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Abstract

This paper presents an investigation into the real-time performance of homogeneous and
heterogeneous parallel architectures in signal processing and control applications. Several
algorithms of regular and irregular nature are considered. These are implemented on a
number of uni-processor and multi-processor parallel architectures. Hardware and
software resources, capabilities of the architectures and characteristics of the algorithms
are considered for suitable matching between the algorithms and the architectures. The
partitioning and mapping of the algorithms on the architectures and inter-processor
communication techniques are invéstigated. Finally, a comparison of the results of
implementations is made to establish 'merits of design and development of parallel

architectures for real-time signal processing and control applications.

= ae, .
Key words: Homogeneous architecture; Heterogeneous architecture; Digital signal

processing; Parallel processing; Real-time signal processing and control..
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1 Introduction

Parallel processing (PP) is currently a subject of widespread interest among scientists. The
concept of PP on different problems or different parts of the same problem is not new.
Discussions of parallel computing machines are found in the literature at least as far back
as the 1920s (Denning, 1986). It is noted that, throughout the years, there has been a
continuing research effort to understand parallel computation (Hocney and Jesshope,
1981). Such effort has intensified dramatically in the last few years, with hundreds of
projects around the world involving scores of different parallel architectures for all kinds
of applications, including signal processing, control, artificial intelligence, pattern
recognition, computer vision, computer aided design and discrete event simulation.

The performance demands of modemn signal processing and control require the
employment of complex algorithms with demanding operations. This, in turn, leads to
shorter sampling times. Many demanding complex signal processing and control
algorithms cannot be satisfactorily realised with conventional uni-processor and
multiprocessor systems. Alternative strategies where multi-processor based systems are
employed, utilising high performance reduced instruction set computer (RISC) processors,
digital signal processing (DSP) devices, transputers and PP techniques, could provide
suitable methodologies (Ching and Wu, 1989; Jones, 1989; Tokhi et. al, 1992).

In a conventional paralle] system all the processing elements (PEs) are identical. This
architecture can be described as homogeneous. However, many signal processing and
control algorithms are heterogeneous, as they usually have varying computational
requirements. The implementation of an algorithm on a homogeneous architecture is
constraining, and can lead to inefficiencies because of the mismatch between the hardware
requirements and the hardware resources. In contrast, a heterogeneous architecture having
PEs of different type and features can provide a closer match with the varying hardware
requirements and, thus, lead to performance enhancement. However, the relationship
between algorithms and heterogeneous architectures for real-time control systems is not
clearly understood (Megson, 1992). The mapping of algorithms onto heterogeneous

architectures is, therefore, especially challenging. To exploit the heterogeneous nature of
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the hardware it is required to identify the heterogeneity of the algorithm so that a close
match be forged with the hardware resources available (Baxter et. al, 1994).

One of the challenging aspects of PP, as compared to sequential processing, is how to
distribute the computational load across the PEs. This requires a consideration of several
issues, including the choice of algorithm, the choice of processing topology, the relative
computation and communication capabilities of the processor array and partitioning the
algorithm into tasks and the schedulingrof these tasks (Crummey et. al, 1994). It is, thus,
essential to note that in implementing an algorithm on a parallel computing platform, a
consideration of the issues related to the interconnection schemes, the scheduling and
mapping of the algorithm on the architecture, and the mechanism for detecting parallelism
and partitioning the algorithm into modules or sub-tasks, will lead to a computational
speedup (Khokhar et. al, 1993).

Each PE in a parallel architecture possesses its own special features suitable for
specific applications. This leads to the inherent difficulties in exploring comparative
performance evaluation of different architectures. To explore the real-time performance in
particular applications it is essential to implement the algorithm of that application into the
architectures. This paper presents an investigation into the performance evaluation of
parallel architectures incorporating high performance RISC, DSP and transputer
processors in real-time applications. A comparative study of the hardware and software
resources and their real-time computational performances in implementing several complex
and demanding signal processing and control algorithms is carried out. The algorithms
considered include, a fast Fourier transform (FFT) algorithm, a second order correlation
algorithm, two adaptive filtering algorithms, a simulation algorithm of a flexible
manipulator system and simulation, identification and active vibration control (AVC)
algorithms for a flexible beam system. The algorithms considered are described and
classified according to their degree of regularity.

The algorithms are implemented on a number of uni-processor and multi-processor,
homogeneous and heterogeneous, parallel computing platforms incorporating the Intel

80860 (i860) RISC processor the Texas Instruments TMS320C40 (C40) DSP device and
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the T805 (T8) transputer. The 3L Parallel C and ANSI C programming languages are used
to develop the coding of the algorithms. The performance in each case is assessed and
comparison of the results of these implementations, on the basis of real-time inter-

processor communication and computation performance is made and discussed.

2 Hardware

Three PEs namely, an i860, a C40 and a T8 are utilised to develop four different
heterogeneous and homogeneous parallel architectures. In general, the nature of any
parallel architecture reflects the nature of its PEs and the algorithms. Therefore, to
compare the performance of the parallel architectures, it is essential to explore the facility
and features of the PEs and the parallel architecture itself. The parallel architectures with

their PEs are described below.

2.1 Processing elements

The 1860 is a high-performance 64-bit vector processor with 40 MHz clock speed, a peak
integer performance of 40 million instructions per second (MIPS), 8 kBytes data cache and
4 kBytes instruction cache and is capable of 80 million floating-point operations per
second (MFLOPS). It is the Intel's first superscalar RISC processor possessing separate
integer, floating-point, graphics, adder, multiplier and memory management units. The
1860 executes 82 instructions, including 42 RISC integer, 24 floating-point, 10 graphics,
and 6 assembler pseudo operations in one clock cycle. All external or internal address
buses are 32-bit wide and the external data path or internal data bus is 64-bits wide.
However, the internal RISC integer ALU is only 32 bits wide. The instruction cache
transfers 64 bits per clock cycle, equivalent to 320 Mbytes/sec at 40 MHz. In contrast, the
data cache transfers 128 bits per clock cycle. There are two floating-point units, namely,
the multiplier and the adder units, which can be used separately or simultaneously under
the co-ordination of the floating point control unit. Special dual-operation floating-point

instructions such as add-and-multiply and subtract-and-multiply use both the multiplier and
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adder units in parallel. Furthermore, both the integer and the floating-point control units
can execute concurrently (Hwang, 1993).

The C40 is a high performance Texas Instruments 32-bit DSP processor with 40 MHz
clock speed, 8 kBytes on-chip RAM, 512 bytes on-chip instructions cache and is capable
of 275 million operation per second (MOPS) and 40 MFLOPS. This DSP processor
possesses six parallel high speed communication links for inter-processor communication
with 20 Mbytes/sec asynchronous transfer rate at each port and eleven operations/cycle
throughput. In contrast, it possesses two identical external data and address buses
supporting shared memory systems and high data rate, single-cycle transfers. It has
separate internal program, data, and DMA coprocessor buses for support of massive
concurrent I/O of program and data throughput, thereby maximising sustained CPU
performance (Texas Instruments, 1991, Brown, 1991).

