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ABSTRACT

The paper focuses on the problem of trajectory planning of multiple coordinating robots.
When multiple robots collaborate to manipulate one object, a redundant system is formed.
There are a number of trajectories that the system can follow. These can be described in
Cartesian coordinate space by an nth order polynomial. This paper presents an optimisation
method based on the Genetic Algorithms ( GAs ) which chooses the parameters of the
polynomial, such that the execution time and the drive torques for the robot joints are
minimized. With the robot’s dynamic constraints taken into account, the optimised
trajectories are realisable. A case study with two planar-moving robots, each having three
degrees of freedom, shows that the method is effective.

Key Words: Robotics, Genetic Algorithms, Trajectory Planning, Coordination, Multiple
Robots

1. INTRODUCTION

Genetic Algorithms (GAs ) are population-based, stochastic, global search methods. Their
performance is superior to that of classical techniques[10,11] and they have been used
successfully previously in robot path planning[8,22]. However, there has been very little
reported work on applying this optimisation method to trajectory planning of multiple
coordinating robots, even though this area has long been recognised as a most interesting
research field not only for multiple coordinating robots, but also for multi-fingered and multi-
legged systems[13,17,19,24].

Ahmad and Luo[1] considered the coordination problem of a welding system comprising a
redundant robot with a positioning table. They proposed a hierarchical model to divide the
coordination problem into small subtasks, so that the complexity of the problem is
manageable. Jouaneh et. al.[14] also dealt with the coordination problem of a robot with a X-y
positioning table. The coordinating path was obtained by moving the two devices
simultaneously. Even a sharp cornered path can be followed by these devices. In[15], Jouaneh
et. al. used a dynamic programming method to achieve near minimum time and energy
trajectories for the two coordinating devices.
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The dual-arm coordination problem has been studied extensively for its potential usage in
industry. Tabarah et.al.[23] used polynomial functions to plan dual-arm system trajectories,
the parameters of the polynomial being decided by an optimisation procedure based on the
flexible polyhedron search method. Dynamic scaling was used to avoid the recalculation of
the robot's dynamics and ensure that the torque limits were not violated. Ro et.al [21] dealt
with the assembly problem using a dual-arm system. The authors used velocity and force
ellipsoids to form an objective function, A null-space search method was then used to
optimise the posture of the coordinating robots. While one robot holds the male part, the
other one grasps the female part, and thus the typical male-female assembly can be finished
without the aid of jigs or fixtures.

For the planning and control of multiple coordinating robots, Xi et. al.[27] proposed an
event-based method. The method is event-based because the authors used arc length s, which
is the distance the object moved along a given path S, rather than the time t as a reference.
The variable s is time independent. Yao and Tomizuke[28] proposed an adaptive control
method for multiple coordinating robots. Cell to cell mapping were used by Wang and Pu[25]
to plan time-optimal trajectories for multiple coordinating robots, where each cell
corresponds to one of the states in the moving path.

The paper presented here focuses on the trajectory planning of multiple coordinate
robots. First, in a world reference frame, an nth order polynomial of time t is supposed to be
the system’s trajectory, with its parameters undecided. Then, an optimisation problem is
formed with the execution time and the drive torques of the robot joints as the objective
function, and with the dynamic equations of the system as constraints. Next, a procedure
based on GA is proposed to solve the optimisation problem. Finally, an example of two
coordinating arms handling a rectangular object and moving in a plane is given to
demonstrate the effectiveness of the method. Simulation results show that the hi gher the order
of the polynomial is, the shorter the execution time will be. This is similar to the result
obtained in [23]. However, the computational cost will increase as the order of the
polynomial become larger. The highest order of polynomial used in the simulation is four:
this is because, with the fourth order of polynomial, the jerk of the system’s trajectory will be
continuous and can be controlled. Jerk has been shown to be important in the trajectory
planning and control of a robot[16].

The organisation of the paper is as follows. In section two, the problem of the trajectory
planning of multiple coordinate robots is formulated. The optimisation method based on GA
1s proposed in section three. Then, a case study of trajectory planning for two coordinating
robots is presented in section four and finally conclusions are drawn in section five.

2. PROBLEM FORMULATION
2.1 Dynamic Model of the Coordinating System
Consider n robots manipulating one object, as shown in Fig.1, each robot having
n,(n; <6) degrees of freedom. One of the robots (master) holds the object firmly, while the

other robots (slaves) can move their position along the border of the object. All the contacts

between slave robots and the object are supposed to be point contacts. Let Fu be the world

reference frame. Fe is the object-fixed frame, with its origin at the mass center of the object.
« 1s the end-effector frame of the ith robot, with its origin located at the contact point.

