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Use of the Riccati Equation On-Line for Adaptively Controlling
a CSTR Chemical Reactor

J. B. Edwards and S. B. Mohd Noor

Abstract

An idealised nonlinear model of an isothermal continuous stirred-tank reactor
(CSTR) is analysed and simulated for optimal control based on the continuous on-line
recomputation of a Riccati Controller as proposed by Banks(!). The controller and
resulting behaviour are derived analytically and confirmed to be optimal by
derivation also via Dynamic Programming. For comparison purposes, the behaviour
of the same model under linear proportional control (with feedforward compensation)
Is derived also and the predicted behavioural patterns confirmed by SIMULINK
simulation in both cases.

The Banks controller is shown to outperform the linear version not only in terms of
the pre-formulated quadratic cost function but also in terms of response time for
systems of equal maximum input excursion. It is shown to tolerate non-negative flow
constraints omitted from the pre-formulated cost function.

1. Introduction

Banks(!) has proved that, under a wide range of circumstances, a nonlinear processes
that can be described by

X=AX) x+B®X u (1)

are optimally controlled to minimise cost
V=[{x'Qx +u'Ru } a @

by using the control law

u=-D(x) x (3)

where D(x) =PBR™ @)

P being the solution of the Riccati Equation
Q+A"P+PA-PBR"'B'P =0 (5)

For a linear time invariant process (i.e for A and B constant), the result is well known
of course. In such a case, P and hence feedback coefficient matrix D is computed off-
line from known matrices A, B, Q, and R beforehand. On-line control then involves




merely utilising D as a constant feedback coefficient for calculating the optimal control
u from measurements of process state x. What is novel in Banks' findings is that , if A
and B are state dependent and the functions A(x) and B(x) are known, then D can be
calculated via exactly the same equations (4) and (5) but now in an on-line manner
using continously updated values of A(x) and B(x) in Riccati Eqn. (5). Banks
demonstrates much improved and robust control for aircraft and inverted pendulum
examples when compared to controllers based on locally linearised models. In
particular, the range of state-space from which his controller can bring the process to a
chosen reference point is greatly expanded compared to the range of conventional
methods.

This report examines the performance of the on-line Riccati controller for an idealised
continous stirred tank reactor (CSTR). This exercise is a useful preliminary to the
application to a binary distillation column planned and formulated in a previous
Research Report() in this series. The reactor is much simpler (amenable to analytic
solution) yet shares some essential features of the column model.

2. Modelling The Reactor

Figure 1 illustrates the reactor in which reagents A and B enter in equal proportions at
a total molar flowrate F. Model derivation follows Nicholson®), Chapter 3. The
forward reaction involves one mol of A reacting with one mol of B to form two mols
of C, i.e the so-called stoichiometric equation of the reaction is :

A+Be= 2C ¢))

As indicated, for generality, we allow the reverse reaction also to occur. For linear
reactions, we assume the following forms for the law of mass action pertaining to the
two directions :

r = 2, [A]” [B]" | @
n =k, [C] (3)

where r, is the rate of generation of C in mols p.u volume p.u time and r, is the rate of
disintegration of C back into reagents of A and B expressed in the same units. The
square brackets denote concentrations of A, B and C expressed in mols (of each
chemical) p.u volume V of the reacting mixture. k; and k, are reaction velocity
coefficients that ideally depend only on temperature which is here kept constant (i.e the
reactor is assumed to be isothermal). Assuming ideal fluids (i.e one mol of any
component A, B or C occupies the same volume) then the molar density p of the

reacting mixture will remain constant. We assume the reactor level is kept constant so
that V is constant and the molar inflow and outflow are therefore equal at F(t).
Flowrate F(t) is therefore best considered as a throughput that is adjustable by, say, the
outflow valve as shown in Fig. 1, leaving the level controller to maintain V at the
desired value by rapid manipulation of the inflow (also as shown).



