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Abstract A new recursive supervised training algorithm is derived for the radial basis
neural network architecture. The new algorithm combines the procedures of on-line
candidate regressor selection with the conventional Givens QR based recursive
parameter estimator to provide efficient adaptive supervised network training. A new
concise on-line correlation based performance monitoring scheme is also introduced as

- an auxiliary device to detect structural changes in temporal data processing
applications. Practical and simulated examples are included to demonstrate the
effectiveness of the new procedures.
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1. Introduction

eural networks are an exciting area of research with a range of potential applications which can
Nbroadly be categorised into pattern recognition [23] type problems and temporal data modelling
or processing. Although many architectures and training algorithms are available radial basis function
(RBF) networks [26] are becoming increasingly popular because of the distinctive properties of best
approximation, simple network structure and efficient training procedures.

One of the most important issues associated with the use of RBF networks involves the selection of
the network specification and the design of the network parameter updating strategy. The former
concems the choice of network input dimension, the selection of which RBF nonlinearity to employ and
the number of centres in the hidden layer. The latter relates to the design of an effective algorithm to
determine the centres, the connection weights, and if appropriate, the width parameters of the network.

For a RBF network with a static structure network learning can be achieved by training the centres
and the weights separately in two consecutive stages. The centres are usually randomly initialised and
subsequently adjusted iteration-by-iteration using some form of clustering method. Based on these
updated centres, a standard parameter estimation routine can then be applied to compute the network
weights [8][9]. With this network parameter updating strategy, the centres and weights are updated by
unsupervised and supervised leaming, respectively. The advantage in adopting this hybrid strategy is
that the computational requirement is substantially reduced compared with the wholly supervised
method. However, examination of the structure of the network model often suggests that the inclusion
of all the hidden layer outputs in the weight updating procedure is neither efficient nor necessary.

Although numerous efficient algorithms have been developed specially dedicated to networks with
static structure [9] the question of finding an optimal, or at least a sub-optimal, subset of centres from
the full set of centres has rarely been addressed. From the point of view of system modelling a complete
ignorance of this question implies an over-sized network may have been constructed. The consequence
of this is not only a definite increase in the demand for processing power but, perhaps, more
importantly, a dramatic deterioration in generalisation performance since this violates the principle of
model parsimony. This is particularly relevant when an on-line scheme is applied to a large scale time-
varying system where any procedures which avoid an over-fitted model with minimal computational
complexity would certainly be welcome.

In the present study a new supervised training' algorithm for RBF neural networks is derived. By
observing the stepwise increments in variance that each individual regressor contributes at each time
step the current structure of the network architecture or model is adaptively adjusted and a subset of
centres is selected at a reasonable computational cost. The new algorithm combines the procedures of

selecting candidate regressors on-line with a Givens QR based recursive least squares routine to provide
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adaptive supervised on-line network leaming that can be applied for both pattern recognition and time
domain applications. Issues of performance monitoring are considered in the context of temporal data
modelling and new concise correlation based test procedures are introduced to provide an on-line
structure monitoring scheme and to detect inadequately trained networks. Both practical and simulated
examples are included to demonstrate the new algorithm.

2. NARMAX Representation for Non-linear Systems

The study of non-linear systems plays an important role in data modelling because most physical
phenomena encountered in practical applications are likely to exhibit some degree of non-linearity. An
appropriate functional representation is therefore necessary in the modelling of non-linear systems. As a
natural extension of the linear difference equation in non-linear system modelling the pon-linear

guroregressive moving gverage model with exogenous inputs or NARMAX model is often employed.
Given the (mN,, +nNy + nNe)-dimensional vector X(k) at time step k

WOAT(k=1) o wT(k=N,) yTk=1) - yT(k=N,) eT(k=1) - eT(k-n)"
where u(k)eR™, y(k)eR”" and e(k)eR” are the system input, system output and noise with
maximum lags N, Ny. N, at time step k, respectively, the m-input, n-output non-linear stochastic
system described by the functional relationship

y(k)=£(x(k)) +e(k), @)
where f(-) € R" is a differentiable real vector valued function, is generally referred to as the NARMAX
representation [7].

It is obvious that the model described in Equation (2) is, in fact, a non-linear regression model with
the system output regressed on all the terms involved in the argument of the function f(.) under the
disturbance of the noise vector e(k). Clearly the choice of the form of the functional map f(-)
determines the behaviour of the system dynamics. In general, f(-) is a highly sophisticated non-linear
function although various forms may exist. Exact representation of f(-) is usually difficult to obtain and
an approximation is often used instead. In fact, the interpretation of the NARMAX model can be
regarded as a generalisation of a wide class of some commonly employed non-linear models [21].
Examples such as the Hammerstein, Wiener, bilinear and Volterra models can all be shown to be
special cases of the NARMAX model. In the present study, the RBF network will be used as an
approximator f(-)e R” to approximate the function f(-) so that the predicted system output §(k)e R”
at the RBF network output yields

y(k)=F(x(x)) 3)
where x(k) € RN is the input vector given by
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XA (k=1 - wTk=N) yTh=D) o yTk=Ny) T-1) - T-n)] @

and e(k) € R" is the innovation vector with maximum lag N, at time fmp k.

3. RBF Representation of The NARMAX Model

As depicted in Figure 1, a RBF network consists of only one hidden layer and one output layer. The
entire hidden layer is composed of an array of non-linear processing units and, where appropriate, each
of these units is associated with a positive scalar value known as the width parameter. For an N;-input,
n-output network with N, hidden units, at time step &, the i-th (1<i< N,) hidden unit performs a non-

linear functional map
o RYM xRNx R, — R 5)
network input  centfe  yigih parameter hidden layer output

which is characterised by the current value of the centre c;(k)e RM and the width parameter
®;(k)e R, on the N;-dimensional input vector x(k)e R™ to produce the i-th hidden layer output
9i(k) = o(|x (k) - c; (k)] ; (k). 1< i< N, ©)
where |- | denotes the 2-norm in N;-dimensional vector space [6]. The non-linearity ¢(-) generally has a
radially symmetric response around the current centre. For the present study, we will be particularly
concerned with the case where ¢(-) is specified to be the thin-plate-spline function which is defined as
6(x)Ax*10g, x. @
Although various alternative choices [25] of ¢(-) are possible the thin-plate-spline function was chosen
because it does not have a width parameter which would inevitably demand extra processing effort but
the richness of non-linearity in representing the underlying non-linear dynamics can still be preserved
during network updating. With the RBF specified by ¢(-), Equation (6) can be simplified to
0 (k)= 0(x(k)=;(K)]), i=1,2,+-,N.. @®)
The output of each node in the output layer is simply a weighted sum of all the outputs from the hidden
layer so that the j-th output node is associated with the weight vector estimated at time step k,
0 j(k) = {B,j(k)}zcl € RM and the Jj-th network output )"wj(k) can be expressed as
5;(k)=9T(k)8;(k). 1< j<n. ©
where q)(k)={(p,-(k)}?="1 eRMNe. The response of n-dimensional network response ¥(k) can be
expressed as o

§(6)={9T(k)6,(1)}

By defining the network output matrix

n
o (10)
J=1
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§T(1)
YA 1(k) - §a)[=| P |eRM (11)
g §T(k)
the data matrix
o' (1)
o(k)a| e RPN, 12)
o7 (k)
and the network weight matrix
011(k) - By,(k)
O(k)A| 0;(k) - 6,(k)[=| : |eRN (13)

