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Abstract

The realization of analytic input-output maps by linear-analytic systems is considered by
identifying the Lie derivatives of the system in the output function.
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1 Introduction

The theory of realization of nonlinear systems has been an important problem for many
years. In [1] it is shown that a system has an analytic realization if a certain matrix has
finite rank. The condition is extremely difficult to check in practice, however. Realizations
of homogeneous Volterra kernels by bilinear systems has been solved in [2] where separable
kernels are shown to occur in the expansion of such systems. Many authors have used Lie
series ([3],[4],[5]), although some problems with the approach in [5] have recently been noted
([6]). The realization of polynomial input-output maps is considered in detail in [7]. Here
we shall be concerned with the realization of analytic input-output maps by linear-analytic
systems. After defining the equivalence of realizations in section 2, we shall consider the
zero input case in section 3 and use the Lie series to identify an analytic dynamical system
with the given output map. In section 4 we shall show that by considering constant inputs,
one can extend the results of section 3 to obtain linear-analytic realizations of analytic

input-output maps.

2 Equivalence of Realizations

Suppose that

= f(z,u), z(0) = zo
(2.1)
y = h(z,u)

and

(2.2)

are two realizations of the same input-output map y = S(u), defined on open sets Q, , Q. C

R", respectively. (Here, we assume that o € Q; , z0 € 2..) We shall say that (2.1) and




(2.2) are equivalent realizations of S if there exists a diffeomorphism k : Q, — Q. such
that

E f(z u) = F(k(z),u)

h(k(z),u) = h(z,u)

r€Q, (2.3)

for each u € U.

These conditions are equivalent to the commutativity of the diagrams

Q. xU Ly Q. xU

L iy

TQ, — TQ,
and
Q. x U E Q. xU
L 7
Y d. 00w

where T, is the tangent bundle of Q. , Tk is the differential of k , k(z,u) = (k(2),u). ¥
is the output space and [ is the identity map.

In this paper we shall also consider unforced systems of the form

&= flz), «(0)= 25
(2.4)

¥y = h(z)

This time, equivalence is defined by the commutativity of the diagrams

B, £ O
l 7
T -5 T
and a, k. a,
ICO
Yy - %




where k : 2, — €, and

2 fie) = Fk(z)

h(k(z)) = h(z).
Recall ([4]) that the observability matrix of the system at z is
O(20) = [dh(zo) Lydh(zo) - L3~ dh(xo)] .

If O(zp) is invertible then, in particular, (dh(zg)); # 0 for 1 <7 < n and so we can choose

k on some neighbourhood of zy such that

where T = k(2).

3 The Lie Series and Dynamical System Realization
In this section we shall first consider an analytic differential equation
z=f(z) , 2(0)= =g (3.1)
together with a measurement equation
y=h(z) . (3.2)

We can solve for y by using the Lie series (see [3]) in the following way. Define the new

variables ¢; ,i > 1 by

¢1 = y=h(2)
g ,
@2 = -é%l.f= Liéy




doé .
o3 -é'-'%f =(Ly)" ¢

x

1l

¢ = (Ly) ¢y
Then,
; O6;
bi = gt—f = L;oi = ¢is1
and so
d=4% , ®(0)=d
where
® = (61,00.--)7
(01 )
0 1
A =
W,
& = (h(zo).(Lsh)(x0), ((Ly)*h)(20), )T
Hence,
Q:f"“@o
and
oc t,‘ ;
y= E_% 77 [(Ly)'R] (o). (3.3)

To carry out the converse process of realization, first note that the Lie derivatives of h at

2 can be found from




Now consider the determination of f(z) from (3.4). For i = 0 we have
h(zo) = y(0). (3.5)

From section 2, if (f, h) is observable at z, we can assume that h(xo) = 10+ 220+ -+ Zno.
Thus (3.5) determines zo to within n — 1 real parameters. We can choose any zo which

satisfies (3.5). For i = 1 we have

(Lih)(zo) = Z(0)

10 2 (20) = fulze) + Fa(z0) 4 -+ fulzo) = 2 0)

since h(z) = z1+29+ -+,. Hence, again, f(z) is determined up to n—1 real parameters.

