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Abstract

world data from a medical domain, the task being to predict the death or survival of patients
admitted to a coronary care ward. Modified fuzzy ARTMAP is shown to perform consistently

Increase significantly accuracy in identifying survivors at the cost of decreased coverage of
cases. This allows the identification of a subset of patients who have a low-risk of death from
their condition and are thus potentially suitable for early discharge from hospital.
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1 Introduction

Since the fifties, there has been a progressive reduction in the recommended length of hospital
stay for patients admitted to coronary care units. This change from six weeks bed rest to the
current 7 to 10 days has occurred without significant effects upon patient mortality rates, and
with obvious economic benefits. It is hoped to continue this trend yet further. However, early
hospital discharge requires very accurate identification of those patients at minimal risk of
death from their condition. Furthermore, such identification must occur soon after a patient is
admitted. We have adopted a neural network approach to the task. To this end, a database of
approximately 5500 patient records has been collected from the coronary care unit of Leicester
Royal Infirmary over a six year period. Once records with incomplete data were removed, 4200
data items remained. Each record consisted of 43 items of clinical or electrocardiographic data
considered to be useful for patient prognosis, together with the outcome for the patient’s stay
in hospital—death or survival. One of the items had an integer value, all others were binary-
valued. (Appendix 1 provides a full listing of the input features.)

The generation of accurate predictions from this set of patient records is a very difficult
learning task for a neural network. Specifically, two features of the data make the problem hard
to solve. Firstly, the data is “noisy”—it is gathered from a real-world medical domain and has
no simple indicators delineating category boundaries. Secondly, the distribution of categories
is skewed—only 7.1% of all patients admitted die while on the ward. This poses particular
difficulties for learning algorithms such as backpropagation (Rumelhart, Hinton and Williams,
1986) where weights are refined by a process which effectively averages together similar cases.
In such circumstances rare events like patient deaths become completely submerged by the
greater numbers of surviving patients who show similar data features.

2 Fuzzy ARTMAP and Modified Fuzzy ARTMAP

Fuzzy ARTMAP (Carpenter et al., 1992) was selected for the application since it is claimed to
possess a number of capabilities that are particularly suited to this domain. First, fuzzy
ARTMAP does not perform optimization of an objective function and is not therefore prone to
the problem of local minima. Instead it forms a structuring of the data for itself (self-
organisation) into prototypical category clusters. Also, fuzzy ARTMAP has few user-
changeable parameters, which allows the model to be tuned to a particular problem without
undue effort. (The single most important fuzzy ARTMAP parameter being that of vigilance,
which controls the size of the category clusters formed). Additionally, a modified version of
fuzzy ARTMAP (Lim and Harrison, In Press) has been demonstrated to show optimal data
classification in the Bayesian sense.

Very importantly, the model is able to discriminate rare events from a “sea” of similar cases
with different outcomes. This is because the family of adaptive resonance theory (ART)
models to which fuzzy ARTMAP belongs all incorporate a feedback mechanism based on top-
down matching of learned categories to input patterns (Carpenter and Grossberg, 1991).
Learning in fuzzy ARTMAP can also occur with only one pass through the data set (single-
epoch training). Furthermore, the model is capable of incorporating new data items without
degradation of performance on previous data, or the necessity of retraining on such past data.
This solution to the so-called stability-plasticity dilemma is claimed to be a feature unique
among neural networks to the ART models (Carpenter and Grossberg, 1988). Collectively
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environments.

Modified Fuzzy ARTMAP (Lim and Harrison, In Press) was developed from fuzzy ARTMAP
for use with statistical data—the demonstration task being to separate two classes of Gaussian
distributed random variables. The model was shown to provide superior performance to fuzzy
ARTMAP on this problem, and can approach the Bayes optimal classification rates for the
domain. To achieve this, modified Fuzzy ARTMAP records data on the usage of category
cluster nodes, and resolves ties between nodes competing to encode an exemplar by selecting
the node with the greatest usage.

3 Method

For the purposes of this application off-line learning was employed. The data were partitioned
into a training set, comprising the first 3000 patient records, and a test set comprising the
remaining 1200 records. Twenty different orderings of the training set were derived and served
as input data to separate instances of fuzzy ARTMAP and modified fuzzy ARTMAP using
single-epoch training. (The order of presentation of data items is known to have quite large
effects on category formation in fuzzy ARTMAP, Carpenter et al., 1992.) The vigilance
parameter was set low (0.3) to avoid excessive cluster formation—a notable problem for fuzzy
ARTMAP (Marriott and Harrison, In Press). Other parameters were set to their “standard”
values (see Kasuba, 1993); the learning rate being set to its maximum value of one (so-called
fast learning) and the category choice parameter being set close to zero (0.000001).

The voting strategy (Carpenter et al., 1992) was also employed on the test data. This works as
follows: a number of ARTMAP networks are trained on different orderings of the input data.
During testing, each individual network makes its prediction for a test item in the normal way.
The number of predictions made for each category is then totalled and the one with the highest
score (or the most “votes”) is the final predicted category outcome. The voting strategy can
provide improved ARTMAP performance in comparison with the individual networks. In
addition it also provides an indication of the confidence of a particular prediction, since the
larger the voting majority, the more certain is the prediction.

A range of 3 to 13 odd numbered voters was used (odd numbers ensuring no tied decisions
occurred), choosing those fuzzy ARTMAP instances from the pool of 20 that had achieved the
highest individual accuracy scores. The same voting procedure was then repeated using the
modified fuzzy ARTMAP networks.