The dynamic equations for each robot in Fo can be expressed as follows:



D(g.)4+ci(q ,4,)+J]F, =7, (i=1,2,...n) (1)

where g,,¢,,4, € R™ are the vectors of the ith robot’s joint position,velocity and
acceleration respectively

D,(g;) € R™™ is the ith robot inertia matrix
¢:(4;,49,) € R™ is the vector including coriolis,centripetal and gravity forces
J, € R®™™ is the Jacobian matrix of ith robot
F, € R® is the force vector exerted by the ith robot on the object
T, € R" is the vector of ith robot’s joint torques

The dynamic equations of the object in F are given by:
My(p)p+ce(p,p)=F (2)

where p, p, p € R® are the vectors of the object posture ( position and orientation), velocity
and acceleration respectively

M, € R®® is the object inertia matrix
E ]

c:(p,p) € R® is the vector of centripetal and gravity forces of the object

Robot 1

F, Yo

%o
Figure 1 Multiple Robots Coordinating to Manipulate one Object

F is the vector of the resultant force exerted onto the object by the end-effectors of the robot,
and 1s given by:

F=ZJ;T1@£F; (3)
=1



In equation (3), J, € R* is the Jacobian matrix of the object. T, € R®® is the force-
moment transformation matrix from F= to F: [7].

2.2 Kinematic Relationship of the Coordinate System
From Fig.1, the homogeneous transformation between F, , Fe and F. are as follows[20]:
T? = I°T: (i=1,2,** n) (4)

where T} is the transformation matrix from F to Fe, given by

R,..:p,

To — 3x3 : ¥ (5)
S| P
0 1

Ry, = Ror(z, py,) Rot(y, Pe, )ROI(x, Dy ) (6)

PP, p, are the position of the origin of Fz in Fo and Pos Pe,» Py, are the angles of axes
between Fe and Fo

T’ is the transformation matrix from Fo to Fa

T; is the transformation matrix from F to Fe. It is dependent on the position of ith robot’s
end-effector and has the following form:

i (R x )n ei
Ti = [....,3_0_3_ ...... rl) (7)

(R,,,); is the rotational matrix from F. to Fe, which has the same form as Eq.(6). 1« is the
vector of the origin of F. in Fe.

If the coordinates of the robot end-effector are selected properly, then

(Ryy5), = constant {1=1,2,%* n) (8)
The motion constraints for the slave robots, in F, are given by:

¢(r,)=0 (9)

Suppose the start and end points of the object are known a priori, and the object is freely
moving in the space enclosing start and end points.

Let the trajectory of the object be expressed as an nth order of polynomial of t, that is:
p=CT (10)
where p has the same meaning as in Eq.(2), C € R®" is the parameter matrix to be
determined, and T = (1,£,£%,---,1"")7,

If the object trajectory is decided by Eq. (10), then we can decide each robot’s end-effector
trajectory by Egs. (4), and (9). Since n, £ 6, the motion of each robot is settled.



2.3 Objective and Constraint Functions

Because the coordinating system is an redundant system, there are numerous C’s to satisfy
Eq.(10) and the related constraints. Here, the matrix C is selected in such a manner that the
following objective function is minimized:

f=wa+iW,.t, (11

where T is the time for the object moving from the start point to the end point, T, has the
same meaning as in Eq.(1), w and W, are weight coefficients.

The trajectory planning problem for the coordinating multiple robots can now be expressed
as the following optimisation problem:

min:  f =wl, + ) W1, (12)
i=l

s.t. Eqgs.(1),(2),(4) and
9" $q, g5
47" <4, <4
5" <§, <qp

T

(j=12,m3i =120 (13)

min

Ji

max

L7, 510

3. OPTIMISATION METHOD

As stated above, if the optimal trajectory of the object is decided, then each robot’s
trajectory can be easily decided from Eg.(4). Since the selected objective function given in
Eq.(12) includes each robot’s drive torques, the trajectory obtained from kinematics
constraints should be the optimal trajectory for each robots by the principle of energy
consumption.

The GA procedure proposed to optimise the object trajectory and each robot’s trajectory is
shown in Fig.2.

In Fig.2, gen stands for how many generations have been evaluated, C(gen) and C(gen-1) are
the populations of present and last generation.

In the procedure, the coding method for the parameter matrix C is binary coding. Because
the movement of the object is limited by its start and end points, and the variables of robot
joints are also bounded, binary coding has been shown to be the most effective coding method
in this kind of parameter optimisation[18].

The fitness function of the optimisation is selected as being the same as the objective
function Eq.(12) with linear ranking[5].

