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MULTI-MODE MODELING OF A FLEXIBLE
LINK ROBOT MANIPULATOR

by

A. S. Morris, B.Eng, PhD, CEng, MIEE, MInstMc and A. Madani, B.Eng

ABSTRACT

This paper is addressed towards the problem of developing an accurate static and dynamic model
for a two-flexible-link manipulator. The inadequacy of existing techniques for flexible link modeling
is explained and a new formulation, based on an assumed mode modeling technique with a correction
factor derived from finite element analysis, is derived. This takes account of second and third modes

in the dynamics and is shown to provide an improvement in model accuracy compared with most
existing modeling algorithms which neglect these higher modes.
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1 Introduction

The control difficulties arising out of the use of large mass, high inertia links in conventional robot
manipulators have been long recognised, and there has been much research activity directed towards
developing robots with lightweight links. However, this in turn introduces a different control problem
in respect of the elastic deflection and oscillatory behaviour due to the inherent flexibility of lightweight

links.

Study of a typical six-degree-of-freedom, revolute geometry robot used in industry reveals that only
two links contribute significantly to the inertia problem, and therefore only these two links have to be
replaced by lightweight (and flexible) ones in order to address the inertia problem. Thus a suitable
mechanism for developing a control strategy for such a modified robot is to study the characteristics
of a two-flexible-link system and to superimpose the equations of additional rigid links on top of this. -

A suitable approach towards developing the model necessary for analysing the two-link system is
to model the motion of each link separately and then to examine how these separate models can be
combined together so that the coupling between the links is properly described. With regard to the
single-link modelling problem, much research has already been carried out and reported. However,
most of this research has been concerned only with vibrations in the link rather than with the ro-
tational motion of the link about its actuated joint (as occurs in a real manipulator). Even where
rotational motion has been modelled, the single link models derived have insufficient accuracy for use
in a two-link system, where the flexure and oscillations of the first link are transmitted to the second
link and any modelling errors are cumulative.

This paper describes the development of a single-flexible-link model which avoids the simplifications
and approximations made in previous work, in particular by including modes which other authors
have neglected, and so yields a model of adequate accuracy. Following further work, the development
of the single link models into a composite two-link dynamic model will be reported in a future paper.

2 Model Formulation

The basic equations describing the motion of a flexible link are highly nonlinear and thus are difficult
and costly to compute. A more efficient formulation can be developed by using approaches such as
Partial Differential Equations, the Assumed Mode technique or Finite Element Methods. These all
have merits, but also disadvantages. For example, the Partial Differential Equation (PDE) approach
gives the best description of the physical structure dynamics, but the solution is very difficult to
obtain except for some very simple special cases where rotation is minimal or completely absent. The
Assumed Mode Method (AMM) assumes the mode shape function of a system and provides a very
computationally efficient scheme. Its disadvantage is that the real mode shape functions of a practical
system are difficult to predict, especially for the case of robot manipulators where rigid motions are
involved. The Finite Element Method (FEM) provides the best modeling capabilities among the three
approaches. It can model a flexible structure with arbitrary link shapes and boundary conditions, but
the convergence of its solution is not ideal because of the numerical approximations involved in the
elaboration of the model. Whilst it simplifies the PDE model greatly, the computational burden is
still very demanding. - T A

The disadvantage of each of these approaches suggests that a better solution would be to use a
combination of two or all three of these methods in order to exploit their advantages simultaneously
and achieve an accurate but computationally efficient model. The formulation used therefore combines
the assumed mode technique with finite element theory. The basis of the model is the Assumed Mode

Method, but accuracy is improved by introducing a correcting factor derived from the finite element
analysis. :




3 Static Deflection of a Flexible link

Assuming the magnitude of flexure to be low, the slope and deflection of a flexible beam bending
under gravity are described by:

du,, mg (., " =3) mg [(1*z? 123 4
—_— = | Ifz = — ] = —— = — 4+ —
dz = 2Bl ( TolEtg ) wEoEn T T3 T (1)

where m is the mass of the beam, [ is the length of the beam, EI is the flexural stiffness of the beam,
g is the gravity vector, z is the position on the beam of the point where the slope and deflection is
measured and the subscript m denotes the slope or deflection resulting from the mass of the beam.