In fact, f(xo) lies on the hyperplane

, _ 4y
Hitlo+- b= (0)
in R™. Next, if 1 = 2 we have
8 9 _ ) a ‘
o= wrhe) = (14 (f5)0) @0
Af . 8h A 52}
= f(fo)aifro)a—x(%)-i-f'(l’o)gr;(l‘u) )

with an obvious interpretation for f?(zp)). Since h = z; + - -+ + z,, it follows that g—i(;l?o)

lies on the hyperplane

Ha: fi(zo)(E1n 4+ -+ &1n) + folzo)(ar+ -+ €an)+ -+ falro)(Enr+ -+ &nn) = c;‘;;;

(0)

in R"". (H, depends, of course, on the choice of f(zo) on H;.) Fori =3,

Py, _ 20%f Bh af\?* oh
T = (e = 555+ 1 (3) 5




where
qB 8°f oh &% fr Oh
5.1: oz ZZZﬂf; dz;0z; FET
and a similar interpretation for the second term. Thus, —':{r lies on the hyperplane
& af\* oh
Hy: S Y filwo) s eokis = TL(0) - (f (%) 3—5) (x0)
i 7k

- 3 o atf q: )
in R™". In general, it is clear that a_rj; lies on the hyperplane

Ji+1
Hepn s 3o 3 Fi(@0)fial@0) - fiel@0)isimivns = gt (0) = Ac (3.6)
1 T
where A, depends on the choices for f(zg), %ﬁ-(rg), c .—g;;{—(ro) on the hyperplanes Hy.---. Hy.

Choosing a point &;, ... ;,(z0) on each hyperplane Hy, 1 < k < . we can define formally

the series

fel2) = Z Z fink Z Eiyoige(@iy = 24, (0))2 (21, — 24, (0))2 - - (24, — 2;,(0))¢  (3.7)

£=01i;=1 fe=1

for any choice of 2(0) = zq, which satisfies
h(zg)=z104+ -+ 200 = y(0).

We have therefore proved:

Theorem 3.1 The analytic function y(¢) has a realization. of dimension n. in the form of
the dynamical system (3.1,3.2) if and only if the series f,(z) . 1 <k < n, deﬁn_ed by (3.7)
converges in some neighbourhood of zg, for some choice of &;,..;,(2g) in H; |, 1 g (< oc, O

Note that, for any n, if we truncate (3.6) to a finite number of terms, then

ZZ Z&n Ak -Tt] '_1'11(0 -](1‘;2 —I,'Q(U)){Q---(J!,'I _-Ti;(ro))it (38)

£=0 11-— ’t—
is a well-defined function and the system

¢ = J(2), 2(0)= 20

y = 4+,

-1




has the same output function y() as (3.1,3.2) up to order p in t. In particular, we can find
a system of dimension 1 which has the same output function up to any desired finite order.

Example 3.1 Consider the simple, one-dimensional system

t = 2, z(0)=z0=1 (3.9)

1=0
where
(Lg) h(zo) = 24\ e
f 0l= % dz ¢
=l
The first few terms are given by
3 o 4
ylf) = e +et + Set® 4 Zett £ oo (3.10)

2
Now, given (3.10) we want to realize a system of the form (3.9) with (3.10) as its output

function. Suppose we assume a state variable z with h(z) = z. Then we have

o = y(0)=¢e
d dh dh
flo) = FO) /Tl = Z(0) =

2 3 2
T o) = (%t—g(f))—f(zo)(%(zo)) ) / F(z0) = 4/e.

Continuing in this way we obtain

) = 3 Ok

Il
tr
—
ah
o
oa
2
S
(K]




Hence we realize (3.9) with the system

(9
|

= z(log z)? (3.11)

The map
z=h(z)=¢"

is a local diffeomorphism near £ = 1 and so (3.11) is equivalent to (3.9) in the sense of

section 2.

Example 3.2 Consider the system

I = I]'{-I’%
o = 1§ (3.12)
y = h(z)=z,+ 29 Tig=1, rop=1

Note that

C)(Io) = [dh(l‘g) Lfdh(.'ro)]

11
) 1 5
so the system is observable at zg.
The Lie series for y(t) is given by
0 i '
y(t) = Y Fl(Ls) R(zo)
i=0

where

f(z) = (21 +23,23).