Now [A] +[B] +[C] = p 4

and since A and B enter and react in equal proportions

[A] = [B] ()

so that [A] = {|J——2[C]} (6)

Rather than working in concentrations, it will be more convenient finally to work in so-
called mol/fractions. If X is the fraction of C-mols of all those (i.e of A, B and C) in
the reactor then, clearly :

x = L]
p

M

We now form the dynamic balance equation for the generation, disintegration, outflow
and accumulation of C in the reactor. Clearly generation-minus disintegration-rate
must equal outflow-plus accumulation-rate so that, in mols p.u time :

s
R

rIV+r2v=Fx+vm" e 8)
o dt |
d|C
Hence k,{p-[C}V-k[C]V=FX+V % (9)
If F =0, i.e as in a so-called batch reactor, then, in steady state :
Pk,
C=[Cl=s —— 10
[C1=I[C] % % by (10)
kl
or X=X,= 1)
k,+ k,

where suffix e denotes the so-called 'equilibrium' value. X, would be unity only in the
absence of a reverse reaction (i.e if k, = 0). The process equation may therefore be
written :

X, -X=T, ix+-d£ (12)
pVvV dt
where T, is the batch reactor time constant given by
1
T = ———— 13
o (k, + k) =

Thus setting control U as

U=F [g\b—,) . as

the process equation reduces to the simple bilinear form:



= UX +X (15)

where X =

(16)
and t is normalised time wrt Tyde

t Vi
T = — ‘ 17
T 17)
'f z
Clearly, in steady state, with constant U R
X
X = —f 18
1+U (18)
or i - e X (19)
X

i.e so-called equllibrium conditions can be achieved only for U = 0 as expected.
Otherwise, X<X_, in steady state and, again as would be expected, the greater the
normalised throughput U, the greater the shortfall X, - X in product purity.

3. Optimal Control Derivation by Continuous, Nonlinear Dynamic
Programming

Before considering use of the Banks, On-line Riccati method, we first derive the truly
optimal control law by means of the continuous version of Dynamic Programming®),
Time constant T, is set to 1.0 so making T = t in all following analysis. The cost
function is:

Vo= L w)d = [, -3+ AU, -U2la Qo)

where X[ and U, are desired reference values for product purity X(t) and normalised
throughput U(t). These are chosen to be steady-state consistent according to eqns.
(18) and (19) i.e

X, = e @1)

d U = ——-= 22
an A = (22)

These constraints ensure that in steady state, the integral terms X, - X)? and U, - U)?
can be simultaneously zero so that :
\Y
Lim Q—-— =0 (23)

t—pes

This ensures that there is no residual cost-rate once steady state is achieved and that
the entire cost rate can be controlled to zero by optimal choice of U(t). Certain
complications in the optimal control design are thus avoided as will be demonstrated.
In particular, if V*(x, t) denotes the optimal cost of the process in state X at time t,
then the law of continuous dynamic programming :




V2 min [z L+ h g)] 24)
ot u ox
can be written simply
min [ga;* +LQ(_,!)]=0 (25)
® X

to generate a converged optimal control law

u*=u* ) (26)
that will apply for most of the process time T provided of course T >> 1.0.
In this application, egn (25) may be written

rrain[{xe —(1+U)x}%g+(x, -X)*+A(U, —U)2]=0 @7

so that for the minimum [ ... ] in eqn.(27)
oV *

X — -2 -U)=0
- , - U)
oV * 20U, - U)
= - —— 28
oX X 28
. . < . - oV *
The optimal control law is attained by using eqn.(28) to eliminate °x
giving
2% (U. -
{xe-(1+U)x}{—(UX'—p-)-} + X,-X)? + AU, -U)* =0 (29)
Recalling from eqns. (21) and (22) that
X X, -X
= - and U, = ————
' 1+U X

r T

eqn. (29) can be written as a quadratic in U, - U thus :
AU, -U)* + (U, -V) 27{U—U, +-§i—%)+(x, -X)*=0 (30)

r

Hence, setting

AU=U,-U €3]
and AX=X,-X ' (32)
we obtain the following quadratic in AU and AX :
X 2
AU2+2;&AU _AXT 0 (33)

