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Abstract

Exponential Stability for a class of finite- and infinite-dimensional nonlinear, time-varying
systems is studied by regarding the system as a perturbation from a fixed operator. A new
generalized Gronwall inequality is also proved.
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1 Introduction

Consider the initial value problem in a Banach space X
2(l) = A(z(t),1)z(t) , 2(s)=20,0<s<tILT (1.1)

where A(z,t) : D(A(z,t)) € X — X is a linear operator in X, for each = € X,1 > 0.
A (classical) solution is a function z : [s,7] — X such that z is contiﬁuous on [s, T,
z(t) € D(A(z(t),t)) for s < ¢ < T and z is continuously differentiable on s < ¢ < T and
satisfies (1.1). We shall be concerned here in generalizing the results of [6] to nonlinear
operators, in both the finite- and infinite-dimensional cases.

Nonlinear stability theory has been developed for nonlinear perturbations of nonlinear
systems in the finite-dimensional case [1].[2] and the infinite-dimensional case [3]. and the

stability of autonomous systems of the form
(1) = A(x(1))x(1)

has been studied in the finite-dimensional case by the application of Lie algebra techniques

[4] to the Lie algebra generated by the set
{4(z):z € R"}.

Here we shall consider the system (1.1) as a perturbation from a fixed operator A(xg.1p) and
apply Gronwall type inequalities. We shall also derive a generalized Gronwall inequality by
applying the Lie series to the norm bound integral equation. Finally the results for finite-
dimensional systems are generalized to parabolic partial differential equations.

The results apply directly to robust stability: in fact, we can regard

2(1) = A(0,0)z(1)




as the nominal system and
z(t) = A(z(1),t)z(t)

as a system with state-dependent parametric perturbations.

2 Finite-Dimensional Systems

In this section we shall consider the case of finite-dimensional systems. The method is

based on perturbations around the zero point of the system ‘A’ function. First we discuss

autonomous systems.

Theorem 2.1 Consider the system
z(1) = A(z(t))x(t) ,z(0) =20, 29 €R"
and suppose that
lA(x1) = A(z2)|] < Lljz1 = 22|
for all 21,22 € R” and for some L.a > 0. If
4O < e
and
max{LK,LK''*®)} < §

then the system is asymptotically stable for any zy with [|zo] < 1.

Proof Write (2.1) in the form

z(t) = A(0)z(1) + [A(2(1)) — A(0))=(1) , 2(0) = zo.

(2.1)




Thus,

t 5
(1) :eMO)frH/ eA0=)[ A(2(s)) — A(0)]z(s)ds
0
and so
t
lz(@)l] € Ke*lzoll + f\'L/ e~z (s)[|° [l2(s)]lds.
0
Suppose that i > 1, ||lzo]| < 1,||z(1)]] < K for t € [0, 7) and ||z(7)|| = . Then
1
llz()|| € Ke™*|zol| + KLK“/ e~ =) |z(s)||lds . 0<1< T
0

By Gronwall's inequality. we have

le()]] < Ke *exp (LI{“‘*‘C";‘) [|zo]|

= Kel=HE"SIeg | o<t
Hence. if
LE(+a) £ §
then
lx(0)l] < K
for all 1 > 0, which is a contradiction. Hence, if [|zg]| < 1,
llz(t)]| < K forallt>0

if LK(1+2) < 6 and so ||2(f)|| — 0 as t — oc.
If K <1,let ||zo]| < 1, then if [|2(t)|| < 1 for 0 <t < 7,

1

(ol < Ke*llzol+ KL [ 0= a(s)fds . 0t <7
0




and, by Gronwall’s inequality,
2@l € Ke=#+KD1] |||

so ||z(t)|]| — O ast — oo if KL < 6. D

Corollary 2.2 Under the conditions of theorem 2.1, if
max{LM°K,LM*RK1*%)} < §

then the system (2.1) is asymptotically stable for all o with [|zo|| < AL.