Computing (L;)'h gives

(L)°h(z0) = h(z0)=2

(Lp)h(zo) = z1(0)+23(0)+23(0)=3

(L)*h(z0) = z1(0)+ 23(0) + 223(0) + 323(0) = 7
(L1)Ph(z0) = =1(0)+23(0) + 223(0) + 825(0) + 1523(0) = 27

(Ly)*h(zo) = z1(0)+23(0) + 223(0) + 825(0) + 4825(0) + 10525 (0) = 165

Hence
T2 2713 16514
1) = f b Sl
y(t) 2+3+2+3! 7
k=1
Defining &;,..;, = a—r-%’far—(a:g) as before, we can write the equations (3.6), for n = 2. in
g k=1
the form

G146 = 3

Il
a,
@
=
p- TP 4

E1(€11 + &12) + Ea(ba1 + £a0) =

-1
/‘il—'\ N
Q.
(%]
ol
S i

53(5111+§112)+2£1€2(5121+5123)+€§(€221+5222} = 27—
E1(E51 + E11€10 + Er26ay + E12an)

+€2(E39 + Eanbay + E21611 + £21€12)

Clearly the choices
gy =1, zp2=1
§1=2,6=1
§11=11§21=2=E12=05522=3

10




i1 =&12=6121=6120=0, €221 =2, £ =6

will give the correct terms up to order 2, i.e.

T3

24 2(zo =)+ (za =12+ (2, =-1)

3 = 143(zo—1)+3(z2=1)% {+(z2 - 1)%)

The term in braces will be given by the next equation in &, and all other terms can
be taken to be zero. Of course, we are unlikely to be able to guess z4.£;.£s, - - - correctly:
however, any other choice gives us a dynamical system with the same outputs. Thus, for

example, choose

20122,202=0

§11=0,&62=1,8y=1,6n=2

Eimr=1,812=0,&m=81u1=-2, &ime=En=-1,8m =1. =1

We then obtain the system

. 1 ] 1’)
H o= 1+zg+§(:1—2)’—2(:1—Q):g+§:§+~-
1.,
23 = 24 (21 =2)+ 20— (21— 2)29+ 25+ -+ (3.13)

2 -
Yy = =n+z
which, as can easily be checked, has the same Lie series as (3.12). If the terms in the

expansion (3.13) can be chosen so that the formal series has nonzero radius of convergence,

then the system must be equivalent to the system (3.12) in the sense of section 2. by the

analyticity of the systems.

11




Note that one can also find a one-dimensional system with the same solution as (3.12)

for £190 =1, x99 = 1; namely,

i = 3+-§(m-2)+%($—2)2+--- , Tp=2

Of course, this would not be correct for other initial conditions zo— this gives a practical

test for the minimal dimension of the realization.

4 Realizations of Input-Output Maps

Now consider the realization of an input-output map S : & — ¥ (for some input and

output spaces I/, ) respectively), in terms of a linear-analytic system

z = f(z)+ug(e) , 2(0)==x (4.1)

y = h(z).

(Note that we can consider the more general system

2= ?(:- v) ,
by making v into a ‘state”:
i = f(z,v)
vV o= w

so that we can write it in the form (4.1) with 2 = (z,v)T , u = w and

f(z) = (F(z,0),007 , g(z) = (0,1)7.)

12




To find the input-output map of (4.1) we can generalize the Lie series approach of section

3 and put

¢1 = hiz)=y
a% f=Lidisn i even
a 1= .
2PNz g = Lydiorya i odd

Then we have

_ ¢
o = Fo@
_ 09
- ax(f-i_ug]

= Ly¢i+ulyo;

= o+ uPaiq. (4.3)
Put
® = (61,60,--)7.
Then (4.3) gives
d = Ad +uBd , ®(0) =&, (4.4)

where A = (a;;) and B = (b;;) are infinite matrices defined by

aij = 62ij 4 bij = baig1,;-

The bilinear system (4.4) can be solved by Picard iteration to give the Volterra series

where




and
£ / A=)y (5) BEs_y (s)ds.
0

Hence, iterating, we have

t r7y Th=1
&(1) = f / [ eA("T’)BeA.("l'T”B---BeA(T*-=_T*’BeA’*(I)U &
0 Jo 0

w(nu(ry) - u(mg)dry - dry. (4.6)