On1(K) - By (k)
the n-output network response can be concisely expressed as
Y(k)=®(k)O(k) (14)
Recent studies [24] suggest that, the rate of convergence in network leaming can be enhanced by
modifying the network to allow direct contributions to the weighted sums at the network output nodes
from direct linear links. In addition, it is advantageous to allow an adjustable dc value. These
modifications which are illustrated in Figure 2, can easily be implemented by augmenting the input
vector to the output layer @(k) to yield
(k)| INe
¢'(k)=| x(k) | }N; (15)
1 [ h
where the unity entry provides the dc link. For notional convenience @’(k) will be re-labelled as (k)
so that now

91(k) [ y(k)

o(k)=| on+k) |=| &) (16)
_Oneen () | o (k)
PN +N+1(K) | [T
The network connection weight vector must also be re-defined as
8,;(k)
0,:(k
8,(k)= 21:( ) L j= 1,201 (17)
eNc+N,-+1j(k)




On-Line Supervised Adaptive Training Using Radial Basis F. unction Networks

Notice that as a result of the re-definitions of (k) and 8;(k), the respective dimensions have been
changed from N, to
N;,QNC+N,-+1. P (18)
Based on the structural framework described above we now wish to train a RBF network with
Output response given by Equation (10) to represent the non-linear function f(-) in the NARMAX
model Equation (2). This can be accomplished by assigning the components of the network input node
as all the components of the vector x(k) defined in Equation (4). With these network input node
assignments, the input-output relationship of the network at time step & of the estimated model f() is
therefore given by

n

§(k)= {q,T(k)e,-(k)}::l ={2j=‘]¢(]|x(k)-—c ;0))e j,-(k)+2::1xj(k)9 ,-+~c,,-(k)+eN,,,-(k)} (19)

i=1

4. Orthogonal Least Squares Estimator

One of the most commonly used techniques in data modelling is regression analysis based on the
classical linear least squares method and variants such as generalised and weighted least squares. The
properties of linear least squares have been extensively studied in the literature and the approach has
been highly successful in modelling data govemed by linear relationships. The desirable properties of
linear least squares contributes considerably to the subsequent developments of various non-linear
regression techniques such that non-linear systems can be accommodated. An alternative approach to
classical least squares is the prthogonal Jeast Squares (OLS) method which was developed to
circumvent numerical problems and to incorporate model structure detection by considering an
equivalent auxiliary model in the setting of an orthogonal vector space [2][1 8].

Following Lﬁe notation employed in above, the basic idea of the OLS method can be illustrated by
considering the i-th (1<i<n) sub-system of an m-input, n-output system. Instead of performing
parameter estimation directly on the regression model A

¥i(k)=®(k)8;(k)+e;(k) (20)
the equivalent auxiliary model given by _
yi(k)=W(k)g;(k)+e;(k) (1)
is considered where
W(K)=[wi(k) walk) - wi, ()] with w (k)w (k) = L8, Vi,j=12:-N,  (22)
gi(k)eRMs, 8;; is the Komecker delta and LeR is a scaling constant. The estimate of the j-th
component of the parameter vector g;;(k), ji(k) at time step & can be computed as

T ;
6w ® | o

gjilk)= 7 2 1SS
J [ e
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Therefore, the set of vectors {w;(k):i=1,2,--+,N,} effectively forms an orthogonal basis which spans
the same space as the space spanned by the set of basis vectors {@;(k):i = 1,2,---,N,} in the original

£

regression model expressed in Equation (20). Symbolically,

span{w;(k)}"4 = span{g;(k)}% (24)
In geometric terms, the j-th estimated coefficient §j,~(k) can be interpreted as the magnitude of the
orthogonal projection of the observed vector y;(k) onto the j-th co-ordinate in the new (orthogonal)
vector space.

With the geometrical interpretation described above, the criterion of selecting the most important
regressors from the full set of regressors to be included in the auxiliary model can be taken as the
proportion of energy contributed by an individual regressor. Sgch a criterion can be expressed as

m}if)a—!—-ﬂ—g"" O 100% 25)

= v

and is called the ¢rror-reduction-ratio (ERR) (2] for the j-th component in the auxiliary model at time
step k. It is obvious that a large ERR value, say close to 100%, indicates a significant contribution
from an important regressor and should therefore be included in the model whereas a small ERR value
indicates an unimportant regressor which would tend to make a negligible difference to the overall
goodness-of-fit. By including only the most significant regressors in the auxiliary model the effect of
multi-collinearity and numerical ill-conditioning will be minimised.

A closely related idea is principal component analysis [20] which is extensively used in multi-
dimensional statistical data analysis where reduction in dimensionality of the data set to be analysed is
required. In the context of neural networks the OLS learning procedure selects appropriate radial basis
function centres as a subset of the training data vectors [15]. At each step of the selection procedure,
the increment to the explained variance of the system output is maximised. In this way, the OLS
leaming procedure produces an RBF network whose hidden layer is smaller than that produced with
randomly selected centres. Thus, the OLS leaming procedure provides a powerful approach for the
construction of a parsimonious RBF network with good numerical properties. By using the ERR value
and observing the stepwise increments in variance that each individual regressor may contribute at each
time step, the current structure of the network model can be adaptively adjusted and a subset of good
centres can be selected at minimal computational cost.

For many real-time applications in parameter estimation, the volume of available data is
unrestricted and batch processing based on the entire data set is not realistic. Such situations frequently
arise, for instance, in many aspects of adaptive signal processing and control problems. Effective
algorithms operating explicitly on a moving window of data in a recursive manner must be employed.
Among the various recursive algorithms which are available the QR based method appears to be




remarkably appealing. One implementation of this is the Givens recursive least squares (RLS)
procedure [17] which allows simple parallel architectural implementation [13] while preserving
superior numerical properties over conventional least squares type estimators.

S. Network Learning Based on k-means Clustering and Givens RLS Algorithm
When the function approximation problem is reformulated in terms of RBF network leaming, the
leaming task involves the determination of an appropriate set of RBF centres, width parameters and
associated network weights [22]. To avoid non-linear leaming, the candidate centres can be selected
from the entire set of data. But for many applications the number of all the candidate centres or
regressors is usually very large and the inclusion of all these candidates is hardly practical and often
unnecessary since a much smaller subset of centres may be sufficient to construct an adequate network.
In this respect, the centre selection problem can be regarded as a sub-model selection problem that
selects only a small subset of the appropriate centres from the full set of candidate centres. It is
apparent that the idea of OLS can easily be applied to select the centres as candidate regressors to be
used the subsequent stage of weight calculations.

The procedure of network leamning, described in detail below, will therefore consist of two separate
stages, centre selection and weight updating. These two sub-tasks can be achieved by means of
unsupervised and supervised learning in a recursive manner.

5.1.  k-Means Centre Clustering

To update the centres, a k-means clustering [11] algorithm based on the non-hierarchical clustering
methods is employed. In its simplest version, the algorithm directs each item towards the cluster having
the nearest centroid. Given that the number of centres is specified, the k-means clustering algorithm
operates on the network input vector at each time step and successively assigns the centres to the data
clusters in the domain of the network input space. After a sufficient number of samples all these centres
eventually converge to the data clusters.