For a flexible link with an end-tip load m, (Fig. 4-1), the mass m; produces a negative slope and
deflection given by:

dum, _ ™9 (4 22\ v = ﬂ(h"z ? (2)
dz  EIN\N*T72)' Y™TTEr\7T "%

By the principle of superposition the total static slope and deflection for a flexible link are given by:

du  dus,  du, g = ,  mz3
— = == 2my )lfz — I
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= = — 2 el i 3
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The maximum static slope and deflection of the flexible link occur at the free end, where z =1, i.e.
dUmaz 2g /m Bg /m 2m,
= Em— = ) az — — T 4
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Unfortunately, if the assumption of low magnitude flexure is violated, Eqs. (1) to (4) are no longer
valid and a correction factor is needed, as explained below.

4 Correction Factor

In Fig. 1 and Eqgs. (1) to (4), the slope (and the deflection) of the link are calculated at a distance =
from the origin of the link. The deflection is calculated at a distance perpendicular to the horizontal
axis which is valid if the curvature (slope) of the link is very small. If the slope is greater than 5 de-
grees, the length of the bent link becomnes greater than it should be. The correcting factor introduced

uses finite element theory and results in a more accurate representation of the flexible link, as seen in
Fig. 2 for a three-element link representation.

Suppose that the link is divided into n equal elements. For the first element, we have 1 = 1 and

u(l/n,t) = ‘Eéﬂ ((m+ M)zz(zén)z Bt m)l(z/an)s . m(fl/gnh) -

'lj'his deflection, being at the distance z = I/n on the OX axis, is actually greater than the real one
since the element conserves its length I/n. When subject to the deflection, element 1 is rotated about

its origin, an extra length v, is added to the element and the deflection is taken from a distance shorter
than I/n by w;, where v; and w, are given by:

'U1[

= ny/u(l/n,t)2 4+ (I/n)?

v = Vul/n )2+ (/n)2=1/n; w (6)




So the corrected deflection at the point z = I/n is given by:

'1.:([/'n.—s,i)-——-1-'“—1 u(l/n,t) (M

U1
with s being an accumulative coefficient equal to w; for the first element. This coefficient corrects
the distance at which the deflection is taken on the OX axis. It will obviously increase with the

following elements. For the second element (i = 2), the deflection is first taken from a distance
z=(l/n=s)+1l/n=2/n~s,

12(21/n = s)? I(21/n — s)3
u(2l/n—s,t)= — %ﬁ ((m+2m) ( /2 ) )+2.§H ((m+mt)_%_.)..)
g [(m(2l/n-s)*
2ETI ( 12 ) (8)

The extra length added to the second element is v; and the reduction when projected onto the
horizontal axis is wj, where:

vy = \J(u(2/n — 5,8) = u(l/n - ;1)) + (I/n)2 = I/n
'sz

n/(w(@/n = 5,8) = u(l/n - ,))* + (I/n)?

So the corrected deflection at z = 2{/n — s becomes

wy =

(9)

u(2l/n—s—w2,t)=? u(2l/n—s,1) (10)

s is then increased by w; (i.e.,, s = w; + w;). Similar operations are carried out on the following
elements, resulting in the equations below for the final element:

s = i‘wi (11)
vtn=L-1/n; wnzizL-l : L=\/(u(l—s,t}—u((n-—1)1/n—s,t))2+(1/n}2 (12)
u(l—s—wn,t)z? u(l - s,1) (13)

n

It is apparent that the true end-tip deflection is smaller than the one predicted by Eq. (4), and the
slope is consequently reduced in a like manner. The projection of the end-tip of the deflected link on

the horizontal axis is now equal to I — 3"7_, w; and not [, proving that the position of the end-tip is
not (I, u(l,t)) but (I —s, u(l — s,1)).

5 Free Vibration of a Flexible Link

A dynamic system can be set into motion either by some initial conditions or by disturbances at
time zero. If no disturbance or excitation is applied after time zero, the oscillatory motions of the
system are called free vibrations. Hence free vibrations describe the natural behaviour or the natural
modes of vibration of the system. The initial condition is an energy input initially stored in the system.

