.

4.4 The objective functions

4.4.1 Time optimisation

The fitness of a string is assigned as the value
of the total time for the PUMA to travel form a
start position to a final position. The total
travel time is denoted as follows:

n
J=1
where 4, 1s the tme interval for the jth

segment of motion and is calculated by the
dynamic scaling scheme, as described in
section 4.2. All bounds on the PUMA’s joint
actuators have been observed, hence ensuring
the trajectories are within the arm’s capability.

The end velocities should ideally be
zeros if the arm is required to rest at the end of
the motion. Thus, these velocity constraints are
incorporated as penalties applied to the
objective function

n 6

J= z h} + 7\.1, Z

j=1 i=1

where A, is a weighting factor set to 0.1 in this
application.

Considering this objective, the fitness
of a chromosome is denoted by:

fitness = 2.0 - ]

max J

(8)

1'!
n




where maxJ is the maximum objective in the
same generation of populations.

4.4.2 Torque optimisation
Rather than minimising time, some applications
require the minimisation of torque values
applied to the arm’s motors. In this case,
equation (8) is re-written as

6
z

i=1]

®

i
Vn

n
J= 3 Tj+hA
Jj=1

where a new weighting factor, A, is

introduced with a value of 0.06.

4.4.1 Combined optimisation
It is quite difficult to achieve the minimisation
of a combined objective of both time a torques
due to the their conflicting physical effects.
Thus, an objective function was designed as

n n 6

OBJ =3 hi+A 3T, +A, Y (10)
j= i=1

=

i
Vn

5. Off-line Simulation

In this section, simulation results are reported
for the different objective functions given in
section 4.4. Considering a single example, the
start and end positions for all six joints are
given in Table 1.

J1 J2 ]3 14 15 16

Start | -0.3 [ 04 -0.18 | 0.0 -0.05 | 0.05

End 0.51 | -042 | 058 0.87 | 0.64 0.84

Table 1 The motion start and end points
(radians)

The GA parameters are chosen as follows:

® The maximum number of similar members
in the new population, Criteria=4.

e The absolute number of grid varation
allowed during an intermediate position
mutation, Variation=2.

* The maximum number of similar members
allowed to crossover during a reproduction,
Samemax=6.

e The crossover rate, xor=0.80.

® The mutation rate for varying intermediate
points co-ordinates, pmutr= 0.10

* The maximum generation na = 300.

5.1. Case Study 1: Time optimisation with
velocity constraints

In this simulation, equation (8) was considered
as the search objective. The best objective
found was 0.431 seconds at iteration 70.

Although the discrete path points have
been acquired using the genetic algorithms, a
spline technique (straight line linkage is the
simplest linear method) has to be used to link
these points together so as to provide the joint
angular information in every 28 ms or other
interfacing period e.g. 1.75 ms as will be
discussed in the next section.

Figure 6 shows the history of the
objective value against the number of
generations, while Figure 7 includes the
position, torque, velocity and acceleration
profiles of the minimum-time motion.

objective
14 T T T T
130 sy
121 4
®
=
i 11 b
1t 4
0.8 4
08 L L . . .
0 50 100 150 200 250 300
generations

Figure 6 Objective history for case study 1

5.2. Other case studies
To provide for a study of the effect of using
different an combined optimisation criteria in
robot motion planning, other case studies are
included, as indicated in Table 2. The results of
section 5.1 is also included for comparison.
One important parameter in any
algorithm using grid search is the actual size of
the grid representing the searched space. The
complexity of the search increases
exponentially with the number of points in a
chosen grid. Thus, it is always sensible to have
a certain trade-off between search resolution
and computation time. The results of case study
7 were obtained after running the simulation
over around five days, as compared to the other
cases for which simulations were accomplished
in about one hour. In addition, case 7 was
limited to 50,000 iterations to obtain the shown
results, as compared to a limited 300 iterations

-~




for the other cases. Nonetheless, the increase in
minimising the motion time is relatively small
(i.e. 0.421 seconds compared to 0.431 seconds)
which appears to query if an increase in the
grid size is absolutely beneficial.

As expected, all cases where the
optimisation is constrained by a near-zero end-

point velocity exhibit a higher motion time. The
precense of such constrain is important,
howeve, if motion is to be planned via
succesive segments, as it is the case for a point-
look-ahead motion planner.