The T8 is a general purpose medium-grained 32-bit Inmos parallel PE with 25 MHz
clock speed, yielding up to 20 MIPS performance, 4 kBytes on-chip RAM and is capable
of 4.3 MFLOPS. The T8 is a RISC processor possessing an on-board 64-bit floating-point
unit and four serial communication links. The links operate at a speed of 20 Mbits/sec
achieving data rates of up to 1.7 MBytes/sec unidirectionally or 2.3 MBytes/sec bi-
directionally. Most importantly, the links allow a single transputer to be used as a node
among any number of similar devices to form a powerful PP system. The transputer thus
provides an important bridge between single chip, real-time control and general purpose
real-time computer control systems, and, in effect, removes the current distinction between

the two (Irwin and Fleming, 1992; Transtech Parallel Systems Limited, 1991).

2.2 Homogeneous architectures

The homogeneous architectures considered include a network of C40s and a network of
T8s. The homogeneous architecture of C40s comprises of a network of C40s resident on a
Transtech TDM410 motherboard and a TMB08 motherboard incorporating a T8 as a root

processor. A SUN SPARC station is used as host for downloading programs into the
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network. The T8 possesses 1 MByte local memory and communicates with the TDM410
(C40s network) via link adapter using serial to parallel communication links. The C40s, on
the other hand, communicate with each other via parallel communication links. Each C40
processor possesses 3 MBytes DRAM and 1 MByte SRAM. Figure 1 shows the topology
of the network. The T8 root processor is used to provide an interface between the host
and the first C40. The topology was chosen on the basis of the algorithm structure, which
is simple to realise and well reflected as a linear farm.

The homogeneous architecture of T8s comprises of a network of T8s resident on a
Transtech TMBO8 motherboard. A SUN SPARC station is used as a host for downloading
programs into the network. The T8s are all identical 32-bit with 25 MHz clock speed as
mentioned earlier. The root T8 incorporates 2 MBytes local memory with the rest of the
T8s each having 1 MByte. The serial links of the processors are used for communication
with one another. Figure 2 shows the topology of the transputer network. The topology
shown is utilised as it is simple to realise. Moreover, it reflects the structure of the

algorithms considered in this study.

Figure 1: Operational configuration of the homogeneous architecture
incorporating a network of C40s.
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Figure 2: Operational configuration of the homogeneous architecture
incorporating a network of T8s .

2.3 Heterogeneous architectures

Two heterogeneous parallel architectures, namely, an integrated i860 and T8 system and
an integrated C40 and a T8 system, are considered in this study. The operational
configuration of the i860+T8 architecture is shown in Figure 3. This comprises of an IBM
compatible PC, A/D and D/A conversion facility, a TMB16 mother board and a TTM110
board incorporating a T8 and an i860. The TTM110 board also possesses 16 MBytes of
shared memory accessible by both the i860 and the T8 and 4 MBytes of private memory
accessible only by the T8. The i860 and the T8 processors are communicating with each
other via this 16 MBytes shared memory. The interface between the i860 and the shared
memory is highly optimised allowing data transmission rates of up to 160 MBytes/second.
The T8 is used to boot the i860 by holding the i860 in reset whilst loading the memory
with bootstrap code. Upon resetting the TRAM, the transputer is reset in the normal
manner but the i860 is held in reset by the hardware, with HOLD asserted, releasing the
bus to the transputer. The i860 code is then written to the boot address in the system
RAM by the T8 before the i860 is released from reset by the transputer. The PC is used as
a host for downloading the program into the T8 and the 1860 under control of the TMB16

motherboard.
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/= N
N4

Figure 3: Operational configuration of the heterogeneous architecture
incorporating an 1860 and a TS8.

The operational configuration of the C40+T8 architecture is shown in Figure 4. The
T8 in the network is used both as the root processor providing interface with the host and
as an active PE. The C40 and the T8 are communicating with each other via serial to
parallel or parallel to serial links. A SUN SPARC station is used as a host for downloading

programs into the system.

Figure 4: Operational configuration of the heterogeneous architecture
incorporating a C40 and a T8.

7/42




Tokhi, MO and Hossain, MA

The development of efficient programs in high-level languages requires the necessary

3 Software

software support. In this context, compilers have a significant impact on the performance
of the system. This means that some high-level languages have advantages in certain
computational domains and some have advantages in other domains. The compiler itself is
critical to the performance of the system as the mechanism and efficiency of taking a high-
level description of the application and transforming it into a hardware dependent
implementation differs from compiler tb compiler. Identifying the foremost compiler for
the application in hand is, therefore, especially challenging. The algorithms considered
were coded in high-level languages consisting of ANSI C and 3L Parallel C as appropriate
for the hardware used. Both programming languages support PP. Table 1 shows the

compilers with the corresponding computing platforms used.

Table 1: Compilers used with the computing platforms.

1860 C40s T8s 1860+T8 C40+T8

Portland Group | 3L Parallel C, INMOS Portland Group 3L Parallel C,
ANSIC V. 1.0.1 ANSIC ANSIC V.2.1&V.1.0.1

4  Algorithms

The algorithms considered in this investigation consist of FFT, second-order correlation,
least mean square (LMS) and recursive least squares (RLS) adaptive filters, finite
difference (FD) simulation, identification and AVC of a flexible beam structure and FD

simulation of a flexible manipulator system. These are briefly described below.

4.1 Fast Fourier transform

Fast Fourier transform comprises a class of algorithms allowing efficient computation of
discrete Fourier transform (DFT) of a sequence. Fast Fourier transform is commonly

utilised in many applications, including spectral analysis, system identification and

frequency response estimation. A real periodic discrete-time signal x(n) of period N can
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be expressed as a weighted sum of complex exponential sequences. Since sinusoidal

sequences are unique only for discrete frequencies from 0 to 2r , the expansion contains

only a finite number of complex exponentials. The complex DFT series X(k) of a periodic

discrete-time signal can be written as

N=1
X(k)=Y x(n)Wy (1)
n=0
where, W, is defined as
WN - e—jlm’N (2)

Using the divide-and-conquer approach, equation (3) can be simplified as

L-1 M-1

X(p.q) = Z{W,f,{zx(t,m)wm}}wgp (3)
I=0 m=0

Equation (3) involves the computation of DFT of sequences of lengths M and L

respectively. In this manner, the total computation will be half of that of a direct DFT

computation (Ifeachor and Jervis, 1993; Proakis and Manolakis, 1988).