If the system does not possess damping, there is no energy dissipation and the initial conditions
will cause the vibrations to maintain themselves without any decrease in amplitude. However with
damping, energy will be dissipated in the damper and the free vibrations will eventually die out,
causing the system to regain its static equilibrium position.




5.1 Undamped Case

The equation of motion of an undamped flexible link without payload is described by [S. Timoshenko
et al., 1974; R. H. Cannon, 1984]:

d%u(z,t)  6° u(z,t)\
g =g (B

ot? b2
where p is the mass per unit length of the link, u(z, ) is the deflection of the link, ¢(z) is the assumed
mode shape function and g(t) is the modal function. Assuming that EI is a constant, allows Eq. (14)
to be written as

u(z,t) = ¢(z)q(t) (14)

1 d%q(t) _ EI 1 d%(z)

@) @ - p d(z) daf (19),
which leads to the two following differential equations:
d*¢( d?q(t)
dr4 - (=) =0; 7 twiat) =0 (16)
where w is a constant and §* = pw?/EI.
The solution in [S. Timoshenko et al., 1974; R. H. Cannon, 1984]:
#:(z) = Ci(cos Biz — cosh f;z) + (sin iz — sinh f;z) (17)
and
gi(t) = A; cosw;t + B;sinw;t (18)

where A4;, B;, C; and w; are constants, ¢ denotes the number of modes of vibration. The deflection is
then given by

=2 #i(=)ailt) (19)
s==1
From the boundary conditions (u(0,t) = u(l,t) = -g—:(O,t) = g—:“;{l,t) = 0) we obtain

_ cos Fil+ cosh Gl
" sin f;l —sinh £l

(20)

and f; as a solution to

cos B;l cosh Bl = —1 (21)
Solving Eq. (21) for the first four modes gives Byl =1.875, B2l = 4.694, B3] = 7.854 and F4] = 10.995.
From here, using the definition that §} = pw?/EI, we can deduce the values of the natural frequencies

w; of the ﬂexlb]e link for the first four modes. This means that, given an initial excitation F, the link
is going to oscillate according to a combination of these four natural frequencies.

The equation of motion can be generalised as an eigenvalue problem linking the two parts of the
system (the assumed mode shape functions ¢,(z) and the modal functions g;(t)).
Let the partial differential equations of the link be generalised as

P(i)+ Q(u) =0 (22)

where P and Q are linear differential operators involving only the variable z!. So P, for example, will

have the form
a 2 ; a 6211
P-Gu+ala +a262 ... leading to P(u)—ﬂou+ala +a2azz+“'

The displacement u is as defined in Eq. (14), that is, u(z,t) = ¢(z)g(t), and substituting this in Eq.
(22) and simplifying, we obtain
P(¢) _ 4
— e 23
Q@ " 4 i

'For simplicity, the symbol (') denotes the partial cbﬂ'erenhahun with respect to time and (') with respect to the
space variable z.




where ) is a constant, since P(¢)/Q(¢) is a function of z and ¢/q is a function of t. Thus,
i+X=0; P(¢)=2Q(¢)

The eigenvalue problem formulation of continuous systems is as shown in the above equation, where
) is an eigenvalue and ¢(z) an eigenfunction. The problem is to find the values of A for which there
are functions ¢(z) satisfying Eq. (24) and the boundary conditions. The forms of P and Q depend on
the type of beam the link is made of. For most problems, Q is merely a weighting factor but becomes
a constant for a uniform link. P is illustrated in Eq. (14) as being

& 8*
P=om (EIE;) (25)

The boundary conditions are of the form R(¢) = AS(¢), where R and S are linear differential oper-
ators involving the space variable z only. The right side of the equation is obtained from the inertia
term by replacing 6%u/8t? by —Au. Hence if the end-tip has no mass attached to it, we get R(¢) = 0.
In other words, the eigenvalue A will appear in the boundary conditions only if the system has a
payload at its end-tip. The orthogonality of the eigenfunctions can be demonstrated as follows:

(24)