4 Results

Initial performance on the test set proved disappointing. Accuracy for the individual fuzzy
ARTMAP networks ranged between 73.2% and 87.5% with a mean of 81.1%. For modified
fuzzy ARTMAP, accuracy ranged between 87.3% and 89.6% with a mean of 88.3%. (Full
details are given in Appendix 2.) This compares with a default accuracy of 92.9% for the simple
assumption that all patients will survive. The reason for this was that fuzzy ARTMAP in
particular over-represents the rare cases of patient deaths in excess of their actual frequency
within the data set. (This is probably because such cases were not tightly clustered together but
widely spread throughout the feature space.) This effect was reduced, if not entirely overcome,
with modified fuzzy ARTMAP. Thus fuzzy ARTMAP appears to suffer from the opposite
problem to backpropagation—too much credence, rather than too little, is given to rare cases.



The general effect of the voting strategy was to increase accuracy for both fuzzy ARTMAP and
modified fuzzy ARTMAP to around 89-91%, still slightly below baseline performance.
However, the voting strategy with fuzzy ARTMAP did provide useful results for the important
special case of high-confidence predictions of patient survival. (A high confidence prediction
being one upon which all fuzzy ARTMAP voters agreed.) Such patients are the most suitable
for early hospital discharge.

With 3 voters, a unanimous survival decision accounted for 911 of the data items and was
proved wrong 44 times. This translates to 95.2% accuracy covering 75.9% of the 1200 test
items. With extra voters, accuracy steadily improved at the cost of decreased coverage (see
table 1 below), until at the 13 voter case an accuracy of 99.3% covering 34.0% of the data was
achieved.

Table 1: Voting Strategy Performance for Unanimous Survival Decisions

Fuzzy ARTMAP Modified Fuzzy ARTMAP
M| Ay @) | el | pcorcy ) | oo
5 95.6 64.5 94.2 81.3
7 97.8 53.0 94.8 75.3
9 98.2 45.3 95.1 71.8
11 98.1 40.3 94.9 69.1

13 09.3 34.0 95.1 66.3

5 Discussion

The results for the individual networks show that modified fuzzy ARTMAP consistently
performs better than fuzzy ARTMAP with this real-world data. Moreover, the modified fuzzy
ARTMAP networks show a much smaller variation in accuracy for different orderings of the
training data. However, modified fuzzy ARTMAP does not gain as much benefit from the
voting strategy as fuzzy ARTMAP. This is particularly marked when unanimous votes alone
are considered (see table 1). With fuzzy ARTMAP, an increase in the number of voters tends
to increase accuracy while reducing the number of cases. This effect is much less pronounced
in modified fuzzy ARTMAP

Collectively these findings seem to indicate that modified fuzzy ARTMAP is not prone to the
ordering effects of training data that occur with fuzzy ARTMAP. Thus modified fuzzy
ARTMAP tends to form similar category clusters regardless of the order in which exemplars
are presented. A single modified Fuzzy ARTMAP network therefore provides more reliable
pattern classification than a Fuzzy ARTMAP network, and hence seems better suited to on-line
learning tasks for example.



Appendix 1: Inputs to the Networks

Atrial Fibrillation

Supraventricular Tachycardia
Ventricular Tachycardia or Ventricular Fibrillation
Bundle Branch Block

ST Depression—Inferior

ST Depression—Anteroseptal

ST Depression—Anterolateral

ST Elevation—Inferior

. ST Elevation—Anteroseptal

10 ST Elevation—Anterolateral

11.T Wave—Inferior

12.T Wave—Anteroseptal

13.T Wave—Anterolateral

14.Q Wave—Inferior

15.Q Wave—Anteroseptal

16.Q Wave—Anterolateral

17.Age<40

18.Age 40-50

19.Age 50-60

20.Age 60-70

21.Age>70

22.Time since Cardiac Event>24 Hours
23.Family History of Ischaemic Heart Disease
24.Smoker

25.Ex-Smoker

26.Glucose>7.9

27.Glucose>8.9

28.Glucose>10.9

29.Pulmonary Venous Engorgement
30.Pulmonary Oedema

31.Chest Pain

32.Short of Breath

33.Syncope

34.Nausea

35.Sweating

36.Palpitations

37.Cardiac Arrest while in Coronary Care Unit
38.Creatine Kinase>600

39.Creatine Kinase>1000

40.Creatine Kinase>3000

41.Sex

42 Number of Previous Cardiac Episodes
43.Previous Cardiac Episode(s)
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Appendix 2: Individual Network Performance of Fuzzy ARTMAP and
Modified Fuzzy ARTMAP

Table 2: Comparative Performance of ARTMAP and Modified Fuzzy ARTMAP

Accuracy (%)

Training Set Number Fuzzy ARTMAP Modified Fuzzy ARTMAP
T - T 732 — 804
2 86.2 87.7
3 85.1 88.0
4 81.0 89.3
5 78.5 87.3
6 74.8 89.3
7 79.0 89.6
8 83.1 88.6
9 79.8 88.8
10 87.5 88.5
11 83.2 87.7
12 84.2 88.2
13 82.3 89.3
14 78.3 87.8
15 78.4 88.3
16 84.3 87.7
17 82.5 87.8
18 80.0 87.8
19 79.6 88.5
20 81.8 87.4

Mean 8L 88.3