Given that all the centres have been updated by a k-means clustering algorithm, the Givens forward
selection algorithm treats all the hidden layer outputs as candidate centres or regressors in the least
squares estimation of the network weights. Only a‘subset of the most significant hidden layer outputs
are selected. Based on the successfully selected candidate centres, the algorithm minimises the mean-
square-error between the desired output and the actual network output by performing a series of Givens
orthogonal transformations. In this regard, the weight updating sub-task is considered as a supervised
leamning process [9].
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To simplify the exposition of the learning algorithm, consider an N;-input, single output network
with N, centres initialised to random values in the vicinity of the input space prior to starting the
Clustering process. Given an initial clustering gain x(0), the k-means €lustering algorithm calculates the
Euclidean distance d;(k) between the current network input vector x(k)e R™ and the i -th centre
c;(k)e RY: for all the N, centres at time step & such that

d;(k) =[x(k) - ¢;(k)], i=1,2,---,N, (26)

The updating of a centre is based on the criterion of how far the current input vector is away from

the previously updated centres measured by the Euclidean distance.
¢j(k)=c;(k=1)+x(k)8;[x(k)-c je=1)] X))

where
- _—
j=arg_ min N[ (k)} (28)

The clustering gain x(k) € (0,1] is given by
i k(k-1)
1+ int(ﬁ;)
where int(x) denotes the integral part of x. Other choices of updating rule for the clustering gain are
possible providing x(0) monotonically decreases to zero. Experience suggests that the choice of initial
clustering gain x(0) is not critical and good results are generally obtained with k(0) =1.
Based on the computed centre values {cj(k):j = l,2,---.Nc}, the i-th hidden layer output @;(k) can

(29)

then be computed using Equation (8).

5.2.  Givens Forward Selection Estimation Algorithm
Given a set of fixed centres determined by the k-means clustering algorithm, the most significant centres
for the i-th (1<i<n) output of the network can be selected and the weight vector 0;(k) e R™ can be

computed recursively by the Givens algorithm [12] with column pivoting as described below.
The computations of 0;(x) for time step k can be performed in two separate stages based on solving

the normal equation
[Wwo00] [Wioewlo,o=[wEweee] 5o 30)
recursively, where ¢
lk-_l | 0 i 0
AK)a 2k=2 -. _| M&-1) Eo ‘ i
0 ) e — 011




A €(0,1) is a forgetting factor in the recursive algorithm and the matrix A%(k) is a Cholskey factor of
the matrix A(k). The same convention of symbols will be used throughout. Detailed analysis (after
some algebra) by Skinny decomposition [14] of the matrix A}é(k)d>(lf) into

NA(k)D(k) = Q(K)S() 32)

reveals that the system given by Equation (30) can be equivalently solved based on the triangular
system

R;(k)8;(k)=v;(k) (33)
where Q(k)eR¥M is a matrix whose columns are mutually orthogonal so that
QT (k)Q(k) e R¥Ms s strictly diagonal; S(k) € R™*h is unit upper triangular;

R ()A[QT (K] *s(k) 34)
is an N;, x N, upper triangular matrix and
Vi) =[ale) vak) v, (0] A[QT IR QT ()5, k) (35)

is an Nj-component vector. Furthermore, Equation (30) can be re-configured into the following

artificially augmented upper triangular matrix structure to facilitate concise matrix operations.
|

Ri(k)  {vi(k)

) (36)

where * is a 'don’t care’ entry.
Prior to starting the algorithm R;(k) and v,(k) can be initialised to a diagonal matrix with
arbitrarily small identical positive entries § = 0 and an N,-component zero vector, respectively, i.e.

R;(0) =3I (37
where I is an identity matrix with appropriate dimension and
vi(0)=[0 0 - o] (38)
N
h

To describe the process of determining the weight vector ;(k) at time step k , it is assumed that the
matrix structure has been formed after time step (k—1) as follows:-

(39)

In the first stage of the procedure, subsequent to the determination of the input vector to the output
layer @(k), the matrix in (39) is modified to a non-triangular matrix as follows:-
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: :
I I
(k-1 lv.(k—1 o AR;(k-1 LAV (k-1
Rl(k ) iv:(k ) data arrival J_ ( ) E'J_v (k ) (40)
________ [ e | NS
0 - 0f T (k) tyik)
I upper u'igngula.r ’ ) non-upper triangular ’

A series of Givens rotations is then applied to the matrix on the right hand side of (40) until an upper
triangular matrix is obtained to yield

i

vi(k) . @1

Ar———————

OO et

m:m-uppgv triangular upper n'igngular

The matrix given on the right hand side of (41) can be viewed as an interim stage in achieving the
transformed system given in Equation (33) where the matrix R;(k) will be completed after
n,,(k)(s N,,) steps in the selection of candidate regressors as

RO — ROR) - SR ) 5 R, (k) 42)
S — ——— i — ’
prior to selection after 1 selection after n, (k) selections

Based on the matrix on the right hand side of (41) the algorithm calculates v2 (k), Vr = 1,2, Ny,
By examining the transformed system in Equation (33) it is obvious that these v,-z,.(k) values are directly
related to the relative strengths contributed by all the N}, candidate regressors. A large v,-zr(lc) value
indicates a significant contribution from the r-th regressor and vice versa. By monitoring the stepwise
increments in the error-reduction ratio, defined in Equation (25), at each step of the selection procedure
a regressor can be selected or discarded. For the transformed system given by the right hand side of

(41), the error-reduction ratio achieved by the r-th regressor can equivalently be taken as

2
(pyo _Virlk)
ERR" (k) b 0F (43)

Define the N,-component vector psj)(k). (1<j<n (k)< N,) as
; . . ; T T
w0l AP0 QW - QW] win s@0=[A® B - B @] @
At the j-th selection step, the j-th largest v,z (k) (1= r< N,) is identified in pgj)(k) such that

l=ar max {pUD k(. 45
gh:j.j+1.---.N,,{p'k ()} ( )

The j-th and the Ith columns in the matrix R~ (k) are then exchanged. This can be implemented by
post-multiplying by the permutation matrix
Ilf”(k)g[ll SUES VR PO lNa]

jth Ith

(46)

10
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where
LA - 0 1 0 - 0]TeRM -
ith ‘
so that the matrix jo)(k) yields
R (6) = RV ) = RO on® ey n ). (48)
Also, the vector pgj) (k) is updated as
B0 =19 Wpl-Dw =1 O -0 O, )

The effect of the permutation operation outlined in Equation (49) is to re-arrange the v,z(k) values in
the vector pgj)(k) such that the first j largest components, whose corresponding regressors which
should then be disqualified in the selection after the current selection Step, appear in the first j leading
positions of the vector pgj)(k). With the permutation operations applied to R,(-j"l)(k), the resulting
matrix R‘(-j) (k) will no longer be upper triangular and a re-triangularization (re-orthogonalization)
operation is required so that an equivalent upper triangular matrix ﬁgj)(k) can be maintained. This,

again, can be readily achieved by performing a series of Givens rotations as

jo)(k) Givens rotations g k-‘(j)(k) . (50)
——yr—t —_—
(non-upper triangular ) (upper triangular )

To align with the rotations on jo )(k) the same sequence of rotations used in (50) should also be

applied to the vector vg"‘)(k) such that the rotated vector Vf-j )(k) yields
ng)(k) Givens rotations fi’]gj)(k). (51)

It is worth noting that as a result of the near upper triangular structure in R,(j ) (k) the transformation
outlined in (50) involves only a sub-matrix of the last (N,, — j+1) rows and columns in R,('j)(k) after
the first selection. As the selection process proceeds, the number of arithmetic operations actually
required in the re-triangularization operation will therefore be monotonically reduced.