From Eq. (24), for the rth and sth modes, we have

P(d}!') = ATQ(‘#") or ¢1P(¢r) = ArquQ(‘iﬁr)
and
P(‘?‘Sl) = AlQ(‘ﬁa) or ¢rp(¢.) = Aa¢rQ(¢n) (26)

Substituting one equation for the other and integrating over the domain I of the elastic body, we
obtain

L1820 = 8. P67 = [ 4.0(6:) - X400, (27)
If the eigenvalues are distinct and the eigenfunctions are selfadjoint, i.e.,
[ #-P@do = [ 4.P(6)i0 (28)
z z
and
[ 4-@6.d7 = [ 6.0(¢0)de (29)
b bH
this results in the left-hand side of Eq. (27) being equal to zero, that is,
L[¢5P(¢r) = ¢,P(¢,)]d0’ =0 (30)
and .
'[":[A,cﬁ.Q(d:,.) N = — ,\,)/ 4,Q(¢,)do = 0 (31)
z
Since A, # A,, we deduce that
'[qurQ(é.)dﬂ =0 for r#s (32)
Similarly, it can be shown that
/ ¢-P(¢,)do =0 for r#s (33)
T

The last two equations prove that the eigenfunctions possess orthogonal properties and therefore are
linearly independent from one another.




Substituting Eq. (25) in (33) and then integrating by parts, we obtain

; !
f1[¢r(EI¢i')” - ¢,(EI¢,)"]dz {[qﬁr(EM’.')']E -fu ¢$(EI¢’.')'dx}

|

1
{[qb.(mqs:')']s- j ¢:(Er¢;')'d=}
0

1
= {[¢r(EI¢'.')'—¢.'-(EI¢:')]L+/0 EI¢1’¢'.'¢=}

1
{[¢-(EI¢'J)'—¢2(EI¢$')]E+j; EI¢Z’¢$'4=}
= [¢-(E14)) = 6.(EI$])];
- [¢.EI¢) — ¢,EIg); (34)

The eigenfunctions being selfadjoint, Eq. (34) is identically zero if the boundary conditions at each
end can be expressed as

ap +b(EI$"Y =0; c¢'+d(EI$") =0 (35)

The constants a, b, ¢ and d depend on the boundary conditions of the link. The orthogonal relations
in Eqs. (32) and (33) become

1
_J 0 forr#s
fu pr¢,¢,dz-{ A (36)

where m,, is the normalised mass of the system for the rth mode.
And

forr=3s

k T forr# s
fo Ew,qb.dz-{ -3 @)

where k., is the normalised flexural stiffness of the system for the rth mode. From here, it can be

deduced that the natural frequencies of the link are w; = \/k;;/my;, with i being the mode order.
Considering the case of the first mode as an example, we have

#1(z) = Ci(cos friz — cosh fiz) + (sin Biz —sinh Fiz)
where
Cy = (cos Byl + cosh Byl)/(sin Byl —sinh Sil)
The calculated value for C is -1.3622, since 5,1 = 1.875. Thus,

! Bl
[ 2 T = p—I) 2 T T
[ reie==(£) [ sieran,

Pl Bl
= (EDL [Ci(cos Brz — cosh Byz)+ (sin Byz —sinh By z)]?dfi=z

mii

1l

(;—i) [C3(4.8155) + 2C1(2.4865) + (1.3181)]

3.479501/p, (38)

And since
¢i(z) = —C1B(cos Biz + cosh B;z) — B2(sin f;z + sinh fiz)
we get for the normalised stiffness?
ky, = EIB3(17.2120 — 23.3269 + 9.5944) = 3.4795EIf;
giving
wi = kyyfmy = EI16}/pl
H[(#0")bidz = [(#]) dz, and d* ¢ /d=* = Blé:.