Proof Puty=z/M. Then,
y=A(yM)y
and ||yo|| < 1. Since

|4 M) = Ay M)|| < L|My; — Myo||®

I

LM% [lyr = wol®

the result follows from theorem 2.1. O

Now consider the case of a polynomial system

#= 4] , (2.2)

where f(0) = 0 and each f;(z) is a polynomial in z. Then we can write the equation in the

form

r= A(x)z (2.3)
where A(z) = (a;;(z)) and
{i)
aij(z) = Zﬁﬁrk v L E4F EH (2.4)
k=0




where k = (k1,- -+, k,) and ok = z’f‘ ««-zfn for some multiindex {. Then
A(z) — Aly) = (bi;)

where

bij = ak (¥ — k)
k=0
iki>o
£iy) K
= ij(P.l-—l(I«y))(r_y)
k=0
Ik >0

where py_1(z,y) is a polynomial in x and y of order k — 1 (k = |k|). Thus,
lA(x) = A(»)l| £ Lllz - vl

where

£ig)

L= Y lakillpeaatz i |||- (2.5)
k:o
ikise

For any matrix A, it can be shown [6] that
le']| < Ke=® (2.6)

where

2(2" — 1)

K=1+ —

m(3m)"1t, | e

if max{Re ¢(A4)} < —26, and so we obtain
Corollary 2.3 Consider the system (2.2) with f(0) = 0 and write it in the form (2.3). Let

A= (ag) be given by (2.4) and suppose that (2.6),(2.7) hold. Then if

max{LM®K, LMK I+9} < §




the system is asymptotically stable in the region {z : ||z|| < M}. ]

Example 2.4 Consider the system

E(t)+ pz + va(t) + £2%(t) = 0. (2.8)
Thus, we have
. 1
(t) = z(t)
—v—ay(t) —p
Then
0 0
Alz) - A(y) = ;
—&(z;—y) O
where
0 1
A(r) =

—v—=£r, —p

and
ba1 = —&(z1 — 1)

Hence

0 0

L= = |EE

£ 0

and a = 1.
Also,

0 1

and

-1




Rather than use (2.7) here we can diagonalize A(0) and write

A 0
A= = P 1A(0)P
0 A
where
1 1
P=
A1 Al
Then,
e < (PP e
< =g
where
K=[/M+)+2 i + X2 PR (2.9)
P L pr—4v  opr—dv o p? -4 '
if 4v > p? and p > 0. Hence, by corollary 2.3, (2.8) is asymptotically stable in the region

{z:||z|| < M} if

MEK?} < /2

max{|E|M N, |¢

where K is given by (2.9). O
Consider next the case of nonautonomous systems
z(t) = A(z(t), t)x(t) , z(0)=xz0, 2o €ER". (2.10)
This time we shall assume that A is jointly Lipschitz in z and ¢, i.e.
(2.11)

||(A($]ut) - A(m'.’.v T)” S LIHII - 1.2”01- + Lf |{ - "'—]mt

for some constants L,, Ly, a, and ay.




The following result on nonautonomous linear systems given in ([6]) will be used:

Theorem 2.5 Consider the system
z(t)= A(t)z(t) , z(0)==zg
and suppose that:
() sup [A@)]] is finite

(ii) [[e?"]| < Ke™® Yit,s>0

(IH) ||A(f1) —A(f'_))” S LIT] - 1’210 Y il.fg 2 0

where a > 0 and

bla+ 1)

L < sxam rjee

Then the system is exponentially stable and we have

llz(t)]] < K27 ||2o| (2.12)
where
6 KL [2n K\°
= = —_— . a
2 at1 ( ; ) = )

Now, returning to system (2.10) we write it in the form
#(1) = A0, 0)a(1) + [A(2(t). 1) — A(0,1)]2(t).
Let ®(t, 5) be the evolution operator (transition matrix) for 4(0,¢). Then
1
z(t) = &(t,0) + / B(t, s)[A(x(s),s) — A0, s)]z(s)ds
0
and if A(0,1) satisfies the assumptions of theorem 2, we have

[®(2,0)]] < K27




and so

le@)ll < K2 ||zo|| + fo K2e=PU=9L |le(s)]|°= e (s)|]ds.

In the same way as theorem 2.1 and corollary 2.2 were proved, by applying theorem 2.5, we
obtain

Theorem 2.6 If A(x,1) satisfies (2.11) and if

max{L, M® K2, L, M= K?(+e=)} < 3 (£.13)
where
§ KL, [2(n K\* )
o= (1)

then the system (2.10) is asymptotically stable for all z¢ with ||zo|| < M.