At each step of the selection process, the error-reduction-ratio for the current selection is calculated
using Equation (43). To measure the goodness-of-fit for the i-th sub-system after j regressors have been
selected, the accumulated error-reduction-ratio is updated to yield

, ; -1
S Erre)= ERR(K)+ Y " ERR (k) with ERR®) (k)= 0 (52)
h=1 : h=1
The accumulated energy of the i-th sub-system output y;(k), lly: (")Iz required in Equation (43) can be
computed recursively by

Iy G = 37 (0)+ My (k= DI with |y, (0)| =o. 53)
In practice, a measure called the normalised (to ||y,-(k)ﬂ2) residual sum-of-squares (NRSS) defined as
; J
NRSSY)(k)A1- Z; 1 ERR (), (54)

11
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which is directly related to the accumulated error-reduction-ratio given in Equation (52) suggested by
[19], is usually used as a criterion for terminating the selection process if either one of the following
conditions is satisfied d

j=Ny (55
or

NRSSY (k) 2 E. (56)
where £€(0,1) is a pre-specified cut-off value for the regressor selection algorithm. These two
conditions correspond to the situation where all the candidate regressors have been encountered in
Equation (55) (even without achieving the required NRSS) and the required NRSS has been achieved
after j regressor selection steps in Equation (56). In either case, set

ny(k)=j (57
to denote the total number of successfully selected candidate terms and set NRSS;(k) as
NRSS; (k) ANRSS™ O p), (58)

at time step & to inhibit the same selection procedure being repeated by considering the next largest
v2(k) value with j incremented by one.

__(

With the obtained triangular system given by R (k) (k) in transformation (50) and E( Q) (k) in

transformation (51), the sub-system, formed by the first n, (k)X n, (k) enmes of the matrix -ﬁ( (k) (k),

("h(k (k):L , and the first n,(k) elements of the vsatr 9 (lc) —(""(k))(k)l
oy (Rl (8) m(k)

can be used to determine a permuted version of the estimated weight vector @ ,-(k)eR”"(L) whose
components are only associated with the selected candidate centres, ﬁ}" (k) e R*(®)_ 1n other words,
B?(k) is nothing more than a subset of the full (least squares) estimated weight vector ©;(k) defined in

Equation (30) with the components corresponding to the unselected regressors omitted. The permuted
weight vector 5,7‘ (k) can be solved by performing backward substitutions in the following vector-matrix

equation
Liny, (k) Liny, (k) (k)
The proper least squares estimate of the weight vector 8; (k) can be obtained by re-permuting 6 (k) in
Equation (59) to yield e
Nh
() =4t 8r (k) 1. v 017
0/ =\[mF W) | BTG (0], ), %[0 0 - o] (60)
nh(k) r=1
where
1) An® N ). ), (61)
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[n,.(k)]lmh(k)‘r or its transpose [H:-r(k)] is the vector (sub-matrix) formed by the first n, (k)

rLiny (k)
components in the 7-th column of the permutation matrix IT; (k).
g £
Similarly, by defining @ (k)€ R™(®) as a subset of the full input vector o the output layer (k)

with the unselected regressors missing as

Nh
* 3 T
@i (A] 0, (k): [T(K)],,, 4y, %[0 O ” 0] (62)
iy (k r=1

the network output ¥;(k) at time step k can be computed as
5:06)= 9} ()8} (k) (63)
If any innovation terms are to be included in constructing a noise model, the innovation g; (k)
should also be computed by
&;(k)=y;(k)-3;(k) (64)
which is stored for processing in the next time step.
Finally, before the data in the next time step (k+ 1) is processed, the matrix ﬁ,{"" (k))(k) should be
re-permuted as
R;(6)=R"Om ) 65)
in order to align with the corresponding components in the vector @(k) defined in Equation (16) for the
next time step.

5.3. Three-Phase Learning
The network leaming described above can be broadly categorised into the three different stages of
centre updating, centre selection and weight estimation. These sub-tasks, which form the major
computational steps involved in the leamning process should generally provide a satisfactory
performance in most applications where reliable information on the range of network inputs can be
determined so that reasonable initial settings can be specified. In circumstances where such a priori
information is not available the algorithm can be further refined to reduce uncertainty in initialising the
range of the network inputs. Furthermore, when an estimate of the noise model is required, an initial
phase is necessary in order to establish a set of appropriate ranges for initialising the innovation
components involved in the noise model. g

In the first phase, the algorithm starts with (uniformly) randomly initialised RBF centres in
arbitrary range in the (mNu +nNy)-dimensional space assuming that no information on the range of
network inputs is available. In this initial leaming phase, the network input vector x(k) is taken to be
the composition of the lagged system inputs u(k=1),u(k=2),--,u(k—=N,) and the lagged system
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outputs y(k —1),y(k —2),---,y(k - Ny) without any innovation terms involved. After a short transition

period has elapsed, all the components in the network input vector, and any innovation terms for the
noise model where appropriate, are monitored at each time step so that their ranges can be recorded.
These estimated ranges of the network inputs facilitate finer adjustments on the assumed ranges set at
the beginning of the first phase. Subsequent to the random initialisation of the RBF centres, all the
centres are updated by k-means clustering followed by centre selection together with weight updating
using the Givens procedure described above.

With the range information obtained from the first phase, the leaming process in the second phase
is based on the definition of the network input vector given in Equation (4). The algorithm is re-started
with the initialised centres reset to the estimated ranges obtained in the previous step. As in the first
phase, the centre updating and weight estimation are achieved by unsupervised and supervised learning
using the k-means clustering and Givens procedure. After a short transition period a subset of all the
network input vector sequences are stored. A typical arrangement is to store all the network input
vectors in a reasonably long period after the transient. These stored network input vectors can be
reliably considered as representative of data clusters in the network input space which then form the
essential element for the third phase of learning. -

The distinctive feature in the third phase of leaming is that all the RBF centres are treated as
constants. In this respect, the task of network leaming is reduced to centre selection and weight
updating. The leaming process is therefore re-started and all parts of the algorithm are re-initialised
accordingly. During the entire course of the third phase all the stored network input vectors in phase
two are used as the fixed centres. The total number of these centres is typically taken between 100 and
200. Based on these fixed centres, a significant subset is selected and the associated weights are
estimated using the Givens procedure. With this form of network structure, the only network
parameters to be adjusted are the network weights.

6. Summary of The Network Learning Algorithm

The network leamning strategy can be divided into three phases in order to gain maximum benefit in
utilising the available information. For the sake clarity, the complete leaming process can be
summarised by the following computational steps. ,

& Phase 1 (k=1,2,--+,Ny):
Phase 1 initialisation:
®  Specify the maximum lags N,, Ny and N in the system input, output and innovations;

* Specify the number of RBF centres to be used in phase 1 and phase 2, N,;

14




On-Line Supervised Adaptive Training Using Radial Basis F unction Networks

Specify the cut-off £ value for the selection routine;
Set the initial network input vector x(0) to be a N;(: mN, +nNy)-component Zero vector;

Set the initial clustering gain x(0) (typical values are frofn 0.5 to 0.9);

Specify the forgetting factor A (typical values are from 0.9 to 0.99),
Randomly initialise all components of the N, RBF centres {cj(O):j=1,2.---.N,_.} in

arbitrary ranges;

Set the n matrices {R;(0):i=12,--,n} to be diagonal matrices with small positive
numbers § (typically & = 1072 ); )

Set the n vectors {v;(0):i=1,2,-+,n} to a zero vector of Nj(= N, + N; +1) components;