5.1.1 Initial Conditions

Consider the deflection u(z,t) of a flexible link given by Eq. (19). The initial conditions can be
expressed as

oo (=]
w(z,0)= > ¢i(z)a(0) = f(z);  u(=z,0) =D ¢i(2)di(0) = 9(=) (39)
=1 =1
Using the orthogonal relation, the corresponding initial conditions in the normal coordinates (the
normalisation or weighting is operated on all modes) are

n):% /0 fbldey  aGl)=

Similarly, ¢;(0) and ¢;(0) can be obtained from the normalised fiexural stiffness as

o[
2 [ s@eers (40)

1

1 1 -
w0 =5 [ f@H@E:  wO=F [ @E0e (1)

So, if the link is submitted to an initial displacement due to a force F' applied to the end-tip, this
displacement can be written as follows

fo) =5 (£-%) (12)

and its effect is to force the undamped link to vibrate according to its natural frequencies.
The first and second derivatives of f(z) with respect of the space variable z are

)= —gr (2= ) me f@)=-F0-2)

Knowing from Egs. (17) to (20) that the equation of motion of an undamped flexible link can be
formulated as

uwz, )= ) dil=)alt)
i=1
where
¢i(z) = Ci(cos fiz — cosh f;z) + (sin f;(z) — sinh fiz)
i(t) = Aicosw;t + B; sinw;t

we can deduce from the initial conditions that B; = 0 and, by analogy to Eq. (39), 4; = ¢:(0).
The following functions can be obtained from ¢;(z):

#; = —C;B:(sin B;z + sinh ;) + Bi(cos B; — cosh ;)
¢ = —C:B%(cos fiz + cosh f;z) — B?(sin f; + sinh 5;) (43)
C; can be obtained from Eq. (20) and values of ¢;(0) can be obtained from Eq. (41):

2
a0} = Flﬁ f [Ci(cosB;z + cosh Biz) + (sin fiz + sinh f; z)ldz

F,ﬁ"

f[C' (z cos Biz + = cosh 3;z) + (z sin Bz + z sinh B;z)|dz

F Cifi . : A
= k,-,-B [sinB;z + smh;ﬁizlo + kf" [—cosBiz +cosh ﬁgz}n
FCipi
kii

Fﬁ

: 1
[zsinBiz + E— cosB;z + z sinh f;2 — ﬁi cosh ﬁszlé
1

T+ B}-—smﬁ.: + zcosh Biz — E:smh,@, ]

= F[C’,‘(Cﬂﬁh Bil - COE,@,—I) + (sinh Gil — sinﬁil)]

& _%¢i(z) | (44)




Taking into account the first three modes (i =1,2 and 3), equations can be obtained for the vertical
displacement u(z,t) of any point z on the link at any time ¢, the slope u/(z,t) of the link at any point
z and any time ¢ and the velocity 4(z,t) of any point z on the link at any time ¢:

u(z,t) = ¢1(2)q1(0) coswyt + ¢3(z)g2(0) coswat + $3(z)ga(0) cos wat (45)
' (z,t) = 31.;‘(9:, t) = ¢1(2)q1(0) coswyt + ¢4(z)g2(0) cos wit + ¢5(z)ga(0) cos wat (46)
u(z,t) = @-S—;ﬁ = —¢1(z)q1(0)w; sinwyt — @3(z)q2(0)w; sin wat — ¢3(z)gs(0)ws sin wst (47)

It is important to note that the patural frequencies w; = \fk,;,-/‘m.'-'- do not depend on the magnitude
of the initial excitation force F but on the mass, length, width, flexural stiffness (characteristic of the
material the link is made of) and the loading of the link.

Fig. 3 shows the free vibration of an undamped, unloaded, one-metre long flexible link for the first
three modes of vibration with an excitation of 4 Newtons. The amplitude of the oscillations decreases
enormously from one mode to another. In Fig. 4, the time history of the end tip displacement is
compared for different initial excitation forces. The amplitude of the vibrations are proportional to the
amplitude of the applied force F' but the frequency of vibration remains a constant. This frequency
increases of course for the higher modes, since f; increases with i.

Figs. 3 and 4 show that the amplitude of the first mode is substantially greater than that of the
other modes. Many researchers in this field have treated the amplitude of the higher modes as being
negligible compared with that of the first mode, and have consequently ignored the higher modes in
order to simplify the modeling task. However, study of Fig. 5 shows that the amplitude of the slope
of the second mode is at least 10 percent of its counterpart in the first mode, and even in the third
mode the amplitude of the slope is about 2 percent of that in the first mode. Thus these modes are
significant and any simplification which neglects them is invalid. '

These large slopes are confirmed by Figs. 3(b) and (c). The “sharpness” towards the end-tip proves
that the amplitude of the slope (first derivative of the displacement with respect to the variable z) is
very important. Also, the end-tip velocity (see Fig. 6) is seen to be relatively important at the third
mode level (almost 5 percent of the amplitude of the end-tip velocity of the first mode). This proves
once more the importance in choosing a sufficient number of modes in order to obtain a model for the
flexible link with a high accuracy.