Remark The result remains true if we know that the linear system
z = A(0,1)2(1)

satisfies an inequality of the form (2.12) for some K, 3 and then we can dispence with
condition (2.14). O

Example 2.7 Consider the system

(1) 4 pa(t) + (1 4+ 0.5cos(2t))x(t) + £2* = 0. (2.15)
Then we have
0 1
—1—0.5¢c08(2t) — £y (t) —p
= Az, )z(1)
where
0 1
Az,t) =

—1—0.5¢c0s8(2t) — Ex1 (1) —p

10




0 0

|A(21,1) — A(za,7)||

A

+ €] [Jx1 — 2|
0.5(cos(2t) — cos(27)) 0

0.502sin(2n)| |t = 7]+ Ie] [l2y — 22|

Il

for some 5 € [r,4] (if 7 < {). Hence, L, = 1, a; =1, L, = |§], a, = 1. As discussed in
(6] the conditions of theorem 2.6 do not hold for L, but by the remark above we can apply

classical Floquet theory and it can be seen that
lz()]] < 267°4|2o]|

for the system (2.15) with £ = 0. (the numbers in the estimate are conservative—one could

do much better with a more careful analysis of this system.) Hence. by (2.13). if
Mgl < 0.1

then the system (2.15) is asymptotically stable for [|lzoll < M. |

3 A Generalized Gronwall Inequality

We now show that a generalized Gronwall type inequality can be obtained by applying the
Lie series. The results will be seen to be direct generalizations of the well-known inequality
and lead to some new stability conditions.

Consider first the case of an autonomous nonlinear different;al equation
#=f(z) , 2(0)=1z0€R" (3.1)
where f is an analytic function. Then,
1
2(0)= 20+ [ fla(s))ds (3.2)
0

11



and so
‘ 1
Il < ol + [ 17Ga(o)ds. (33)
We assume that f satisfies the inequality
1£(2)I < g(ll=l])
for some analytic function g which is strictly increasing, i.e.
§<y=g(f) <gly) VE&EyeR.
By (3.3) we have
1
(0l < llzoll+ | aClles)lpds. (3.4)
0
We shall use a comparison argument and therefore consider the equation
1
Vi) = o+ [ olu(s))ds. (3.5)
Write (1) = ||z(1)|| and we have from (3.4).
1
ey <o+ [ allEco)ds. (3.6)
0

Lemma 3.1 Under the above assumptions. if y satisfies (3.5) and € satisfies (3.6), with

&0 < yo, then
Et)<ylt) , Yt>0.

Proof Since & < yo and g is analytic, £(1) < y(?) for ¢ in some interval [0, §]. Suppose that

&(7) = y(7) for some 7 and that £(t) < y(t) for all { < 7. Then, from (3.5),(3.6),

1
) —y(t) < so—yo+f0(g(&(sn—g(y(smds

< /Ot(g(f(s))—g(ym))ds .

12




Consider t = 7. Since £(1) < y(1) for t € [0, 7). the integral

/0 "(9(E(s)) = g(u(s)))ds

must be strictly negative. Hence, £() < y(7), which is a contradiction. ]
Corollary 3.2 If & < yp we have £(t) < y(1),¥V t > 0.

Proof This follows from the lemma since £(t;&p) is continuous in &g. : m]
We are thus led to consider the integral equation (3.5), or in differential form. the

equation

y(t) = gy(t)) . y(0)=yo.

The solution of this equation is given by the Lie series ([3]):

ﬂp<wd)y
’ dt
Y=Yo

L\Jf;
Z—,Ly (o)

k=0

y(t)

I

wlere L, 1s the Lie derivative with respect to g. From corollary 3.2 we obtain the following
theorem:

Theorem 3.3 If f is an analytic function for which

L7 ()l < gCll=]D)
for some strictly increasing analytic function g, then the solution of (3.1) is bounded by
— t¥
l|lz(1)| Z A_
k=0

where & = ||zo]|. O

Example 3.4 Consider the equation

= Az + f(2)

13




where ||f(z)|| < M||z||. Then

1
.r(f):emxg-i-f eA=2) f(2(s))ds
0
so that
f 2
||I(f)||§f\'c“"l|ro||+/ Ke“(=Af]j2(s)[|ds
0
for some K,w. Thus,
1
y(1) < |Irn||+f My(s)ds
a
where
1 -
y(t) = EHI(?)Hf -

By theorem 3.3, we have

o

ylt) < Z

) (lzoll)

’“I“

where g(&) = M£. Now,

d§
LQE = g& = ,‘IE .
and so
y(1) < M|zl
Hence,

2l < KM+ lag]|

which is simply Gronwall’s inequality for linear bounded functions.

Consider next the nonautonomous system

r=f(x.1) , 2(0)=20€R" .