R;(0) {vi(0)],

Construct the matrix

5l oy e e

Network leaming procedure:
for k=1 to N,

Network input ﬁode assignments and centre updating:
®  Assign the network input vector as
xO=[ulk=1) - uk=N,) yk-1 - yle-n,)5
* Compute the clustering gain (k) using Equation (29);
e Update all the N, centres using Equation (27);
* Compute the input to output layer vector g(k) =={cp _,,-(k)}j,i"l where Ny =N.+N; +1

o)~ c;)]) for j=1,2,.-.n,
as @;(k)=1 x;_y_(k) for j=N,+1,N +2,---,N, —1;
1 for j=N,
Centre selection and weight updating:
fori=1to n do
e  Set up the matrix in the left hand side of expression (40);
e Perform the Givens transformation defined by expression (41);
+ Comput e vctor B0 s 500)=[31) B(0) - B, G

*  Initilise the selection counter j =0, the set the initial NRSS, NRSS® (k) =1;
Jj=0;
while j< N, and NRSS,(k)> £ do

Jj=Jj+1;
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o Find the j-th largest v2(k) (1< r < N}) such that

G=D( gy
I=arg  max i (k)]s
L j,j+?,-..,N,,{p i )}

e Find the permutation matrix I/ (k) defined in Equation (46);
e Permute the matrix jo'l)(k) using Equation (48);
e Permute the vector p'(-j_l)(lc) using Equation (49);
e Re-triangularize R,(.j )(k) to ﬁfj)(k) by Givens rotations;
e Rotate vfj)(k) to ij)(k) to align with the re-uiangﬁlarizaﬁon of R‘(-j)(k);
¢ Compute ERR using Equation (52);
¢ Compute accumulated energy in system output Hy,-(k)ﬂ2 using Equation (53);
e Compute NRSS using Equation (54);
e Setn,(k)=j;
e Set NRSS;(k)=NRsS"*®) k)
end
*  Solve Equation (59) by backward substitution to obtain 8; (k);
* Re-permute 8; (k) to obtain 6; (k) using Equation (60);
e Obtain @; (k) using Equation (62);
* Compute network output ¥;(k) using Equation (63);
» Compute the innovation €;(k) using Equation (64):
e Update the range of the system input, output and innovation if £ > K where K is
the length of the transient sequence (typically K =100);
- Re-permute fig""(k))(k) to obtain R;(k) using Equation (65) for the next iteration;
end
end
@ Phase 2 (k=Ny+1,N;+2,.-,N;+ N,):
Phase 2 initialisation: :
*  Set the initial network input vector x(N;) to be a N; (= mN, +nN, + nNE)-component zero
vector;
®  Set the initial clustering gain k(N; ) (typical values are from 0.5 to 0.9):
*  Randomly re-initialise all components of the N, RBF centres {c;(N;):j=1,2,---,N,} in
the estimated ranges;
o Set the n matrices {R;(N,):i=12,-,n} to be diagonal matrices with small positive
numbers & (typically § = 107°);
o Setthe n vectors {v;(N,):i=1,2,-.n} to zero vectors of Ny,(= N+ N; +1) components.
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Network leaming procedure:
for k=N;+1to N;+N,
Network input node assignments and centre updating:
®  Assign the network input vector x(k) according to Equation (4);
* Store x(k) after a transient period, say K samples (typically K = 100);
 Compute the clustering gain x(k) according to x(k)= x(k — 1)/ \/ 1+ int[(k -N )/NC] :
® Update all the N, centres using Equation (27);

e Compute the input to output layer vector q:(k)={(pj(k)}2’l where N, =N_+N;+1
o(jx0) ;1)) for j=1,2,.--,N,

as @;(k)={ x;_n_(k) for j=N.+1,N,+2,--,N; —1;
1 fOl' j'-—"Nh

Centre selection and weight updating:
e Same procedures as phase I;

end

@ Phase3 (k=N +Ny+ LN + Ny +2,-,N; + Ny +N3):

Phase 3 initialisations:

® Use the stored network input vectors in phase 2 as candidate centres in phase 3, ie.
{cj(k)=x(j+N1 +K)j=12,N, —K};

° Enlarge the dimension of the n matrices {R;(Nj+N,):i= 1,2,--,n} from
(No+N;+1)x(N,+N; +1) to (Ny =K +N;+1)x (N, =K +N; +1);

e Enlarge the dimension of the n vectors {v,-(Nl +N2):i=l,2,---.n} from (NC+N‘-+1) to
(Ny—K +N; +1);

e Set the n matrices {R,-(Nl + Nz):i= l,2,---,n} to be diagonal matrices with small positive
numbers § (typically & =~ 1073);

 Set the n vectors {v;(N+N,):i= 12,--,n} to a zero vector of Nu(=N,+N; +1)
components;

Network leaming procedure:

for k=N;+ N, +1to N+ N, +N; do
¢ Compute hidden layer outputs usin'g Equation (8);
®  Assign the network input vector x(k) according to Equation (4);
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N
e Compute the input vector to output layer @(k)= {cp f(k)}j:l where Ny, =N, +N;+1
¢("x(k)-cj(k)") for j=1,2,---,N, ,
HSIPJ,(k)= j—N‘.(k) fOl’j=Nc+l.Nc+2,"',Nh—l;
1 for j= Nh
Centre selection and weight updating:
fori=1to n do
¢ Perform Givens transformation as shown in expression (41);
T
e Compute the vector p,(-o)(k) as pSO}(k) = [vﬁ(k) va(k) - vak (k)] ;
*  Initialise the selection counter /=0, the initial NRSS, NRSS{)(k)=1;
Jj=0;
while j< N, and NRSS;(k)>E do
j=j+l

e Find j-thlargest v2(k) (1< r < Np) suchthat /=arg  max {p,-(;f_l)(k)};
k=j.j+l.'-'.N;,

*  Find the permutation matrix T1/)(k) defined in Equation (46);
e Permute the matrix Rfj _1)(!:) using Equation (48):
e Permute the vector pf"' - (k) using Equation (49);
e Re-triangularize R,(-j )(k) to _Rfj )(k) using Givens rotations;
¢ Rotate vfj )(k) to '\'Ffj )(k) to align with the re-triangularization of Rf-j )(k);
¢ Compute ERR using Equation (52);
*  Compute the accumulated energy in the system output Hy,‘(k)lz using Equation
(33);
¢ Compute NRSS using Equation (54);
e Setn,(k)=j;
e Set NRSS;(k)= NRSS,.("* U
end
*  Solve Equation (59) by backward substitution to obtain 87 (k);
* Re-permute B; (k) to obtain (k) using Equation (60);
o Obtain @ (k) using Equation (62);
 Compute the network output J;(k) using Equation (63);
*  Compute the innovation ;(k) using Equation (64);
¢ Update the range of the system input, output and innovation;
e Re-permute ﬁg"‘* Q) (k) to obtain R; (k) using Equation (65) for the next iteration;
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end
end

7. On-Line Structural Monitoring

There are many structures where it would be desirable to have some mechanism which monitors on-line
the performance of the leaming strategy. Such a procedure should be independent of the learning
algorithm but should be capable of detecting any effects which lead to an inadequate representation of
the data [3][19]. In the current application for example if the structure of the underlying system
changes the set of centres currently in use may no longer be representative and a re-Clustering
procedure may need to be initiated. On-line performance monitoring which can detect such effects will
often be crucial and is particularly important for systems whose dynamics may change during the
course of estimation.