Suppose that the system maps L2[0,1] into L*[0,] for all ¢ > 0 and define the operator

K} : L?[0,1] — L?[0,1] by

1 pt t
Kff(ﬂ)=/0 /U -°-/Op(tn,-'-,n-)ﬂ(ﬂ)---U(Tk)dﬁ---dn- (4.7)

where

(e#r=ri) BpAlrict) g ... BeAle-1=TBeAT @) if{> 1 >...m
P(f;'r],"‘,Tk)=
0 otherwise

where (L); denotes the first component of L.
Then from (4.1),(4.2),(4.5) and (4.6) we have

y(t) = S(u)(t) = 3 Kh(u)

oo
k=0
where K} is a k*" order multilinear operator.

Theorem 4.1 A necessary and sufficient condition for the input- output map S to have a
linear analytic realization of the form (4.1) is that the k' order Frechet derivative FE(S(u))
of S with respect to u is a k-linear operator of the form (4.7) where ®; is given by (4.2)
with 2 = z,. ‘ ]

However, applying theorem 4.1 will be extremely difficult in practice. A much simpler

way to realize the input-output map from a linear analytic system of the form (4.1) is to

14




assume u is constant and proceed as in section 3. Thus, if u is constant we have

oo

wtw) =Y Gl(LisuglH(zo) | ueR,

i=0

In solving equations (3.13) we must be able to choose the &;,..;,’s so that they are of the

form

5,‘1.,.,',‘ = Niyiy UMy

since then the resulting power series will split into two terms with one multiplied by u.

Example 4.1 Consider the system

T, = I +u.r§
ty = 3. (4.8)
y = =h(z)=a1422, 210=1.790=1

(This has been chosen to he similar to (3.12) for the purposes of comparison.) The output

1s given by
B
y(t) = Z—‘ (Ly+ug) h)(x0)
=
where
flE)=(z1,28) , gle)=(=3,0).
Thus,

(Lr)°h(zo) = h(zo) =2

(Lr)h(zo) = =1(0)+ uz3(0)+ 23(0) =2+ u
(LF)?Rh(zo) = z1(0)+ 323(0) + u(z3(0) + 2¢3(0)) = 4 + 3u
(LP)°h(zg) = =x;(0)+ 1523(0) + u(23(0) + 223(0) + 825(0)) = 16 + 11u

15




(Lr)°h(z0) = =1(0)+ 10525(0) + u(23(0) + 223(0) + 825(0) + 4825(0)) = 106 + 59u

where F = f + ug. We must solve equations (3.13) where

ak—lfk

Eiiy = 01 gi
e 6:::,-1 ' --a:c,',‘_l

u._..—.__._._._
BI,’I . '8:::,-,‘_,

(zo) + (zo).

Thus, we can take, for example,

& = l+u, =1

which gives the system

.‘él = 1+2(£‘1—2)+“‘+U(l*—2:2+"‘) s :U:(Q.O)
29 = l+2.’.‘g+
h(z) = 2142

with the same output map as (4.8). Choosing the &’s to make the right hand sides converge
will guarantee that this equation is equivalent to equation (4.8) (in some neigh\bourhoods
of zp and zp). Note that since these are valid for any constant inputs, they must be true
for any input by a simple approximation argument, which replaces such an input u(¢) by

piecewise constant approximations.

16




5 Conclusions

In this paper we have described a practical method for realizing analytic input-output
systems. This is achieved by choosing the system so that its associated Lie derivatives
match those given by differentiating the output (with respect to ¢). If these Lie derivatives
are chosen so that the resulting functions converge in some neighbourhood of the initial
values, then the associated system is equivalent to any other with the same Lie derivatives.
The resulting realizations are valid in some (perhaps very small) neighbourhood of the initial
condition. In a forthcoming paper we shall demonstrate that by applying this procedure
at each point on the given trajectory and then using sheaf theory one can obtain global

realizations in a simple way.
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