14
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where f is again analytic in z and {. Then

1
=011 < lmoll+ [ 115Ga(s), )l
This time we assume that f satisfies the inequality
If(z, Il < g(llz]],1)

for some analytic function g which is strictly increasing in ||z|| for each ¢ > 0. Lemma 3.1

and corollary 3.2 clearly generalize directly so that if
1
y(1) = yo +f 9(y(s), s)ds
0
and
1
€ <o+ [ ole(e)o)ds
0

where &y < yo, then (1) < y(1) , Vi > 0. To generalize theorem 3.3 we need to find the Lie

series for the equation

y(t) = g(ylt).1).

To do this, we write the equation in the form

23 = (a2, %) (3.8)
where
n=y, za=t, G(a,22) = g(y,1) , Ca(21,22) =1
and
20 = (yo.10)-

15




Thus,

I
|
=
t...4

=
S—
e

Hence, we have

x, a o\
y(fJ=Zj-,(g(y,f)5§+E> y

Theorem 3.3 now generalizes as follows:

Theorem 3.5 If f is an analytic function for which

£ (2. Ol < g(][]].1)

for some analytic function g which is stricly increasing in ||z|| for each t, then the solution

of equation (3.7) is bounded by

el <> lp (g(é‘f)§+ ) €| (&) (3.9)
k=0 '

where & = ||zol|. O

|

Example 3.6 Consider the system
r=Ax+ f(z.1) . 2(0) =20
and suppose that

”EAIH ]ueu.'f ,

IA

Iz Ol < g(ll=[])p(t)
where g is homogeneous of degree k, i.e.

olallz])) = a*g(ll2ll) for any a € R.

16




I ’
s lz@®)]| < M’e“"”xon—i-/o M’e“'“")g(Hr(s)H)p(s)ds

—uw's

t
- ME“”IlmoiIJer“'f/ 9<GM Hf(S)Il) Mp(s)etF =1 ds
0

Put

Then we obtain
1
y(t) < llzol| +/ a(y(s)) M p(s)e! =1 ds
0
and so
: g = MFg(y)p(1)e'* =1
Note first that if g is linear, so that k = 1, we have
y = Myp(1)

so that

y= yoeﬂ“l‘(”d"

and

1
ll2(t)]] < Mewtedo Motesde

which is just Gronwall’s inequality. As a second example. suppose that g(y) = y® , k = 3,

so that

g = M3Pp(1)e™ ! .

17

(3.10)




Then,

2 e y%
1-2y2 [, M2p(s)e2wsds

Yy

i.e.
HTO ’JAIEewa
el < —
1 —2[|zo||? fy M3p(s)e><*ds

provided

1

2J|z:g|;?/ M3p(s)e**ds<é<l , 0<t< e (3.11)

0

for some 6. Thus, if this condition holds, then ||z(t)|| — 0 as t — oc if w < 0. Note that

condition (3.10) is required in order that the Lie series in (3.8) converges, so that equation

(3.9) has a well-defined real solution.

4 Nonlinear Parabolic Systems

In this section we shall extend the previous results to the case of nonlinear parabolic systems.

Thus, consider the nonlinear evolution equation
a(t) = Ay, Hu(t) , u(0) € L*(Q) (4.1)

where  C R" is open and for each u € L*(Q), t > 0, A(u,1) is a sectorial operator (see

[7]), i.e. A(u,t) is closed, densely defined and the sector
Ses={):¢<|arg(A—a)| <7, A#a}

is in the resolvent set of A(u,t). Moreover,

M

IO = A< g7 -

VA € Sa,d

18




where a, ¢ and M are independent of (u,1).

We shall assume that equation (4.1) has local solutions in v and ¢. i.e. for each u(0) €
L2(9), there exists a solution u(-) € L*([0, 7), L*(Q)) of (4.1) for some 7 > 0. The following
result is well-known ([7]):

Lemma 4.1 If the resolvent R(A; A(u,1)) exists for all A € S, ¢ and

M

”RQuﬂmUmsiy:a:T

, AESae, 120, uel*Q) "
then there exists & > 0 such that

(1) [T < Ke ™ | >0

.. Re~*
(i1) 114° (0. )T, (D] € =
forall s > 0,0 < a,u € L*(Q), where T;, 4)(t) is the semigroup generated by A(u, s). ]

Now we assume that 4(u.t) satisfies the inequality

I
T=s)