Case Grid Optimisation Criteria Parameters Motion Gener- | Simulation
# size Time | Torque Velocity A A Time ations Results
constraints T V | (seconds)
1 16x16 Yes No | Yes — | 0.1 0.431 70 Fig 6-10
2 16x16 Yes No No f— — 0.375 255 Fig. 11
3 | 16x16 | No Yes Yes 0.06 | 0.1 0.502 248 Fig. 12
4 16x16 No Yes No 0.06 — 0.307 220 Fig. 13
5 16x16 Yes Yes Yes 0.06 0.1 0.873 280 | Fig 14
6 16x16 Yes Yes No 0.06 — 0.367 285 Fig. 15
7.1 °25%25 1 Yes o] 2aNo i - Nes —_ 0.1 0421 40.000 Fig. 16

Table 2 Simulation results of different case studies

6. Motion Control Experimentation
Real-time motion control needs to provide the
joint controller with the desired position (joint
angles) and desired speed (angular velocities)
in every control cycle. In the existing
technology used in the PUMA, the joint
positions are provided every 28 ms, and each
joint controller is required to provide motion
values at a less control period, usually using
linear interpolation. The joint control cycle is
accomplished at a very high rate of 0.875 ms.

The PUMA’s linear interpolation
scheme operates as follows. When a new
position data is sent, the microprocessor divides
the distance to be travelled into 32 equal
increments. During each cycle through the
servo loop, this increment is added to the
encoder count and servos the joint to that
position, thus accomplishing the required
motion in about 28 ms.

To provide for this high sampling rate,
a very fine grid is needed, which will require a
large execution time for the GA planner,
perhaps rendering its use as very expensive.
Thus, there is a trade-off between search time
and search accuracy.

A spline or joint interpolation is thus
necessary to provide the joint controller with
the desire inputs it need for the real-time
control. Although many cubic spline scheme
are reported for robot motion panning,

[3,14,15], this work uses a simple technique to
interpolate the discrete positions computed by
the without any auxiliary information being
needed, as will be described in the following.
Applying the splines interpolation to the results
of case 1 (Figure 7), the continuous motion is
shown in Figure 17.

Experiments have been carried out
using the computed GA-based motion results.
The first experiment used the manufacturer
defined sampling period, i.e. 28 ms, to motion
control the PUMA along the trajectory planned
by the GAs. As a result, large jerks were
experienced as the joint servos attempted to
execute the discrete points. Using the transputer
system provided the potential to reduce the
default sampling period of 28 ms to a large
extent. Thus, a second experiment was carried
out at a new sampling period of 1.75 ms.
Hence, a much smoother PUMA motion was
accomplished with a higher sampling period.

7. Discussion and Conclusions

The contribution in this work is mainly three
fold. First, a genetic-based motion planner is
formulated for a six-joint articulated arm
considering all physical constraints. Second,
different  optimisation  objectives  were
considered, namely minimum motion time,
constrained motor torques and constrained end-
point  velocities.  Finally,  preliminary




experimenations were carried out using the GA
results downloaded to the PUMA via a
transputer-based interface system.

In addition to reporting on many
simulations  incorporating  multi-criterion
optimisation goals, the GA algorithm allowed
for the testing of the transputer-based PUMA
interface system designed earlier by the
investigators. With this multi-processor system,
a great deal of flexibility can be achieved,
which is particularly suitable for incorporating
sensor-based intelligent system, e.g., vision,
force and tactile.,, as the transputer able to
provide the required computational power.

The investigators faced difficulties in
attempting a further lower-level of interfacig to
the PUMA’s control loops. Currently, the joint
level controller of the PUMA controller is still
in its original design, as very little details are
available on how the joint servos perform joint
interpolations. In addition, the servo codes are
not available with the velocity loop
implemented in hardware, which makes it
rather difficult to incorporate advanced neural-
based algorithms for the dynamic control of the
PUMA in real-time. Of course, the lower-level
interface can be realised via custom built
boards as well, which, in addition to extensive
hardware development, defies the aims of this
research project.

Further work is progressing in the
direction of introducing parallelism within the
GA procedure which will allow for
incorporating the scheme in real-time.
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Case Study 1: Minimum-time path for all 6 joints of the PUMA
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Case Study 1: Joint acceleration values
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Case Study 2: Time without Velocity constraints
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Case Study 3: Torque with Velocity constraints
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Case Study 4: Torque without Velocity constraints
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Case Study 5: Time and Torque with Velocity constraints
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Case Study 6: Time and Torque without Velocity constraints
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Case Study 7: Results for a 25x25 grid space
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Splined trajectories for Case Study 1 (position profiles)