5.1.2 Addition of an End-Tip Load

If the system has an end-tip load, an eigenvalue A (see Eqs. (23) to (24)) will appear in the boundary
conditions. Under such conditions, the eigenfunctions in Eq. (36) will not be orthogonal. An orthog-
onal relation can be derived by redefining the mass distribution of the system. The mass m, attached
to the free end of the flexible link adds the following boundary condition to the set of known ones:

2u(z,t) O%u(z,t)
. gz T a2

Let m, be an integral part of the link. Hence:

(48)

Total mass = pl + ma of  pyoia system = P+ mab(z — 1)

Since m, is a concentrated mass, its mass/length becomes a delta function! m,6(z —1). If m, is part
of the link, then the boundary conditions beyond m, is that of a free end beam.

'Dirac's delta function is defined such that §(z=1)=0forz #land f:; §(z=-ldz=1




Using m(z) = p + mab(z — 1), the orthogonal relation in Eq. (36) becomes

! !
_/0 lp + mab(z — 1)]¢, ¢,dz /O pér¢:dz + mad.(1)¢,(1)

_ 0 forr# s
- {m.-.- forr=3s (49)

Since the operator P in Eq. (33) is not affected.by m,, the corresponding orthogonal relation remains
as shown in Eq. (37). An increase in m;; will imply a decrease in w; and therefore, the link will vibrate
in a slower manner when a load is attached to its free end, and vibrations will persist for a longer time.

Since the payload does not affect the value of ky;, the quantity g;(0) can be obtained from Eq. (41).
The frequency w; is then deduced as follows .

The new value of my; includes the mass of the payload m, and therefore, the frequencies of vibration
are decreased (or the period of vibration is increased).

Fig. 7 displays the free vibration of the first three modes around the static equilibrium position
under the effect of a payload of 400g and various initial excitations. The amplitudes of vibration of
the second and third modes are almost insignificant and at this level, the beam seems to be static.
But, as seen in Fig. 8, their effect on the whole system is significant in terms of the slope and velocity.

It can be concluded that the initial conditions (here, the initial excitation force) only affect the
amplitude of the vibration, and not the frequency. The payload, by contrast, operates on the fre-
quency of the free vibration. The amplitude of vibration of the higher modes are negligible but the

effect they have (especially the second mode) on the total slope and total velocity of the link cannot
be ignored.

5.1.3 Application of the Correction Factor

Using the correction factor, it can be easily shown how the deflection, and specially the horizontal
position, of any point on the link is obtained with more accuracy than that obtained from the assumed
mode technique on its own. For this purpose, the flexible link is divided into 10 finite elements (see
Fig. 9). This resulted in the appearance of two different vibrations: one in the vertical direction
affecting the vertical position of the link, and one in the horizontal direction affecting the horizontal
position of any point on the link. This second type of vibration cannot be described by classical theory
equations for flexible beams, and only the finite element theory can help us in obtaining a realistic
description of such vibrations. As a reminder, the excitation force responsible for the vibration is kept
constant, causing the amplitude of the vibration to remain constant for different end-tip loads.

It can be easily seen, from Figs. 9(a), (b) and (c), how the length of the flexible link is corrected,
causing the horizontal coordinate of any point on the link to be shifted towards the origin. This shift
can be found to be as large as 100 mm for a link of 400 grammes with an end-tip of 400 grammes
subject to an excitation force of 4 Newtons applied to the end-tip.

Consequently, the corrected deflection is slightly smaller (for both static equilibrium and total vi-
bration) and is about 90 percent of the deflection obtained from the classical modeling method of the
assumed mode technique. This improved accuracy is important in high precision robot manipulations.