4.2 Cross-correlation

Correlation is commonly utilised in many signal processing applications, including spectral

analysis, model structure validation and adaptive filtering. Cross-correlation is a measure

of the similarity between two waveforms. Consider two signal sequences x(n) and y(n)

each having finite energy. The cross-correlation of x(n) and y(n) is a sequence 150D,

defined as

ry()= Y x(m)y(n-1); 1=0,%l,.. 4)
or, equivalently, as

ro(D=Y x(n+Dy(n); 1=0,%1,... (5)
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The index [ is the (time) shift (or lag) parameter and the subscripts xy on the cross-
correlation sequence r,, (/) indicate that the sequences are being correlated. As shifting
x(n) to the left by [ units relative to y(n) is equivalent to shifting y(n) to the right by /

units relative to x(n), the computations (4) and (5) yield identical cross-correlation

sequences (Proakis and Manolakis, 1988).

4.3 Simulation and active vibration control of a flexible beam structure

Structural vibration in flexible systems is a common problem in many applications. These
lead to performance deterioration and eventual physical damage of the structure. Active
vibration control utilises the superposition of waves by generating cancelling signals to
destructively interfere with undesirable vibrations and, thus, reduce the level of these
vibrations. In contrast to passive methods which are bulky and un-economical at low
frequencies, AVC is found to be efficient and effective for low-frequency vibration
suppression. In this paper the implementation of an AVC mechanism within a simulated

cantilever beam system is considered.

Consider a cantilever beam of length L, with a force U(x,t) applied at a distance x

from the fixed (clamped) end of the beam at time ¢ resulting a deflection y(x,) of the

beam from its stationary (unmoved) position at the point where the force has been applied.
The motion of the beam in transverse vibration is governed by the well known fourth-order

partial differential equation (PDE) (Tokhi and Hossain, 1994)

d'y(x,t) *y(x,t) 1
2 ) 2 —
¥ ox* ¥ o  m Vimd o

; . EI .
where |l is a beam constant given by p* = ;)Z with p, A, I and E representing the mass

density, cross-sectional area, moment of inertia of the beam and the Young modulus
respectively, and m is the mass of the beam. The corresponding boundary conditions at the

fixed and free ends of the beam are given by
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y0.0=0 ad 20N _g

ox o
2 3
d g(ﬁ,t) =0 and ad )E;(n’;,t) -0
X x

Note that the model, thus, utilised incorporates no damping. To obtain a solution to the
0*y(x,1) ay(x,1) .
= and —~ in
ox* or?

PDE, describing the beam motion, the partial derivative terms

equation (6) and the boundary conditions in equation (7) are approximated using first
order central FD approximations. This involves a discretisation of the beam into a finite
number of equal-length sections (segments), each of length Ax, and considering the beam

motion (deflection) for the end of each section at equally-spaced time steps of duration Ar.

In this manner, let y(x,t) be denoted by y, ; representing the beam deflection at point i at

time step j. Let y(x +vAx,t+wAr) be denoted by y,, .., where v and w are non-

negative integer numbers.

2 4
Using a first-order central FD method the partial derivatives —aa—f and -g—); can be
t x
approximated as
Bzy(x,t) - Yijn "2}’=‘,; + Y5
or’ (Ar)
) (8)
9 y(x,t) _ Y~ 4Yia,; T6Y,— 4Yicr; * Yieaj
ox* (Ax)*
2’y 0
Substituting for -8? and -a-—}; from equation (8) into equation (6) and simplifying
X
yields
_ 2 (Ar)?
Yijn = 2y:‘,j = Yiig<i -N {yi+2,j _4)’i+1,;‘ +6y,; "'4)’.’-1.,' +y.'-2,,'}+—m U(x,t) ©)

2
where, A2 =((—2%|.12. Similarly, descretising the boundary conditions in equation (7) and

manipulating yields

Yo,; = 0 and y,;=x,
(11)
Yna1,j = 2yn,j =X and  y,.,; = 2)’n+1,,-‘ - 2yn—l,j + Yooa,
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Equations (9) and (11) give the complete set of relations necessary for construction of the
simulation algorithm characterising the behaviour of the beam. Substituting the discretised
boundary conditions for the fixed and free ends from equations (11) into equation (9)

yields the beam deflection at the grid points in a matrix form as

1
Y, ==Y -NSY, +(Ar) U1~ (12)
where,
Y1 M.j Y1
Ya.in Ya, Y21
Y= : P V=" Ya= v |
yn.j+l yn,; yn,j—l

and Sisa matrix given (for n =19, say) as

a =4 1 0 0 O 0

-4 b 4 1 0 0 0

1 4 b 4 1 0 0

0O 1 4 b -4 1 0

5=
1 4 b -4 1
0 1 -4 ¢ =2
i 0 0 2 -4 4]

%, b=6—£2-, c=5-—% and d=2—%. Equation (12) is the required

relation for the simulation algorithm, characterising the behaviour of the cantilever beam

where, a=7-

system, which can be implemented on a digital computer easily. For the algorithm to be
stable it is required that the iterative scheme described in equation (12), for each grid
point, converges to a solution. It has been shown that a necessary and sufficient condition
for stability satisfying this convergence requirement is given by 0 < A’ <0.25 (Kourmoulis,
1990).

A schematic diagram of an AVC structure is shown in Figure 5. The unwanted

(primary) disturbance is detected by a detection sensor, processed by a controller to
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generate a cancelling (secondary/control) signal so that to achieve cancellation at the
observation point. The objective in Figure 5 is to achieve total (optimum) vibration
suppression at the observation point. Synthesising the controller on the basis of this
objective yields (Tokhi and Hossain, 1994)

Q]-]
C=|1-= 13
[ Qo] 9

where, O and ¢, represent the equivalent transfer functions of the system (with input at

the detector and output at the observer) when the secondary source is off and on
respectively. Equation (13) is the required controller design rule which can easily be
implemented on-line on a digital processor. This leads to a self-tuning AVC algorithm
comprising of the processes of identification and control. The process of identification
involves obtaining O, and @) using a suitable system identification algorithm. The process
of control, on the other hand, involves designing the controller according to equation (13)

and implementing this in real-time.

Secondary Uc
source

Detector
Observed
Signal

Primary
source

Figure 5: Schematic diagram of the AVC structure.

The identification algorithm is described here as the process of estimating parameters

of the required controller characteristics. In this manner, it consists of the processes of

estimating the system models O, and Q, and the controller design calculation. The RLS

algorithm is used here to estimate the system models O, and O, in the discrete-time
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domain in parametric form. This is based on the well known least squares method briefly

described below.