7.1.  Off-Line Formulations of Model Validity Tests

It has recently been suggested [5] that an estimated multi-input, multi-output model can be considered
as an acceptable representation of the data set if the following correlation based validation tests are
satisfied:-

Y k(o) | ” o
> [T 2(::)’ w
and
3 B0 . . o
NN v(k)! w
where
n e2(k)—— g2
a(k)a Y i Z o -, 68)
f=l\/-;,—2 |gw-£3 > g0]
B(k)gi ul (k)__z u'(k) (69)
DS
and
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On-line versions of these tests can be used in the present application to monitor the performance of the
network training.

(70)

72.  Recursive Validation Tests for System Structure Monitoring

The above computations of Equations (66)-(70) require that all the data from k=1 to k=N is
available in batch form. However Equation (66) and (67) can be re-formulated to provide a recursive or
on-line form which is suitable for the prescnt application by defining

= npy (k= k=)= W] | [Y -y )]
py(k)=np;(k 1)+(1—Tl) Z 7y | GTr(k) with p;(0)=0  (71)

and
o (B (k- (k (k)= p.(k
pZ(k)="p2(k_l)+(1"n)[ mai+1zﬁ( ;:(kglﬂ( : 'Y(;T,(tg( X with p2(0)=0 (72)
where
o’(k )éz:j=1 e5 (k) (73)
By " i) (74)
vOAY e ()
o (k)= nug (k=1 +(1- n)a’(k) with pe(0)=0 (76)
b (k) = Tt (k = 1)+ (1= )P’ (k) with 1 (0)= 0 @)
By (k) =Ty (k= 1)+ (1=)y'(k) with p..(0) =0 (78)
O (k) =y 02 (k = 1)+ (=)’ (k)= e () with 6(0)= (79)
o) =0 (k- + (=B () - g ] with o35(0) =& (80)
cf(k)=Jncﬁu(k—l)+(l-n)[v’(k)-uy(k)]2 with 6,/(0) = &’ (81)

where & is an arbitrarily small positive number and 7 is a scalar constant forgetting factor which
controls the level of compromise between the effect of slow detection when 7 is large and the
possibility of giving a false alarm when 7 is small. Such technique has also been used successfully in

the application of on-line performance monitoring for the adaptive noise cancellation problem [4]. Any
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abrupt changes observed in sequence(s) {p;(k)} and/or {p,(k)} can be used as an indication that a
structural change may have occurred in the system or some other aspect of training is incorrect. Typical
values for Tmax, M and 8’ can be taken as Tp,, =10, M=0.995 ‘and & =10"*, respectively. It is
worth noting that, unlike the case of off-line validity tests where the level of significance can easily be
specified using 95% confidence bands such threshold values cannot be used with the on-line tests
because sudden changes in signal levels may incorrectly trigger a false alarm before any transitory
effects vanish. Nevertheless, the on-line formulation does provide a simple and convenient means of
monitoring [3] and acts as a warning device to detect potential problems that may arise during the
estimation process while keeping the computational cost to a minimum.

8. Applications to Pattern Recognition

One of the potential applications of neural networks is pattem recognition where input patterns are to
be divided into a finite number of classes. Such problems frequently arise in many disciplines such as
biomedical data analysis, seismology, image pattern recognition, digital communication systems,
electric power station fault detection and many others. The common scenario is that given a set of data
obtained from sampled measurements, a mapping rule is required which will allocate a given data
pattern to one of the several categories with minimal probability of mis-classification.

In the context of pattern recognition, the role of a neural network can be viewed as a rule extraction
device which generalises a set of unknown pattern-to-category mapping rules through network learning.
Since the problem is usually defined with a finite number of categories this implies the mapping rules
are likely to be non-linear. A benchmark problem in pattern recognition is the exclusive OR example
where linear inseparability [16] is encountered so that good classification rules can only be generated
by systems that éxhibit non-linearity.

Consider the exclusive OR example defined by the following truth table illustrated in Table 1.
From this table it can be seen that the two categories mapped from the four possible input patterns lie in
two non-connected regions in two-dimensional Euclidean space. It is therefore not possible to find a
hyperplane which completely separates the regions in the two categories as shown in Figure 3. An
optimal decision requires a non-linear boundary which can easily be generated by a well trained RBF
network.

L}
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input 1 input 2 category
-1 -1 2
-1 1 1 f
1 -1 1
1 1 2
Table 1 XOR truth table

In an experiment to illustrate the new on-line training algorithm described above a sequence of 1000
pairs of input pattem-to-category training data were used based upon noisy inputs which were
independently corrupted by additive white Gaussian noise 5'{(0,10'2). During the training process, 30
RBF centres were initially randomly assigned in the region of [-1,1]x[~1,1]. With the initial clustering
gain x(0)=0.9, forgetting factor A=0.97, R(0)=10">I and forward regressor selection cut-off
£=0.01, 200 iterations were run in phase | training prior to re-starting the algorithm in phase 2
training with all 30 centres re-initialised randomly in the region [-1.276,1.204] x[~1.276,1.204]. In
phase 2 training, 200 iterations were used with the last 100 network input vectors stored for centre
selections in phase 3 training. Thus, at any time step in phase 3 training, 103 candidates terms, which
come from the 100 network input vectors in phase 2 together with the linear and dc links, were
available. After running 600 iterations in phase 3 training with the first 100 iterations discarded to
avoid start-up and transient effects a signal-to-noise ratio of 14.77 dB was achieved with a network
complexity of just 6 selected terms on average. By using 7 selected terms from the final iteration
decision region generated by the trained RBF network can be constructed as shown in Figure 4. This
decision region, which is very similar to the ideal region depicted in Figure 3, demonstrates that the
trained RBF network provides a good approximation to the classification rules given in truth Table 1
for the exclusive OR problem. The final network parameters are given in Table 2.

final centres
first component  second componen# final weights
-1.167 0.960 1.167
-0.983 0.959 2429
1.161 -0.974 3.139
-1.090 1.068 -1.537
-1.005 0.831 -1.702
0.931 0.969 -4.168
-1.110 -1.002 -3.169

Table 2 Final network parameters after training for the XOR example
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9. Application to Single-Input-Single-Output Time Domain Dynamic Data

Modelling f
Application of the new algorithm to non-linear system modelling will be illustrated by identifying a
RBF model of a non-linear liquid level system.

The liquid level system consists of a water pump, which is driven by a dc voltage taken as the
system input variable, feeding water into a conical flask which in tumn feeds a square tank. By taking
the water level in the conical flask as the system output variable a system with a non-linear input-output
relationship is established. A detailed description of this process is givenin [1].

In the first phase of the identification process, the following network input node assignment was
used

x(k)=[u(k=1) - u(k=5) yk=1) - yk-3)]". 82)
With initial settings of the clustering gain k(0)=0.9, forgetting factor A = 0.97, R(0)=10"31, 200
time steps were used to estimate the domain of the network input space. The algorithm started with 100
RBF centres which were all randomly initialised in the range of [-1,1] for all the components. After
200 time steps innovation terms were augmented to the network input vector x(k) so that
x(k)=[u(k=1) - u(k=5) y(k-1) -~ y(k=3) e(k-1) e(k-2)]". (83)
Just prior to the starting time step 201 all 30 RBF centres were re-initialised so that all system input
components were distributed as [-0.742,0.898], all system output components were in [-2.168,0.894]
and all innovation components were in [-0.132,0.195]. A total of 300 time steps were used in phase 2
of training with the last 200 captured for centre selection in the subsequent phase. Starting from time
step 501, after a re-initialisation with R(500)=10"3I and A =0, 97, phase 3 training took another 500

time steps to achieve a signal-to-noise ratio of 25.11 dB with a network complexity of just 14 selected
terms out of a total number of 211 candidate terms on average using the selection cut-off £ =0.01. The
identification process pictured in Figure 5 shows that the network predicted output is highly consistent
with the system output and confirms the performance of the new algorithm. Additional information on
System structure is augmented by the on-line correlation sequences {p;(k)} and {p,(k)}. These
correlation sequences show that the underlying network was performing well in capturing the system
dynamics except on a few occasions where the syst;m experienced substantial variations in si ignal level
which required significant re-adjustments in network structure in order to match the changing
dynamics.
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10. Application to Multi-Input-Multi-Output Time Domain Dynamic Data
Modelling

To further explore the versatility of the modelling capability of the new algorithm, the identification of a

2-input, 2-output non-linear system will be studied.