XX A

T

from eqn.(27),



the solution of which is

X, AX X X2
AU = -ﬁ—[li 1+ lxzr] (34)

Now for stability the overall feedback from AX to AU must be positive (since the
process gain from U to X is negative as inspection of process eqn. (15) reveals).
Hence we must take the bottom sign of the square root (.J_ ) term in eqn. (34) to give
the control law :

U="0, + [w] 1- Jl + (XXX') 2 (35)

XX, A

Comments on this control strategy and demonstration of its use are postponed until
Sections 5 and 6. Before that we show that the identical result emerges from the
application of the on-line Riccati Equation.

4. On-Line Riccati Solution : Analytic Derivation

Starting with process eqn. (15) written in the form
X=-X(1+U+X, (36)

and specifying constant state and input reference values X and U; where for steady
state consistency

X =0=-X,(01+U)+X, 37
we can write the process equation thus :
AX = AAX + BAU (38)
in term of deviations :
AU=U_-U (39)
and AX=X -X " (40)
where A=-(1+U.).
(41)
and B=(AX-X) (42)

i.e eqn. (39) takes the form :

AX = - (1 + U)AX + (AX - X,) AU (43)

Now if again the cost function to be minimised is :
_ 2 2\ 3o
V = J:(AX + L AU?)dt (44)



we recall again that %’-— = 0 in steady state so that we may use the converged Riccati

eqn.
P=Q+A"P+PA-PBR'B"P=0 (45)

where, in this first order application the P, Q, R, A and B matrices are all scalar, viz

0=1.0 (46)
R=1 (47)
A=A=-(1+U) (48)
B=B=AX-X 49)

Thus the cost and process coefficient matrices are constant apart from B which is state
dependent (as allowed by the Banks' method).

Setting P =scalarp (50)
in the Riccati eqn.(45) we readily obtain the following quadratic for p, i.e.
pP’XA" + 201+ U )p-1=0 (51)

which solves to give :

S (1+U) (14U + X* )

X*A! )
Now the optimal control law is :
AU =D AX
where feedback coefficient D is given by :
D=R'B'p = %(AX -X.)p L (53)
so that D = --}%l (54)
Hence substituting solution (52) for p in Eqn. (54) we get :
1+U, £41+U)* + X* 1!
AU:_[  +Ja+u) ]AX -
X
Now from eqns. (21) and (22) relating U, and X, we note that
X, -X X
1+U, =1+ ———L = —= 56
' X, X, (56)

so that, in term of U and X (rather than deviations AU and AX), control law eqn.(55)
becomes :

(57)




Again we should take the lower sign of the .J_ term to obtain positive feedback of X
to U and thus achieve stable control of our -ve gain process (eqn. (36)), yielding the

control law :
X _x 2 2
U=U, + (—'——)X,I- 1+X3(, (58)
XX XA

which is identical to law (35) derived from General Dynamic Programming in section
3. This demonstrates the true (long-term) optimality of the Banks' solution despite the
state dependent nature of matrix B.

5. Analytic Derivation of Process Response under Optimal Control

As well as the optimal control law being derivable analytically in this application (as
already shown in Sections 3 and 4 of this report) it is also possible to proceed to an
analytic solution for the time response X(t) of the optimally controlled system from
disturbed initial condition X(0). This is achieved by eleminating control U(t) between
process equation (36) and control law (58) as follows :

Combining the two equations as indicated yields the result :

2
X=-X 1+U,+Mx, -] 28] A + X, (59
XX, X

A

€

which readily reduces to simpler form :

2
K, oo XX, )1
> (X, X)Jl-{»(—x ) l (60)

X =

T €

Differential equation (60) can be integrated analytically with the aid of various
substitutions of variables as now shown :

From (60), starting from initial condition X(0) = 0.0, we deduce that :
-1

X 2

X XX 11
= [{== (X,-X),[1+]| —| =} d&X 61
T_l.x,(' )J[x,)x (61)

and, in terms of normalised variables

t’—t§—°— (62)
Xr
X
Y==
C (63)
X
d Y = —= 4
an =G (64)




where C=X

i
K

we obtain simply :

. J dy
) (Y, - Y)V1+Y?