Let an unknown plant with input u(n) and output y(n) be described by a discrete

linear model of order m as

y(n) = bu(n)+bu(n)+...+bu(n-m)—ayn-1)-...—a_y(n—m)

or

y(n) =¥ (n)O(n) (14)

where, © is the model parameter vector and ¥, known as the observation matrix, is a
row vector of the measured input/output signals. In this manner, the RLS estimation

process at a time step k is described by

e(k) ="¥(k)O(k 1) - y(k)
O(k) = Ok -1) - P(k - )¥" (k)1 + ¥(K)P(k - 1)¥T (k)] () (15)
P@):P@-Q-P@-nwﬁwm+q%mpﬁ-nw%m]ﬁ%mpw—U

where, P(k) is the covariance matrix. Thus, the RLS estimation process is to implement

and execute the relations in equation (15) in the order given. The performance of the
estimator can be monitored by observing the parameter set at each iteration. Once
convergence has been achieved the routine can be stopped. The convergence is determined
by the magnitude of the modelling error €(k) or by the estimated set of parameters
reaching a steady level (Tokhi and Leitch, 1992).

The process of calculation of parameters of the controller uses a set of design rules

based on equation (13). Let the system models O, and Q, be described as

- b +bo17~ﬁ] +bmz_2 - by, '+'bnz-1 +b122_2
1+ a5z +apz? 1+a,z7" +a,7”

Oy (16)

Substituting for Q) and Q, from equation (16) into equation (13) and simplifying yields the

required controller transfer function as
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- beo +baz”! +buz + b2 +bey™

C 17

1+ aclz-l + aczz-z + ‘3::3'3—3 + 3042_4 @7
where,
bcn(bno = bm) = boos
b, (boo = bm) = by, + by, ac, (bno - bw) = by, + by, = bay, — by,
bc:(buo - bm) = by, + byay, + byay,, ac, (boo - bw) = by, + by, + byyayy, — byay, — byag, — by,
bca(boo = blO) = by,a,, + by,a,,, aca(boo = bm) = bya,, + by,a,, — by,a, — byya,,,
ba(boo - bw) = bya,,, ac4(boo - bm) = bya,; — by,ay,.

' (18)

This gives the set of design rules for calculation of the required controller parameters.

The control algorithm, as considered here, consists of the process of on-line
implementation of the controller to generate the control signal. This involves the
implementation of the controller, as designed through the identification algorithm above, in

discrete form using the equivalent difference equation formulation as

4

y(n) = bou(n-i)- iacjy(n -J) (19)

i=0

where, u(n) and y(n) in equation (19) correspond to the discrete input and output signals
of the controller. Note that in implementing equation (19) within the simulation
environment, the simulation algorithm becomes an integral part of the process. Thus, the
control algorithm consists of the combined implementation of equation (19) and the beam

simulation algorithm.

4.4 Simulation of a flexible manipulator system

A schematic representation of the single-link flexible manipulator under consideration is
shown in Figure 6. A control torque T is applied at the pinned end (hub) of the arm by an

actuator motor. 6 represents the hub angle, POQ is the original co-ordinate system while

P'OQ' is the co-ordinate system after an angular rotation 6. J, is the hub inertia, 7 , 18 the

inertia associated with a payload of mass M, and u is the elastic deflection of the arm at a
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distance x from the hub. The dynamic equation of the flexible manipulator, considered as

an Euler-Bernoulli beam equation, can be expressed as

3%y(x,t) 9*y(x,1)
El
B

=(x8) (20)

'y

where, y(x,?) is the manipulator displacement (deflection) at a distance x from the hub of
the manipulator at time ¢, p is the density per unit length of the manipulator material, E
is the Young modulus, 7 is the second moment of inertia, T(x,) is the applied torque and
EI represents the flexural rigidity of the manipulator.

The boundary conditions at the hub end are given by

O™ P

Figure 6:  Schematic representation of the flexible manipulator system.

3°y(0,1) 9°y(0,1)
-EI
ot’ox ox’

y0,n)=0 , I, =1(t) 21

where, 1(r) is the torque applied at the manipulator hub. Similarly, the boundary

conditions at the tip (end-point) of the manipulator are given by
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(22)

9%y(L,1)
Mp ot
; Py
P 9rtox

o*y(L,1) _

o
o%y(L,1) _
o

- EI 0

+EI 0

where, L is the length of the manipulator. The initial conditions along the ¢ co-ordinate

are given as

JO.H=0 and @§§ﬂ=o - 23)
The above relations describe the state of behaviour of the flexible manipulator system
which can be used to construct a simulation environment of the system.

To solve the PDE in equation (20), it is replaced by a set of difference equations
defined by the central difference quotients of the FD method (Azad, 1994). The
manipulator length and movement time are each divided into suitable number of sections of
equal length represented by Ax (x=iAx) and At (¢r= jAt) respectively. A difference

equation, corresponding to each point of the grid is, thus, developed. The displacement,

Yi.j+1» Of section i of the manipulator at time step j+1 can, thus, be obtained as

AP
Yign = _c[yr'-lj b yi+2,j]+ b[yi—l.j + yi+!.j]+ A=Yyt > (i, J) (24)
6Ar*EIl 4APEl A’El : . .
where, a=2 — b= 1 and c= —. Using matrix notation, equation
pAx pAx pAx

(24) can be written as

Yo = A}’.'.j =V BF (25)
where,
Y1 j+1 i) Yi 4
Yz 41 Y2 ¥5 54
Yiur=| = b Y55 2 b Yga=| = |5
yrr,j+] yn.j yn‘j—l

17/42



Tokhi, MO and Hossain, MA

[m, my my 0 0 ... 0 0 O O 0]
b a -b -c 0 0 0 0 o0 o0
- b a b - .. 0 0 0 0 O
0O 0 0 0 O - b a b -
0 0 0 0 0 0 my my my my,

0 0 0 0 O 0 my my my my,

1(0.J)
F= 0 y B = -A—tg-
: p
0

Equation (25) is the general solution of the PDE giving the displacement of section i of
the manipulator at time step j+1.

It follows from equation (24) that, to obtain the displacements y, 410 Yoorjn and Y, o

the displacements of the fictitious pints y_, ;, ¥,,,; and y,,, ; are required. The estimation

of these displacements is based on the boundary and initial conditions related to the

dynamic equation of the flexible manipulator which in turn determine the values of my, to

my and m,, to m,, in matrix A of equation (25).

4.5 The LMS filter

The LMS algorithm is one of the most successful adaptive algorithms developed by
Windrow and his co-workers (Widrow et. al, 1975). It is based on the Steepest descent

method where the weight vector is updated according to

W, =W, -2¢,uX, (26)

where W, and X, are the weight and the input signal vectors at time step k respectively,
I is a constant controlling the stability and rate of convergence and e, is the error given

by

&G =W~ Werk (27)
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where, y, is the current contaminated signal sample. It is clear from the above that the

LMS algorithm does not require prior knowledge of the signal statistics. The weights
obtained by the LMS algorithm are not only estimates, but these are adjusted so that the
filter learns the characteristics of the signals leading to a convergence of the weights. The

condition for convergence is given by

O<p>1/A,, (28)

where, A___ is the maximum eigenvalue of the input data covariance matrix.