As shown in Fig.2, a certain number of chromosomes are selected dead for each
generation, with the same number of new chromosomes being added to the population to
improve the efficiency of GA[18]. The number of dead is controlled by a parameter called the
generation gap, GGAP ( 0<GGAP<1). The selection of the dead is based on a stochastic
universal sampling method[2].



procedure OMCRT
BEGIN
begin % Start GA
gen ¢ 0;
initialise C(gen),
evaluate C(gen);
while ( gen £ MAXGEN ) do
begin
gen € gen+ [;
select parents from C(gen-1);
select dead from C(gen-1);
form C(gen): reproduce the parents;
evaluate C(gen);
end
end % End GA
decide each robot’s trajectory using Eq.(4);
END

Figure 2 Procedure to optimise multiple coordinating robots’ trajectory

Single-point crossover with probability p. is used to form the new generation of C(gen).
Also, mutation with a low probability p~ is used as a background operator to provide a
guarantee that good genetic material will not be lost through the action of selection or
crossover[11]. The termination condition for the GA procedure is the maximum number of
generations (MAXGEN).

4. CASE STUDY
4.1 Simulation Problem and Parameters

In the case study, the same problem as in [23] is used, i.e. two identical robots moving in a
vertical plane and collaborating to manipulate one rectangular object. The first robot holds the
object firmly at the middle point of one edge, while the second robot moves its position
along the opposite edge of the object, as shown in Fig.3. The motion of the second robot is
supposed to be at constant speed, with the start point at one end corner of the edge, and the
end point at the other end corner. The motion time is the same as the time taken by the object
to move from its given start point to the end point.

The dynamic equations of the system can be obtained in the same form as in Egs.(1) and
(2)[4]. The motion constraints for the second robot are given as:
x,, =015
Mg =-0.2+O;4t (14)
f
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Figure 3 Two Robots Coordinating to Manipulate a Rectangular Object

From Egs.(5) and (7), the transformation matrix for the system is:
cos® -—sin@ 0 x;

o _|sin® cosb 0 y,

ET10 0 1 0

0 0 0 1

(15)

Xz and y: stand for the coordinates of the object mass center in Fo, 8 is the angle of the x-
axis between Fe and F..

1 0 0 0I5
Ti= o100 16
%001 0 (16)
000 1 )
-1 0 0 «x,)
0 -1 0 y
3 e2
==l0 01 0 ]
0 0 0 1
From Eq.(4), the transformation matrix T.° can be obtained as
T’ =TT (i=1,2) (18)

That is, the trajectory for the first coordinating robot’s end-effector is



x; =0.15c0s8 +x, _
y, =0.15sin8 + y, (19)
0,=06

and for the second robot, it is:

x, =0.15c0sB +0.25in6 —Qﬁrsine +Xp
/

¥, =0.15s5in8 — 0.2 cosb +%rcose +¥g (20)
i
6,=0+n

Table 1 Physical Parameters of the Coordinate System

Dimension (m) Mass (Kg) Inertia (Kgm®)
Object 03x0.4 Z 0.04
robot link 1 1.0 12 0.8
robot link 2 0.8 6 0.2
robot link 3 0.4 3 0.04

Table 2 Upper and Lower Bounds of the Robot Joints

joint 1 2 3 1 2 3
item q g q q q g
upper 2.8 3.0 25 10 10 10
lower 0.3 -3.0 -2.5 -10 -10 -10
joint 1 2 3 1 2 3
item g g g T 1 g
upper 50 50 50 200 150 100
lower -50 -50 -50 200 -150 -100

Table3 GA Parameters

population size 40

GGAP 0.9
probability of crossover (p,) 0.7
probability of mutation (p,, ) 0.01
length of binary coding 20 bit
MAXGEN 150




The parameters used in the simulation are as shown in Table 1, 2 and 3.
The weights of the objective function are selected as:
w=1 and Wi=W:=(111)

In the simulation, a variety of GA parameters have been used to look for the optimurmn

trajectory. The parameters shown in Table 3 correspond to the simulation results shown in
section 4.2.

4.2 Simulation Results
The start and end points for the object motion used in the simulation study are as follows:

x, =015
Yo =0.2
8,=03

and
x, =10
y,=09
6,=08

Using a GA Toolbox[6], which is based on the MATLAB[30], we studied the trajectory
optimisation problem using second, third, and fourth order polynomials.

4.2.1 Second Order Polynomial
The optimal trajectory of the object is:

x; = 0.1500 +0.7523t — 0.1539¢*
yg = 0.2000 + 0.2668¢ + 0.0723:>
6 = 0.3000 +3.71047 — 1.9343:>

The execution time is Tf = 1.7724s.