The first substitution towards integration of eqn. (66) is :

Y =sinh 6
so that dY =cosh 6 d6
and V1+Y? = cosh 6
)
so that = -
) Y, sinh 6
e 2d6
or T = J“—m
2Y, —e" +¢
0

The second substitution needed is :

= e
so that d{ = e®de, or

giving in term of { rather than 6,
4

T’ = ZJ‘.—_d_g_
1 -L*+2YL+1

the integrand of which factorises and partial fractions to yield

4

, 1 1 1
t VTS 2 I[C—Y,+\/__§-Y,—J_

in which v o= 1+Y?

Integration of (75) therefore yields

T =—Ffe——
J1+Y?

-Y,-J

(ST

1-Y,+

For simplicity we now introduce another normalised time T° given by :

(65)

(66)

(67)

(68)
(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)



2 4
t”:t’,fY,’H = t%\’%“ = 'r%- %;’IH (78)

or, T =— 79
T (79)
where time constant T, is given by :
A
TOD = Xr m (80)

Thus, taking antilogs of eqn. (77) and extracting variable { (=¢®) gives:
(Y, =0(1-Y, - )-exp(t’)(¥, +J1-Y,+J)
£ = = =e (81)
(1=, =)~ exp(t”)(1-Y, +4)

We now need to convert back from { (=e°) to our original variable Y (= %)

Now if we denote the numerator function of eqn.(81) as N and its denominator as D,
then, since

D N

and hence
snh 6 (= ) = & ;"_B) - (N;;,'f ) (82)
Now N =Y, +1- -exp(1”) (Y, +1+) (83)
D = Y,-1-y —exp(t”) (1- Y, +{) (84)

from which we deduce
N*-D? = 4Y,-4Y,/ -8 exp(t")Y, +exp(21”) (4Y,+4Y,.[) (85)

and ND =2 -2, +exp(t”) 4Y2+exp(27”) (2 + 2J) (86)

Hence, from eqn. (82), (85) and (86) we get
1- =2 exp(1”)+exp(21”) (1+ o )
1- +2Y7 exp(1”) +exp(21”) (1+ J_)

where v o= 1+Y? (88)

- X(T) is readily obtained from Y(T"} by means of equations (63), (64), (65) and (78)
(which were used for normalisation merely to simplify manipulations by omission of
unnecessary constant X, X and A).

Y(t”) = Y, 87)

It is readily observed that solution (87) is consistent with the assumed initial condition
Y(0) = 0 and that tllim Y(1”) =Y, asexpected. However the transient response is
oo

10




a non-linear combination of exponential terms exp(T") and exp(2T") rather than a linear
one.

6. Response Under Linear Control
6.1 Closed Loop Differential Equation

Analytical prediction of the process step-response under linear control is possible also
and is included here for behavioural comparison purposes in Section 7.

The incremental proportional control law :

AU =K AX (89)
in which K denotes the controller gain, may be written :

U=U;-KX;-X) (90)
where U, and X, again denote constant reference signals for flow and output mol-
fraction respectively. If these are chosen to be steady-state consistent (i.e satisfying

equations (21) and (22)) then the control law may be expressed thus :

_ X, —-X,)
T X

U + K (X-X,) 1)

T

Combining this with open-loop process equation (15) (to eliminate control flow, U)
yields the quadratic closed-loop equation :

X=x6+x[1{x,—-§£] ~-K X? (92)
r
: Xc
or X=(X,-X)KX+ == (93)
%, |

6.2 Solution for Constant Reference and Zero Initial Condition

Clearly, since X denotes %. if X(0) =0, then equation (93) can be expressed :