4.6 The RLS filter

The RLS algorithm is based on the well known least squares method. An output signal

y(k) of the filter is measured at the discrete time &, in response to a set of input signals

x(k) (Tokhi and Leitch, 1992). The error variable is given by

e(k) = ¥(k)O(k -1) - y(k) 29)

where © and W represent the parameter vector and the observation matrix of the filter

respectively. These are given by

O™ =[6(1), 0(2), ... 8(m)]
Y=y, v@), ... y(m)]

where m represents the order and y the input sample of the filter. The new parameter

vector is given by

O(k) = Ok~ 1) = P(k = 1)¥7 (k)[1+ ¥ (k)P(k - 1)¥7 (k)] "e(k) (30)
with P(k), representing the covariance matrix at time step k, given by
P(k) = P(k—1)-P(k = )¥"(K)[1+ Y(R)P(k - )P ()] P(R)P(k-1)  (31)

The performance of the filter can be monitored by observing the error variable e(k) at

each iteration.
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5 Practical issues in parallel real-time processing

Application goals of PP for implementing real-time signal processing and control
algorithms must satisfy critical time constraints associated with sampling intervals. When
contemplating the implementation of algorithms and associated software on PP systems, it
is essential to organise the algorithm to realise the maximum benefits of parallelism. This

has several associated problems as discussed below.

5.1 Performance evaluation

For PP with widely different architectures and different PEs, performance measurements
such as MIPS and MFLOPS of the PEs are meaningless. Of more importance is to rate the
performance of each architecture with its PEs on the type of program likely to be
encountered in a typical application. The different architectures and their different clock
rates, memory cycle times of the PEs, inter-processor communication speed, optimisation
facility and compiler performance etc. all confuse the issue of attempting to rate the
architecture. This is an inherent difficulty in selecting a parallel architecture, for better
performance, for algorithms in signal processing and control system development
applications. The ideal performance of a parallel architecture demands a perfect match
between the capability of the architecture and the program behaviour. Capability of the
architecture can be enhanced with better hardware technology, innovative architectural
features and efficient resources management. In contrast, program behaviour is difficult to
predict due to its heavy dependence on application and run-time conditions. Moreover,
there are many other factors that influence program behaviour. These include algorithm
design, partitioning and mapping of an algorithm, inter-processor communication, data
structures, language efficiency, programmer skill, and compiler technology (Hwang, 1993;
Ching and Wu, 1989, Cvetanvoic, 1987).

Parallelism is beneficial when it successfully yields higher performance with reasonable
hardware and software cost. Whether parallelism is worthwhile depends on the application.

Two extreme situations, however, may be distinguished;
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(i) For relatively simple, high volume applications, minimising manufacturing cost is
critical. In this case it may be best to invest development effort in optimising algorithm
and code efficiency to achieve a single-processor solution.

(it) For relatively complex, low volume applications, minimising development cost is
important. In this case it may be best to preserve the structure of the high level code

and introduce additional PEs.

There will always be many applications which are satisfied by a uni-processor
implementation. Before adopting a PP solution, it must be clear that it possesses some
feature that cannot be provided by a single processor. Through the investigations carried
out in this study and from practical experiences, a chart of performance criteria made is
shown in Figure 7. This indicates the main components that play important role in the

performance of an architecture.

Performance

!
! ! ! R

Hardware *_ Algorithm j r Cost Software

Granularity Regularity | | Hardware Software
. [Communi Program- Partioning Compiler's Code
PEs Granularity I cation J mers skill & Mapping periormance optimization
on-chip Memory FPU, o cisc, CLOCK
cache or access " 25;;;“”9 RISC or speed, MIPS
RAM time MMU DSP & MFLOPS

Figure 7: Factors influencing performance evaluation of architectures.

The most widely accepted measure used to evaluate the performance of a parallel

System is speedup. Speedup (Sy) is defined as the ratio of the execution time (7}) on a

single processor to the execution time (Ty) on N processors;
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Sy = (32)

o |~"‘1

The theoretical maximum speed that can be achieved with a parallel architecture of N
identical processors working concurrently on a problem is N. This is known as the ideal
speedup. In practice, the speedup is much less, since some processors are ideal at a given
time due to conflicts over memory access, communication delays, algorithm inefficiency
and mapping for exploiting the natural concurrency in a computing problem (Hwang and
Briggs, 1985). But, in some cases, the speedup can be obtained above the ideal speedup,
due to anomalies in programming, compilation, architecture usage, etc. For example, a
single processor system may store all its data off-chip, whereas the multiprocessor system
may store all its data on-chip leading to an unpredicted increase in performance.

Another useful measure in evaluating the performance of a parallel system is efficiency

(Ey). This can be defined as

E, = 2 % 100% =~ x 100% (33)
N NT,

Efficiency can be interpreted as providing an indication of the average utilisation of the 'N'
processors, expressed as a percentage. Furthermore, this measure allows a uniform
comparison of the various speedups obtained from systems containing different number of
processors. It has also been illustrated that the value of efficiency is directly related to the
granularity of the system (Stone, 1987). For example, consider an ideal problem which can
be partitioned into 'N' equal subtasks requiring 'R' units of time, with associated
communication overhead of 'C" units. Thus, the ideal system for efficiency can be defined

as

_ R/IC %100% = Granularity
1+(R/C) 1+ Granularity

x100% (34)

N

Although, this analysis uses an ideal model, this value of granularity is used as a guideline

during the partitioning process as described later.
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Inter-processor communication between PEs is one of the important issues on which the

5.2 Inter-processor communication

real-time performance of a number of paralle] architectures can be compared and suitability
of an algorithm evaluated. When several processors are required to work co-operatively
on a single task, one expects frequent exchange of data among the several subtasks that
comprise the main task. The amount of data, the frequency with which they are
transmitted, the speed of their transmission, and the route that they take are all significant
in affecting the inter-communication within the architecture. The first two factors depend
on the algorithm itself and how well it has been partitioned. The remaining two factors
depend on the hardware and are the points of discussion here for investigation. These,
further, depend on the inter-connection strategy, whether tightly coupled or loosely
coupled. Any evaluation of the performance of the inter-connection must be, to a certain
extent, quantitative. However, once a few candidate networks have been tentatively
selected, detailed (and expensive) evaluation including simulation can be carried out and
the best one selected for the proposed application (Agrawal et. al, 1986). To explore the
real-time performance of the architectures, investigations into inter-processor
communication were carried out with all the four different paralle] architectures utilised in
this investigation. These inter-processor communication techniques for the different

architectures are

(i) C40 to C40: parallel communication link,
(ii) T8 to T8: serial communication link,
(i) T8 to 1860: shared memory communication, and

(iv) T8 to C40: serial to paralle] communication link.