Consider the 2-input, 2-output simulated system govemed by the following system equations.
yl(k)=0.5y1(k-1)+u1(k—2)+O.Ih(k—l)u,(k-l)-l-O.Sel(k—1)+0.2)1(&—2)e1(k—2)+e1(k) 84)
yz(k)=0.9y2(k-2)+u2(k—1)+0.2yz(k—l)u2(k-2)+0.5e2(k-1)+0.1y2(k-—l)ez(k-2)+e;(k)
where {u;(k)} is a Gaussian sequence with zero mean and unit variance, {3(k)} is uniformly

distributed in the range [—«ﬁnﬁ] and {e;(k)}, {ez(k)} are independently identically distributed
Gaussian sequences with zero means and variance 0.04. Notice that there are non-linear noise terms.
The identification process was executed in three training phases. In the first two phases, 200 and
300 time steps were iterated respectively based on a 2-input, 2-output network with 100 RBF centres.
In the first phase, the network input vector was assigned to be
x(k)=[m(k=1) w(k=2) wk-1) wk-2) wk-1) Bk-2) yk-1) yEk-2). @85
Prior to starting the algorithm all components of the 100 centres were randomly initialised in the range
of [-1,1]. Using an initial clustering gain x{0)=0.9, forgetting factor A =0.95 and centre selection
cut-off £=0.01 an estimated range for the system inputs of [-2.761,2. 400], system outputs of
[-1.673,1.730] and innovation terms of [-5.130,2.607] were obtained after 200 iterations of phase 1

training. These estimated ranges were then used to re-initialise all the 100 RBF centres in phase 2 with

a re-defined network input vector x(k) as
X(k)=[uy (k=1),04(k=2),us(k - Doy (k=2),y(k=1),y,(k-2),

y2(k=1),y5(k=1).e;(k=1),&,(k = 2),e5 (k = 1)]T
which includes innovation terms.

(86)

Performing 300 iterations in phase 2 and ignoring the first 100 iterations gave 200 stored network input
vectors from iteration 401 to iteration 600 which were used as candidate centres in phase 3 training. As
a result of the phase 3 training as depicted in Figure 6, from iteration 601 to iteration 1000, produced
signal-to-noise ratio of 24.52 dB and 17.53 dB for sub-system output 1 and sub-system output 2 with a
network complexity of 30 and 17 centres on average, respectively. Again, these results demonstrate the
effectiveness of the leamning algorithm in the selection of RBF centres. As in the previous example, this
argument is well supported by the traces of on-line correlation sequences {p;(k)} and {p,(k)}. The
occasional discrepancies at approximately time step 200 and time step 750 correctly indicate that
substantial adjustments in network structure were required in response to the noticeable variations in
signal levels at the system output.
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11. Conclusions

A new on-line learning algorithm has been developed based on the RBF network architecture which
encompasses centre selection and weight parameter estimation in a urlified framework. By employing a
clustering method to obtain an initial representative set of candidate RBF centres the centre selection
procedure prior to weight updating provides a systematic mechanism for constructing parsimonious
radial basis function networks. The centre selection procedure offers advantages over the conventional
static structure approach by reducing the amount of computation involved in the subsequent weight
estimation, by removing insignificant RBF centres and associated links and by offering the potential for
adaptive tracking of time varying effects. A new recursive structural monitoring scheme based on a re-
formulation of correlation based model validity tests for batch mode identification has also been
introduced to complement the network leaming process and to detect changes in system structure.
Examples have been included to demonstrate the effectiveness of the new algorithms in reducing
network complexity for applications in both pattemn recognition type problems and temporal system
modelling.

Acknowledgements
One of the authors (SAB) gratefully acknowledges that part of this work was supported by EPSRC,

References

(1] Billings, S. A. and W. S. F. Voon (1986). A prediction-error and stepwise-regression estimation
algorithm for non-linear systems, International Journal of Control, 44(3), 803-822,

(2] Billings, S. A. and S. Chen (1989). Extended model set, global data and threshold model identification
of sevcrely non-linear systems. International Journal of Control, 50(5), 1897-1923.

[3]  Billings, S. A. and F. A. Alturki (1992). Performance monitoring in non-linear adaptive noise
cancellation. Journal of Sound and Vibration, 157(1), 161-175.

[4] Billings, S. A, and C. F. Fung (1993). Recurrent radial basis function networks for adaptive noise
cancellation. Neural Networks (in press).

[5] Billings, S. A. and Q. M. Zhu (1994). Model validation tests for multivariable non-linear models
including neural networks (submitted for publication).

[6] Broomhead, D. S. and D. Love (1988). Muliiv;u*iable functional interpolation and adaptive networks,
Complex Systems, 2, 321-355.

[71  Chen, S. and S. A. Billings (1988). Representation of non-linear systems: the NARMAX model.
International Journal of Control, 49(3), 303-344,




Fung. Billings and Luo

(8]

19

(10]

(11]

[12]

[13]

[14]

(15]

(16]

[17]

[18]

(19]

(20]

[21]

[22]

(23]

Chen, S., S. A. Billings, C. F. N. Cowan and P. M. Grant (1990). Non-linear system identification using
radial basis functions. International Journal of Systems Science, 21(12), 2513-2539,

Chen, 8., S. A. Billings and P. M Grant (1992). Recursive hybAid algorithm for non-linear system
identification using radial basis function networks. International Journal of Control, §5(5), 1051-1070.
Chen, S., Billings, S. A. and W. Luo (1989). Orthogonal least squares methods and their application to
non-linear system identification. /nternational Journal of Control, 50(5), 1873-1896.

Duda, R. O. and P. E. Hart (1973). Partern classification and scene analysis. John Wiley and Sons, New
York.

Gentleman, W. M. (1973). Least squares computation by Givens transformation without square roots.
Journal of Institute of Mathematics and Its Applications, 12, 329-336.

Gentleman, W. M and H. T. Kung (1981). Matrix triangularization by systolic arrays. Proceedings of
SPIE, (Real-Time Signal Processing IV), 298-303.

Golub, G. H. and C. V. Loan (1989). Matrix computations, 2nd edition. Johns Hopkins University Press,
Baltimore.

Haykin, 5. S. (1994). Neural networks, a comprehensive foundation. Macmillan College Publishing
Company.

Hertz, J., A. Krogh, and R. G. Palmer (1991). Introduction to the theory of meural computation.
Addison-Wesley Publishing Company.

Ling, F. (1991). Givens rotation based least squares lattice and related algorithms. JEEE Transactions
on Signal Processing, 39(7), 1541-1551.

Ling, F., D. Manolakis and J. G. Proakis (1986). A recursive modified Gram-Schmidt algorithm for
least-squares estimation. JEEE Transactions on Acoustics, Speech, and Signal Processing, 34(4), 829-
836.