X
1=J. Bllassses (94)
4 (xr—x}{xx + -!L]
Xl'

and the integrand partial fractions to give :

11



K

X
X 1
T=—03 + <

r

The integral is readily evaluated to give :

X, [ X + Xe
KX

XC
o)

"nr

T = log

rr _

where T =——0vH
T

and time-constant Ty is given by :

X,

Ty s
CTKRX2+X,

From (96) it follows that :

(x xf)(x+§%)

(X, -X) X,

2

exp (T”) =

from which the solution for X is found to be :

_ X, {exp(t”)-1}

X KX?
" 3 r
{cxp('r ) —-—xe }
X, {I — cxp[-._[_-;:-r-)}
or X = i

(ol

dX

| (95)

(96)

ey

(98)

(99)

(100)

(101)

12



6.3 Predicted Characteristics of the Response

The response is an exponential rise of time-constant Tcr (given by eqn. (98)) but
modulated by the time-dependent denominator term of eqn. (101). The rate of
response is clearly given by :

at 212 (102)
Ta {cxp(-i) + -——KX’ }
TC!. xe
so that :
EX_’ - X, = X, (103)
dtlo T [ 1. KX |
(—‘l' xe

The predicted initial response rate (=X,), from initial state X(0)=0.0, is thus
independent of K and this is in complete accord with the process equation (15),
X=X,-(1+U)X with X = 0.0. Time constant Tey is reduced by increase of K (see
eqn. (98)) but this speeds up the response-rate only at a later stage of the response as
confirmed by the simulation results of Fig. 2. The responses are all bounded by the

lines X =X, Tand X = X, being tangential to these lines at T = 0 and o respectively.

Substitution of response eqn. (101) into control law (91) gives :

2
X - KX,(HK)‘(X’)
U(T) =—=—"r— : 104
(T) X [ - ) KX? (104)
exp| — |+
TG_ Xe
so that :
U=t x? (105)
X, :
The gain K must therefore be set such that :
K <Xe —2x . (106)
Xl'
for UQ©) >0 (107)

For setting of K larger than the above limit, the controller must set a zero limit on the
flow demand since negative values of U are unfeasible.

13



input deviation. Like the linear controller of high gain, K— es, the performance of the
optimal controller approaches that of switched time-optimal control as A—0.0.

The performance of the isothermal CSTR is constrained by the speed limit of the
(zero-flow) batch reactor which in turn is set by the reaction velocity coefficients.
Because these are temperature dependent, extension of the research to include
adjustable reactor cooling may well allow an even more convincing demonstration of
the Banks' controller superiority.

References

(1) Banks, S. P and Mhana, K. J., 'Optimal Control and Stabilization for Nonlinear
Systems', IMA Journal of Mathematical Control and Information, 1992, Vol. 9, pp179-
196.

(2) Edwards, J. B and Mohd Noor, S. B., 'Interpretion and Utilisation of Parametric
Models of Binary Distillation Columns: Relating Plant and Control Design', University
of Sheffield, ACSE Research Report 573, April 1995.

(3) Edwards, J. B., 'Modelling of Chemical Process Plant, Chap. 2 of Modelling of
Dynamical Systems, Ed. H. Nicholson, IEE Control Eng. Series 12, Peregrinus, 1980,
Pp25-61.

(4) Noton, A. R. M., 'Variational Methods in Control Engineering', London, Pergamon
Press, 1965

Acknowledgement

This report is part of a research study into the applicability of global control methods
to chemical processes supported by EPSRC research grant no. GR/J75241.

16



Tight Level Control
Ref. Level

Coatinuous Stirred
Tank Reactor,
Volume, V, Molar Density, p

Reaction: Throughput
A+B == 2C ol U
/ | 1
Reagent Concentration = [A], [B] mols p.u vol. F

Product Concentration = [C] mols puvol.= pX

Figure 1. CSTR Reactor

Fig. 2. Responses of CSTR under linear proportional control
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