The performance of these inter-processor communication links are evaluated by utilising a
similar strategy for exactly the same data block without any computation during the

communication time.
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5.3 Partitioning and mapping

There are three different problems to be considered in implementing signal processing and

control algorithms on PP systems;

(a) identifying parallelism in the algorithm,
(b) partitioning the algorithm into subtasks, and

(c) allocating the tasks to processors.

These include inter-processor communication, issues of granularity of the algorithm and
the hardware and regularity of the algorithm. Hardware granularity is a ratio of
computational performance over communication performance of each processor within the
architecture. Similarly, task granularity is the ratio of computational demand over the
communication demand of the task. Performance benefits of parallel architectures strongly
depend on these ratios (Maguire, 1991; Stone, 1987). These ratios reveal the amount of
communication overhead associated with each unit of computation. When the ratio is very
low, it becomes ineffective to use parallelism. When the ratios are very high, parallelism is
potentially profitable. Typically a high compute/communication ratio is desirable. The
concept of task granularity can also be viewed in terms of compute time per task. When
this is large, it is a coarse-grain task implementation. When it is small, it is a fine-grain task
implementation. Although, large grains may ignore potential parallelism, partitioning a
problem into the finest possible granularity does not necessarily lead to the fastest solution,
as maximum parallelism also has the maximum overhead, particularly due to increased
communication requirements. Therefore, when partitioning the application across PEs, it is
essential to choose an algorithm granularity that balances useful parallel computation
against communication and other overheads (Nocetti and Fleming, 1991).

Regularity is a term used to describe the degree of uniformity in the execution thread
of the computation. Many algorithms can be expressed by matrix computations. This leads
to the so called regular iterative (RI) type of algorithms due to their very regular structure.

In implementing these type of algorithms, a vector processor will, principally, be expected
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to perform better. Moreover, if a large amount of data is to be handled for computation in

these type algorithms, the performance will further be enhanced if the processor has more
internal data cache, instruction cache and/or a built-in math coprocessor. In implementing
these algorithms on a PP platform, the tasks could be distributed uniformly among the
PEs. However, this may require a large amount of communication between the processors
and, therefore, can be a detriment to the performance of the computing platform in both
homogeneous and heterogeneous architectures.

There are two main approaches to allocating tasks to processors: statically and
dynamically. In static allocation, the association of a group of tasks with a processor is
resolved before running time and remains fixed throughout the execution, whereas in
dynamic allocation, tasks are allocated to processors at running time according to certain
criteria, such as processor availability, inter-task dependencies and task priorities.
Whatever method is used, a clear appreciation is required of the overheads and parallelism
fcommunication trade-off as mentioned earlier. Dynamic allocation offers greater potential
for optimum processor utilisation, but it also incurs a performance penalty associated with
scheduling software overheads and increased communication requirements which may
prove unacceptable in some real-time applications.

To investigate the performance of the computing platforms in the real-time
implementation of the algorithms considered in this study, the features discussed above are
considered in the process of partitioning the algorithms so that the capabilities of the
parallel hardware platforms are efficiently exploited and the load distribution is balanced so
that to minimise inter-processor communications. The PEs computing performance and
inter-processor communication, compilers performance and optimisation facility are

verified to implement static task allocation for best performance.

6 Implementations and results

To investigate the real-time performance of the computing platforms in implementing the

algorithms, performance of inter-processor communication links were also looked at.
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Moreover, to allow suitable load distribution across PEs, compare performance and
measure the speedups achieved with the parallel architectures, the performance of the
individual PEs in implementing the algorithms were also investigated. Results of these

investigations are presented and discussed in this section.

6.1 Inter-processor communication

To investigate performance of the inter-processor communication links, a 4000 points
floating type data was used. The communication time in sending the data from one
processor to another and receiving it back was measured with the various communication
links involved in the parallel architectures. In case of the C40 to T8 and the C40 to C40
communication, the speed of single lines of communication were also measured by using
bi-directional data transmission in each of the 4000 iterations. This was realised by altering
the direction of data transmission for sending and receiving data at each iteration. Figure 8
shows the performance of inter-processor communication links. It is noted that among
these the C40-C40 double-line paralle] communication is the fastest, whereas the T8-C40
single-line serial to parallel communication is the slowest. Among the double-line
communications, the C40-C40 link is found to be 10 times faster than the T8-T8 serial
communication, 14.89 times faster than the T8-i860 shared memory communication and
17.56 times faster than the T8-C40 serial to paralle] communication. Among the single-line
communications, on the other hand, the C40-C40 parallel communication is found to be
1.23 times faster than the T8-C40 serial to parallel communication. It is evidenced that as
compared to serial communication, parallel communication offers substantial advantage. In
shared memory communication additional time is required in accessing and/or writing into
the shared memory. In serial to parallel communication, on the other hand, additional
penalty is paid during transformation of data from serial to parallel and vice versa.
Comparing the C40-C40 double-line and single-line parallel communications, reveals that
the double-line communication is 93.94 times faster than the single-line communication.

Similarly, the T8-C40 double-line is performing 6.58 times faster than the corresponding
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single link communication. It follows from this that a substantial proportion of the
communication time is spent in altering the direction of data transmission in a single-line

bi-directional communication as compared to an equivalent double-line communication.

0.254

0.24

0.154

.:
—
1

Communication time (sec)

0.054

Figure 8: Speed of inter-processor communication links; (1) single-line, (2) double-line.

6.2 The FFT algorithm

Figure 9 shows the real-time performance of the computing platforms in implementing a
512-point FFT algorithm. As noted earlier, the FFT algorithm is a regular DSP process
and highly matrix based. This is evidenced in the performance of the i860, with its vector
processing resources, achieving the shortest execution time among the uni-processor
architectures and the i860+T8 achieving the shortest execution time among the parallel
architectures. The C40 and T8, not having such resources, are performing 32.34 and 78
times slower than the i860 respectively. Note that, although, the i860+T8 has performed
18.64, 30.54 and 53.54 times faster than the C40+C40, C40+T8 and T8+T8 respectively,

its performance is 1.4 times slower than the i860. This is mainly attributed to the
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performance of the T8. The serial to parallel communication link is, additionally, an
influential factor in the performance of the C40+T8 in comparison to that of the C40+C40.
Note further that, although, the C40 and the C40+C40 are performing faster than the T8
and T8+T8 architectures respectively, the speedup achieved with C40+C40 as compared
to a single C40 is 1.24 whereas the speedup with T8+T8 as compared to a single T8 is
1.04. These speedups are roughly of a similar scale. The disparity between the two is
mainly due to the inter-processor communication links in the two cases. However, in either
case the performances of the C40 and T8 based architectures are not highly impressive due
to a mismatch between the requirements of the algorithm and the computing resources of

the architectures.