Luo, W. and S. A. Billings and K. M. Tsang. (1994). On-line structure detection and parameter
estimation with exponential windowing for nonlinear systems (submitted for publication).

MacQueen, J. B., (1967). Some methods for classification and analysis of multivariate observations.
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, Berkeley,
Calififornia, University of California Press, 281-297.

Mathews, V. J. (1991). Adaptive polynomial filters. /EEE Signal Processing Magazine, 8(3), 10-26.
Moody, J. E. and C. J. Darken (1989). Fast le:n-ning in networks of locally tunned processing units,
Nueral Computation 1, 281-294.

Pao, Y. H. (1989). Adaptive pattern recognition and neural networks. Addison-Wesley Publishing

Company, Inc.




On-Line Supervised Adaptive Training Using Radial Basis Function Networks

[24]

[25]

(26]

Poggio, T and F. Girosi (1990). Network for approximation and learning. Proceedings IEEE, 78(9),
1481-1496. ‘

Powell, M. J. D. (1985). Radial basis functions for multivariable interpolation: A review. In Mason, J.
C. and Cox, M. G. (Eds.), Algorithm for Approximation, Oxford University Press, Oxford, UK, 143-167.
Powell, M. J. D. (1988). Radial basis function approximations to polynomials. Proceedings 12th
Biennial Numerical Analysis Conference, Dundee, UK, 223-241,

27




Fung. Bill ! Luo

Appendix

k

f()
f()
m

n
u(k)
u; (k)
y(k)
y;(k)
(k)
f;;(k )
Y (k)
e(k)
e;(k)
e(k)
&;(k)

List of Key Symbols
Time step index.
Multi-input, multi-output non-linear system representation.
Function approximation of f(-).
Dimension of system input.
Dimension of system output.
System input vector at time step £.
The i-th component of u(k).
System output vector at time step k.
The i-th component of y(k).
Predicted system output vector at time step &.
The predicted output vector over data record of length & for the i-th sub-system.
Predicted system output matrix over data record of length k.
Noise vector at time step 4.
The i-th component of e(k).
Innovation vector at time step k.
The i-th component of &(k).
Maximum lag in u(k) as regressed inputs.
Maximum lag in y(k) as regressed inputs.
Maximum lag in e(k) as regressed inputs (in NARMAX representation).
Maximum lag in €(k) as regressed inputs.
Vector of explanatory variables in non-linear system (NARMAX) representation.
Network input vector at time step k.
The i-th component of x(k).
RBF non-linearity.
The j-th centre (vector) value at time step k.
Width parameter associated with the j-th centre at time step &.
Euclidean distance between the network input vector and the i-th centre at time step k.
Clustering gain at time step .
Input vector to output layer at time stép k.
The i-th component of @(k).
Vector of selected regressors for the i-th network output at time step k.
Data matrix over a record length of £.
The parameter vector in the auxiliary system.
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ERRY (k)
NRSS(k)

NRSS; (k)

A(k)
Q(k)
S(k)
R;(k)
R (k)
ﬁ‘(j)(k)

v;(k)

Vi (k)
)

) (k)

The j-th component of g;(k).

The estimate of g;(k).

The j-th component of g;(k). ¢

The data matrix in the auxiliary system.

The i-th column of W(k).

Dimension of x(k).

Number of RBF centres.

Number of components in @(k).

Number of selected components in @(k) at time step .

Length of training sequence in phase 1 training.

Length of training sequence in phase 2 training.

Length of training sequence in phase 3 training,

Length of transient sequence in each of the three phases during training.
Error-reduction-ratio for the i-th sub-system contributed by the j-th selected centre at time
step k. . ,

Normalised residual sum-of-squares for the i-th sub-system after the j-th centre selection at
time step k.

Normalised residual sum-of-squares for the i-th sub-system on termination of the selection at
time step £.

Pre-specified cut-off value for the centre (regressor) selection algorithm.

Forgetting factor used in RLS algorithm.

diag (M1 -2 .. )

Skinny factor of A2(k)®(k).

Skinny factor of A%(k)tb(k).

[QT(k)Q(k)]%S(k) (an upper triangular matrix)

Transformed version of R; (k) after j selection steps (non-upper triangular).

Upper triangularized version of R (k).

Small positive number in initialising R; (k).

[Q 0w QT ®yi®).

The r-th component of v;(k).

Rotated version of v;(k) after j selection steps.

Vector containing all the v2(k) values with the first J entries being the largest in descending

order.
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(k)
IT; (k)

0;(k)
e:}'(k)
(k)

07(k)
(k)
a(k)

B(k)

y(k)

p1(k)
p2(k)
a’(k)

B’(k)
Y'(k)
u'a’(k)
mg (k)
My (k)
Oa'(k)

op (k)
07'(")

max

Permutation matrix used in the j-th selection for the i-th network output at time step k.

Permutation matrix formed upon completion of the selection process for the i-th network
output at time step k. ¢

The weight vector associated with the j-th output in a RBF network.
The i-th component in 6 ;(k).

Estimated eight vector whose components corresponding to the selected centres for the J-th

network output at time step .
Properly aligned version of Ej(k).

Connection weight matrix at time step £.

z”: s?(k)—%z:;l e5(k)
= | 1OV 1N ¢
=1 szkzl[ef(k)--ﬁzhl s}(l)]

3ROy, ge
3 w4 3]

N
" 2 (k)e j(k)—%zkﬂzj(k)e ()

_2 N N
J%Z,ml[zﬂ")af“‘)-%z,:] zj(z)ej(:)]z

J=1
On-line model validity test 1.
On-line model validity test 2.

=z:=ie? (k)
-2, 4w
=2:=1 2;(k)e; (k)

Moving average of o/(k) at time step k.

Moving average of B’(k) at time step £.

Moving average of y’(k) at time step }c '

Moving standard deviation of a’(k) at time step £.
Moving standard deviation of §’(k) at time step &.
Moving standard deviation of y'(k) at time step k.

Maximum lag used in on-line model validity tests.
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M Forgetting factor used in on-line model validity tests,
8 Small positive number.

8" Small positive number. 4

L Scalar constant.
I Identity matrix.

Vector whose i-th component is one and zero elsewhere.

Set of real numbers,

R,  Set of positive real numbers.

Set of integers.

2-nom.

[ (iy)-th element of the matrix in the brackets.

[- ]i=.i|=fz Row vector formed by the elements from column J; to column J2 (IS <)) inthe i-th

~ =

= N

— =
<.

row of the matrix in the brackets.
[ l';:izu" Column vector formed by the elements from row i to row iy (1<i <) in the j-th column

of the matrix in the brackets.
[- 1.1,1.2:1.]:]-2 Sub-matrix formed by the elements from row ip torow iy (1<i <) and from column i
to column j, (1< i < j,) of the matrix in the brackets.
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Figure 1 RBF network without linear and dc links.
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Figure 3 Optimal decision region for the XOR example
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Optimal decision region for the XOR example
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Figure 4 Decision region generated by the tained RBF network for the XOR example

Decision region generated by the trained RBF network for the XOR example

y H . x:category 1
. 0:category 2
1.5 I .......... P -
1 e A S -
05 B T T -
(aY]
a 0_ ............ AR e e e A - -
= :
) | PO —— ..........
A 5 55565 Eignieinns we 0 ......... .......
= B cosmnsagoravis mndies o va .........
_2 i i | i
-2 -1.5 -1 -05 , O 0.5 1 1.5 2




TS R e e

Figure 5 Tracking of the liquid level system example
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Figure 6 Tracking of the multi-input, multi-output system example
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