1 Tt0.n)(t = )[Aluy. 1) = A(ua.12)]]| £ et (Ly|lur — wa||™ + Ly|ty — ta]72)

for some a with 0 < a < 1 and some numbers L, L;.3;.39 > 0. Then. from (4.1). we have

a(t) = A0, 0)u(t) + [A(u.t) — A(0. 0)]u(t)

so that
1
u(t) = Tio.0)(t)u(0) + /0 Ti0,0)(1 — 8)[A(u.s) — A(0,0)]u(s)ds
and
1)l < Kem*u(0 R Ll + Lo d :
|lu(t)]| < Ke Hu()H+l£ Sy ullulI* + Les™) [u(s)||ds. (4.2)

We need the following generalization of Gronwall’s inequality ([7]):

Lemma 4.2 Suppose that £(t) satisfies the inequality
£
Et)<a+ b/ —£(s)ds
§ Akt —s)®

19




for some constants a, b, where 0 < & < 1. Then,
£(1) < aBq ([Br(1 - a))/0=21)

where

=]

Eo(z)= Y "1 T(n(1~a)+1).

n=0

O

Note that Eq(z) &~ ;2-€” as = — oc. Now let u(0) be such that ||u(0)|| < Al and

suppose that |[u(?)|| < M for 0 < ¢ < 7 where 7 < 1. Then by (4.2) we have

=b8(1—s)

1
||u(f)J|gMA'e-“+f KE (LuM? 4 L,5%2) ||u(s)||ds
0

1—s)¢

for0<i<r<1, andso
. ¢ 1
v S a+b [ y(s)de,
g {I—8)®
where
y(t) = e"'|lu®)]| , a= MK , b= K(L M? +L,-1) .
Hence, by lemma 4.2,
I < aBa (BT(1= )]'/1=2) =8, 0<t<r<L.
Put
A = [bT(1 — a)]}/*-2)
and assume that

6
= > sup In (KN E4(M)).
27 g<iet

20




Then,

lu(t)]] <« Me=4/2 | 0<t<1.
Next consider the system starting at ¢ = 1. Then we have

u(t) = Tio1y(1)u(l) + /1 Tio,1)(t = 8)[A(u, s) — A0, 1)]u(s)ds

and so
ool S K=l + [ K (Ll + Lis%) uts)ds.
l.e.
* 1
y(1}§a1+bfl T gebe)ds, 1<1<2

where a; = MK e=%/2 and b is as before. Thus,

1
EtY <y +b/ E(s)ds' , 01" <1
0

where s' =s—1,t'=t—-1, £t') = y(t' +1). Hence, as before,
lu(t)|| < Me=/2t g<t<2.

Continuing in this way we obtain
Theorem 4.3 Suppose that A(u,t) is a sectorial operator for each u € L*(Q) and 1 > 0

and assume that the semigroup Tiu,s)() generated by this operator satisfies

E—f.(f—.!}

| Tto.my(t = 8) (A(us, t1) — Aus,t2))]| < L%

(Lulluy — ua||®* + Lty = ta]2)

for some a with 0 < a < 1 and some numbers Ly, Ly, 31, 32 > 0, where n € N. Then if the

resolvent R(A; A(u,1)) exists and satisfies

M

(A Ay, & e
IR A € 73

y AESay 120, ue LX)

21




and

é> sup In(KNE,(At))
27 o<1

where E, and A are as defined above, the system is asymptotically stable for ||u(0)|| < M.
m]

Example 4.4 The example

9

A(t)=(1405 sin(f))aig

considered in [6] is not a valid application of the results presented in that paper. since the

inequality
I(A(t1) — A(t2))A(ts) =0 € Lty —1a|?

is required with a < 1 (strictly less than 1-theresult is not true for a = 1), and the example
requires the inequality for a = 1, so it is not true. However, we can consider the nonlinear
operator

a2

A(t,u) = 5‘%2— + (1 + 0.5sin(f)u?)

a
dx
for example, and a simple argument then shows that the equation associated with this

operator is stable for small enough initial value.

5 Conclusions

In this paper we have generalized some results in [6] to the case of nonlinear evolution
equations. The method is based on representing the equation as a perturbation about a
fixed value of the operator and then applying Gronwall’s inequality. Moreover, by using Lie

series we have given a direct generalization of Gronwall’s inequality. Finally, the theory has

22




been extended to nonlinear parabolic partial differential equations by successive expansions

of the system semigroup about integer temporal values.
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