Execution time (sec)

i860 C40 T8 C40+C40 TB+T8  i860+T8 C40+T8

Figure 9: Execution times of the computing platforms in implementing the FFT algorithm.

6.3 The cross-correlation algorithm

To investigate the real-time implementation of the correlation algorithm, two waveforms,

each of 1000 samples, were used. Figure 10 shows the real-time performance of the
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computing platforms in implementing the correlation algorithm. Note that this algorithm is
of the RI type for which the vector processing resources of the i860 are exploited
achieving the shortest execution time among the uni-processor architectures. This is
further evidenced in the performance of the i860+T8 among the paralle] architectures. It is
noted that the C40 and the T8 have performed 2.786 and 7.794 times slower than the i860.
The speedup with two C40s as compared to a single C40 is 2.39. This super-linear
speedup is due to reduction in the program, leading to less run-time memory management,
suitable for the limited internal cache and memory of the C40. The speedup with two T8s
as compared to a single T8 is only 1.25. This is due to the regular DSP nature of the
algorithm which is not as suitable for the T8 as the C40. It follows from this that the
speedup achieved with the i860+T8 as compared to either the i860 or the T8 is attributed,
mainly, to the performance of the i860. Similarly, the speedup achieved with the C40+T8
as compared to either the C40 or the T8 is attributed, mainly, to the performance of the
C40.

Execution time (sec)

860 C40 T8 C40+C40 T8+T8 i860+T8 C40+T8

Figure 10: Execution times of the computing platforms in implementing the
correlation algorithm.
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6.4 Flexible beam simulation, identification and control

6.4.1 Simulation

Figure 11 shows the execution times achieved by the architectures, in implementing the
simulation algorithm over 20 000 iterations. The simulation algorithm, as discussed earlier,
is mainly of a matrix based computational type for which the powerful vector processing
resources of the i860 are exploited and utilised to achieve the shortest execution time
among the uni-processor architectures and with the i860+T8 among the parallel
architectures. The C40 and the T8 do not have such vector processing resources making
them 6.053 and 9.864 times slower than the i860 respectively. This implies that the C40
and the T8 are not performing well in situations where the algorithm is matrix type and
extensive run time memory management is involved. The speedup achieved with two C40s
as compared to a single C40 is only 1.42, Although, the program has reduced to a half for
a single C40, due to the nature of the algorithm the C40+C40 has not achieved a
performance better than a single i860 vector processor. The speedup achieved with two
T8s as compared to a single T8 is 1.23. This speedup is similar to that achieved with two
C40s in comparison to a single C40, although a serial communication link is utilised in case
of the T8s. Thus, the main factor influencing the C40+T8 to perform slightly slower than
the C40+C40 is the serial to parallel communication link utilised and the slower T8
processor incorporated in this architecture. Due to the shared memory communication
overhead and incorporation of the slower T8 processor, the i860+T8 has achieved longer

execution time as compared to a single i860.

6.4.2 Identification
As discussed earlier, the identification algorithm is composed of two components of
similar nature and length, while estimating parameters of O, and Q,, and a process of

controller design calculation. In case of the uni-processor architectures the algorithm was

implemented sequentially. In case of the parallel architectures, on the other hand, the

algorithm was partitioned so that the load at estimating parameters of 0, and Q, is equally

30/42



Tokhi, MO and Hossain, MA
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Figure 11: Execution times of the computing platforms in implementing the beam
simulation algorithm,

distributed among the two PEs with one of the PEs further carrying out calculation of
parameters of the controller. Moreover, in this process, limited communication, due to
parameters of O, and O, for calculation of controller parameters, is required between the
two PEs implementing the algorithm. Figure 12 shows the execution times of the
computing platforms in implementing the identification algorithm over 1000 iterations
using second order models for O, and @, . It is noted that the C40 and the C40+C40
architectures have performed as the fastest among the uni-processor and parallel
architectures respectively. However, the speedup achieved with two C40s as compared to
a single C40 is only 1.35. This could be due to the nature of the identification algorithm for
which the pipelining nature of the C40 DSP device is not exploited much, even after a
reduction of the program into two segments. The algorithm does incorporate some matrix
manipulation. However, as a result of the irregular nature of the algorithm, the i860 is
found to have performed slower than the C40. This is further noted in the performance of

the i860+T8 as compared to that of the C40+T8. In contrast, the T8 is performing
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significantly well; the speedup achieved with two T8s as compared to a single T8 is 2.22.
This super-linear speedup results due to significant reduction in data handling for which
the available internal memory of the T8 is sufficient, thus, reducing run-time memory
management load. It follows from this that the speedup achieved with the i860+T8 in
comparison to either a single i860 or a single T8 can mainly be attributed to the

performance of the T8.

0.84
0.674
0.71
0.6+

0.54

0.4+ 0.35

03033  0.3059

Execution time (sec)

i860 C40 T8 C40+C40 TB+T8 i860+T8 (C40+T8

Figure 12: Execution times of the computing platforms in implementing the beam
identification algorithm.

6.4.3 Control

Figure 13 shows the execution times achieved by the computing platforms in implementing
the control algorithm over 20 000 iterations. Note that the beam simulation forms a large
proportion of the control algorithm. This makes the algorithm mainly an RI type. Thus, as
in the case of the simulation algorithm, the powerful vector processing resources of the
i860 are utilised to achieve the shortest execution time among the uni-processor

architectures and with the i860+T8 among the parallel architectures. The execution times
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achieved with the architectures are similar to those in case of the beam simulation
algorithm. The speedup achieved with two C40s as compared to a single C40 is 1.4,
Similarly, the speedup achieved with two T8s as compared to a single T8 is 1.23. These
are consistent with the performance of these architectures in case of the beam simulation
algorithm. Therefore, similar interpretation and explanation can be made with regard to the

speedups and performances of the architectures in case of the beam control algorithm.

Execution time (sec)

i860 C40 T8 C40+C40 TB8+TB i860+T8 C40+T8

Figure 13: Execution times of the computing platforms in implementing the beam
control algorithm.

6.5 The RLS filter

To investigate the real-time implementation of the RLS algorithm, an infinite impulse
response (IIR) filter structure of second order was used. The execution times achieved by
the computing platforms, in implementing the RLS filter algorithm over 1000 iterations are
shown in Figure 14. It is noted that the C40 and the C40+C40 have performed as the
fastest among the uni-processor and parallel architectures respectively. However, it is

noted that the speedup achieved with the C40+C40 as compared to a single C40 is 1.215.
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Similarly, the speedup achieved with the T8+T8 as compared to a single T8 is 1.102,
which is not much different from the speedup achieved with the C40s. This is due the
matrix computation as well as the increased level of data communication involved in the
RLS filter algorithm. The i860 has performed about 1.323 times slower than the C40. This
is due to irregular nature of algorithm. This is further reflected in the performance of the

i860+T8 achieving longer execution time than the C40+T8.