The corresponding optimal trajectory for the first robot end-effector can be easily found -
from Eq.(19) as

x, =0.15cos8 +0.1500 + 0.7523¢ ~ 01539+
y, =0.15sin6 +0.2000 + 0.2668¢ + 0.0723>
0, = 0.3000 +3.71047 — 1.9343:*
From Eq.(20), we can get the optimal trajectory for the second robot end-effector as

x, =0.15c0s8 +0.25in0 — 0.2257¢5in6 +0.1500 + 0.7523¢ — 0.1539;*
¥, =0.15sin6 - 0.2 cos6 + 0.2257¢cos6 +0.2000 + 0.2668¢ + 0.0723:>
0, =7 + 03000 +3.7104¢ —1.9343¢



Fig. 4(a) shows the simulation result for the best objective function, (b) shows the object

path and orientation, (c) shows joint torques of the master robot, and (d) shows joint torques
of the slave robot.

4.2.2 Third Order Polynomial

The optimal trajectory of the object is:

x; = 01500+ 0.6975¢ + 0.0862¢* — 0.1184;°
yg = 0.2000 + 0.0856¢ + 0.35841% —0.0832¢
6 = 0.3000 - 534431 + 1.1231¢* +1.5643’
The execution time is T, = 1.5770s.
The optimal trajectory for the robot end-effectors is
x, = 0.15c0s0 +0.1500 + 0.6975: + 0.0862:* — 0.1184+°
y, = 0.15sin6 +0.2000 + 0.08567 + 0.3584+* —0.0832¢°
8, = 03000 —5.3443¢ + 1.12311* +1.5643°
and
x, =0.15c0s6 +0.2sinB — 0.2536rsin6
+0.1500 + 0.6975¢ + 0.0862:% — 0.1184¢°
¥, =0.15sin6 — 0.2 cosO + 0.25361cosH
+0.2000 + 0.08561 + 0.35841% —0.0832+°
0, =7 + 03000 - 53443 +1.12317* +1.5643°

Fig.5 (a) shows the best objective function, (b) shows the object path and orientation, (c)
shows joint torques of the master robot, and (d) shows joint torques of the slave robot.

4.2.3 Fourth Order Polynomial

The optimal trajectory of the object is:
x; =0.1500+0.7655¢t - 0.0415:* = 02107+’ + 0.1682:*
y; =0.2000+12111r +0.0895¢* — 0.5659:> + 0.4020¢*
6 = 0.3000 + 4.3366¢ + 0.0485:% —2.80041> + 0.0562¢*
The execution time is 7, = 1.2070s.
The optimal trajectory for the first robot end-effector is:
x, = 0.15c0s8 +0.1500+ 0.7655¢ — 0.0415¢> —0.2107:* + 0.1682¢*
y, = 0.15s5in6 +0.2000 +1.2111z + 0.0895:* —0.5659:> + 0.4020¢*

8, = 0.3000 + 4.3366¢ + 0.0485¢> — 2.8004:* +0.0562¢*

and for the second is:



x, =0.15co0s0 +0.2sin6 —0.3314¢sin6

+0.1500 4+ 0.7655t = 0.0415* = 0.2107¢* +0.1682¢*
¥, =0.15sin6 - 0.2 cos6 + 0.33147sin0

+0.2000 +1.2111¢+ 0.0895: —0.5659:* + 0.4020z*
8, =7+ 0.3000 +4.33661 + 0.0485¢> — 2.80041° + 0.0562+*
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Figure 4 Simulation Results of Second Order Polynomial



Trajectory Optimization (Third order)
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Figure 5 Simulation Results of Third Order Polynomial



Fig.6 (a) shows the best objective function, (b) shows the object path and orientation, (c)

shows joint torques of the master robot, and (d) shows joint torques of the slave robot.
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Figure 6 Simulation Results of Fourth Order Polynomial



From Figs.(4),(5) and (6), it can be seen that the execution time decreases from 1.7724
seconds to 1.2070 seconds as the order of the polynomials increases from two to four. All the
torques are within their limits. However, there are some peaks which reach the limits of the
torque. This kind of condition may be caused by the optimization of the execution time[12].
The trajectory of the object is nearly a straight line, as shown in Fig. 4(b),5(b) and 6(b). The
graphs of best objective function show that the GAs work very well, there is no incidence of
premature convergence.

5. CONCLUSION

The trajectory planning problem of multiple coordinating robots has been studied in this
paper. Based on GAs, an optimisation procedure is proposed to decide the parameters of the
polynomial trajectory of the coordinating system. Since the optimised trajectory is
independent of robot geometry, it can be used in the control of any kind of multiple
coordinating robots. In addition, since the calculation of the polynomial is simple, the
optimised trajectory can be used in on-line control of multiple coordinating robots. During the
optimisation, the torque limits of the robot joints are taken as constraints, so that the
trajectory obtained is both optimal and realistic. A simulation study with two coordinating
robots shows that the optimised trajectory can be realised without violating any constraints of
the robot actuators.
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