5.2 Damped Case

When the dynamic system represented by the flexible link contains a damping process, the principal
equation of motion shown in Eq. (14) becomes

&%u(z,t)  Ou(z,t) 92 82%u(z,t)
: = —— — 50
T T 2z \F 5 A
where ¢ is the damping coefficient of the link, which depends on the material the link is made of.
This equation can be rewriiten in the following form
2 4
LA s Ty =0 (51)

with a? = EI/p. So, assuming the modal representation of the deflection as in Eq. (14), we obtain

cdg  1d%g —a21 d4¢

pq dt T q dt? ¢ dz (52)

The system of assumed mode shapes functions ¢(z) remains unchanged (see Egs. (16) and (17)),
while the modal functions ¢(¢) become solutions to the following equation '

d’q; ¢ dg; |
e S A e B 20; = 0 53
@ @ e (59)
where w; = \/k;;/m;; as discussed in the previous section.
The solution for such a differential equation is

gi(t) = exp” T u '(A; cosw]t + B sin wit) (54)

where the frequency w] is equal to

This means that the amplitude of the higher modes die out very quickly as shown in Fig. 10. The
higher modes (modes 2 and 3) influence the total response of the system for only few fractions of a
second, while the oscillation of the first mode persists longer. The damping coefficient decreases the
vibrations of the flexible link and attenuates the effect of the high frequency modes. This must be
taken into account in the modelling of a flexible link, since when the link is subject to some damping,
its high frequency modes become no longer important in the dynamic response, except for the small
fraction of time which follows the removal of the initial force. Fig. 11 shows the effect of varying the
damping coefficient. A lower damping makes the amplitude of vibration decrease over a longer time

period according to the relationship:

c Yl

—T=1n—

2p Yg
where Y] is the value of the amplitude of the first peak, ¥ is the value of the amplitude of the next
peak and T the time period between these two consecutive peaks.

Fig. 12(a) shows the total end-tip deflection obtained from the three modes when the link is subject
to damping. This total deflection is very slightly affected by the higher modes. In Fig. 12(b), the
end-tip slope taken from the addition of the three slopes created by the modes is shown. The effect of
the third mode is almost invisible while the effect of the second mode lasts only for 0.08 seconds. Fig.
12(c) shows that the corresponding end-tip velocity is due mainly to the first mode but proves that the
second mode is operating during the first 0.12 seconds. Finally, Fig. 13 displays a three-dimensional
representation of a loaded flexible link with and without damping.
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6 Summary

In this work, the static bending of a flexible link under its own mass and then under the effect of
end-tip loading has been studied. The classical theory for flexible beams has been proven incapable
of predicting the exact position of any point of the link. For this reason, a correction based on finite
elements theory has been incorporated. The results obtained by using this method have been shown
to improve accuracy and to give a more realistic description of what really happens to a flexible link.
The length of the link cannot in any circumstances change, and therefore the real horizontal position
is not as predicted by classical theory of beams.

Then, the subject of free vibrations has been treated, starting with an undamped flexible link to
show how its natural frequencies affect the motion of the dynamic system. Different initial excitations
have been used as an input to the system to prove that thesé natural frequencies cannot be affected
by the initial conditions. It has also been demonstrated how the end-tip load affects the speed of
vibration of the link. An unloaded flexible link will vibrate faster than a heavily loaded one.

In this work, the general influence that the high modes have on the system has been shown. It
has been proven that, even if the amplitude of vibration of the second mode is negligible in compari-
son with the amplitude of the first mode, the corresponding slope and velocity play an important role
in the total response of the system. The high frequency oscillations due to the second mode make the
link appear to be motionless, but the slope created at the end-tip, especially, adds enormously to the
slope created by the first slower mode. Accurate modeling of flexible links must therefore involve at
least the first two modes.

Finally, the system consisting of the link and its end-tip load has been studied with the additional
effect of a damping coefficient. This damping, created by the link’s material itself, decreased both the
amplitude and natural frequencies of the vibrations. The link was first subject to some oscillations
which died out after a certain period of time dictated by the damping coefficient, and then stablised
at the static equilibrium position. The importance of the second mode has been proven once more,
but its effect lasted only a small fraction of time.
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