0.44

0.3+

Execution time (sec)
o
]
[

0.1+

i860 C40 T8 C40+C40 T8+T8 iB60+T8 C40+T8

Figure 14: Execution times of the computing platforms in implementing the RLS
filter.

6.6 The LMS filter

To investigate the real-time implementation of the LMS algorithm, the parameter p = 0.04
and a finite impulse response (FIR) filter structure of 40 weights was used. The execution
times achieved by the computing platforms in implementing the LMS algorithm, over 1000
iterations, are shown in Figure 15. It is noted that in this case the C40 and the C40+C40
architectures have performed as the fastest among the uni-processor and parallel
architectures respectively. The LMS algorithm, as noted earlier, incorporates some degree

of irregularity due to the associated loops. The involvement of the regular DSP operations
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in the process, on the other hand, provides some degree of regularity in the algorithm as
well. The exploitation of these aspects of the process are evident in the performance of the
C40 and the T8. It is noted that a super-linear speedup of 2.166 is achieved with two C40s
as compared to a single C40. This is mainly due to a reduction in the amount of data that is
to be handled by individual processors in the C40+C40 for which the internal cache and
memory of the C40 is sufficient, thus, not requiring extra run-time memory management.
The speedup achieved with two T8s in comparison to a single T8 1.669. An influential
factor in achieving lower speed up in case of the T8+T8 architecture as compared the
C40+C40 architecture is the serial communication link utilised with the T8s. The i860
vector processor does not have the resources necessary to be exploited in implementing
the highly irregular features of the LMS algorithm and this is found to perform 2.833 times
slower than the C40 and slightly faster than the T8. This is further reflected in the
performance of the i860+T8 achieving the longest execution time among the parallel
architectures. A further influential factor in the slow performance of the i860+T8 is the
shared memory communication overhead in this architecture. Thus, the longer execution
time achieved with the i860+T8 in comparison to a single i860 can mainly be due to
communication overhead. In case of the C40+T8, on the other hand, both the C40 and the
T8 contribute at a similar level to the performance achieved. Note that in case of the
C40+T8 architecture the contribution of the serial to parallel communication link between
the processors is significantly influential in slowing down the process in comparison to a

single C40.

6.7 Flexible manipulator simulation

Figure 16 shows the performance of the computing platforms in implementing the
manipulator simulation algorithm over 27 536 iterations. The simulation algorithm, as
discussed earlier, is mainly of a regular matrix based computational type, similar to the
flexible beam simulation algorithm, for which the powerful vector processing resources of

the i860 are exploited and utilised to achieve the shortest execution time among the uni-
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Figure 15: Execution times of the computing platforms in implementing the LMS
filter.
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Figure 16: Execution time of the computing platforms in implementing the
manipulator simulation algorithm.
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processor architectures and with the i860+T8 among the parallel architectures. The C40
and the T8 have performed 6.312 and 7.280 times slower than the i860 respectively. This
further implies that the C40 and the T8 do not have resources to be exploited in
implementing matrix based algorithms. The speedup achieved with two C40s as compared
to a single C40 is 1.390. Similarly, the speedup achieved with two T8s as compared to a
single T8 is 1.269. This implies that the longer execution time achieved with the C40+T8
in comparison to the C40+C40 can mainly be attributed to the performance of the T8 as
well as the serial to parallel communication link in this architecture. Similarly, the longer
execution time achieved with the i860+T8 as compared to that with the i860 can mainly be
attributed to the performance of the T8 and the shared memory communication overheads

in this architecture.

6.8 Comparative performance of the computing platforms

In this section a summary of the performances of the computing platforms in implementing
the algorithms is presented. Figures 17 and 18 show the execution times achieved with the
uni-processor and parallel architectures in implementing the algorithms respectively. The
algorithms along the horizontal axis have been arranged according to their degree of
regularity; the FFT on the left is of a highly regular nature, whereas, the LMS filter
algorithm on the right is of a highly irregular nature among the algorithms considered. It is
noted that, among the uni-processor architectures, the i860 is performing as the fastest in
implementing regular and matrix based algorithms. In contrast, the C40 is performing as
the fastest of processors in implementing algorithms of irregular nature. In a similar
manner, the performance of the T8 enhances with increasing degree of irregularity in an

algorithm.

It is noted in Figure 18 that among the parallel architectures the suitability of the i860
for regular and matrix based algorithms is well reflected in the shortest execution times
achieved with the i860+T8 in implementing the FFT, beam simulation, beam control,

manipulator simulation and correlation algorithms. In contrast, the suitability of the C40 is
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reflected in achieving the shortest execution times in implementing the beam identification,
RLS filter and LMS filter algorithms. Although, the T8+T8 is performing as the slowest of
the parallel architectures in implementing the algorithms, its performance is consistent with
the corresponding uni-processor architectures; the architecture is performing relatively
better in implementing algorithms of irregular nature than those of regular and matrix
nature. This also implies that the slower performance of the C40+T8 throughout in
comparison to the parallel architectures in implementing the algorithms can mainly be
attributed to the performance of the T8 and the serial to paralle]l communication link in this

architecture.

7  Conclusion

This paper has been explored the real-time performance of a number of uni-processor and
multi-processor, homogeneous and heterogeneous, parallel architectures, with PEs of
contrasting features, in signal processing and control applications and the implementation
issues of algorithms encountered in these applications. The inter-processor communication
speed for four different homogeneous and heterogeneous architectures have been
investigated and presented. Partitioning and mapping, granularity and regularity of
algorithms have been discussed for better load distribution among the PEs in parallel
architectures. A comparison of the results of the implementations has been made revealing
the capabilities of the architectures and their suitability in the efficient implementation of
signal processing and control algorithms.

This investigation has revealed that principally there is no one architecture achieving
the best performance in implementing algorithms of various nature due to regularity of the
algorithm, granularity of the algorithm and the hardware and inter-processor
communication. For PP, performance measures such as MIPS and MFLOPS of the PEs
are meaningless. The architectures and their clock rates, memory cycle times of the PEs,
inter-processor communication speed, optimisation facility and compiler performance etc.

all confuse the issue of attempting to rate the architecture. Of more importance is to rate
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the performance of an architecture with its PEs on the type of program likely to be
encountered in a typical application. The desired performance of a parallel architecture,
thus, demands a close match between the capability of the architecture and the nature of

. the algorithm.
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