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Abstract

This paper describes the evaluation of an application of the ARTMAP neural network model
to the diagnosis of cancer from fine-needle aspirates of the breast. The network has previously
demonstrated very high performance when used with high-quality data provided by an expert
pathologist. New performance results are provided for its use with “noisy” data provided by an
inexperienced pathologist. Additionally, ARTMAP supports the extraction of symbolic rules
from a trained network and the validity of these autonomously-acquired rules is discussed. It
is concluded that the symbolic rules provide an appropriate mapping of input features to
category classes in the domain. However, the network in its present form is only suitable for
use as a decision-support tool by a senior pathologist, since its performance deteriorated greatly
with poor-quality data provided by a junior pathologist. The implications of the findings are
discussed.
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1 Introduction

Carcinoma of the breast is a common disease which is diagnosed in about 22 000 women in
England and Wales each year and is the commonest cause of death amongst women in the 35—
55 years age group in the same population (Underwood, 1992). Early detection and treatment
gives a better prognosis and a Breast Screening Program has been introduced in the National
Health Service using mammography as the primary detection modality. The primary method
of diagnosis of breast carcinoma, with distinction from benign lesions causing mammographic
abnormalities or clinically-detected masses, is cytopathological examination of fine needle
aspirates of the breast, FNAB, (Elston and Ellis, 1990). In this technique cells are aspirated
from the breast lesion using a fine gauge needle attached to a plastic syringe, the aspirated cells
are either applied directly to a glass slide or put into transport medium and a cytological
preparation is produced. The cytology slide is examined by light microscopy by a medically-
qualified doctor who has been trained in cytopathology and a diagnosis is made. FNAB is more
acceptable to the patient than a needle core biopsy or an open tissue biopsy since it involves
much less damage to tissue with less pain. It is also cheaper and more rapid than tissue biopsy
methods. Interpretation of the specimen is more difficult for the pathologist than tissue biopsies
because the architecture of the lesion is lost and important information, such as invasion at the
boundary of a tumour, is therefore not available. Large studies of the cytopathologic diagnosis
of FNAB have shown a range of specificity of diagnosis of 90-100% with a range of
sensitivities from 84-97% (Wolberg and Mangasarian, 1993). These studies have been
produced in centres specializing in the diagnosis of breast disease by pathologists with a special
interest in breast cytopathology. In less specialized centres, such as district general hospitals,
when a diagnostic FNAB service is being set up the performance is in the lower range of those
values with a specificity of 95% and a sensitivity of 87% (Start et al.,*1992). The most
important performance parameter is the specificity, since a malignant diagnosis on FNAB,
combined with clinical assessment, will be the sole diagnostic step before definitive treatment
such as mastectomy or wide local excision of the lesion and a false positive result may lead to
unnecessary surgery. The acquisition of diagnostic expertise is a relatively slow process in
pathology with at least five years study and experience of pathology required before medically-
qualified doctors in Britain are allowed to sit the final professional pathology examinations
(Membership of the Royal College of Pathologists). During this period, trainee pathologists are
supervised by fully-qualified colleagues but it would be expected that their performance
without supervision in FNAB cytodiagnosis would fall well below the figures in published
studies. There is thus scope for an artificial intelligence decision-making tool in the
cytodiagnosis of breast FNAB to assist in training junior pathologists and to improve the
performance of experienced pathologists.

1.1 Background

The process of human diagnosis in pathology is not fully characterized but has been divided
into pattern recognition and heuristic algorithms (Underwood, 1987). In pattern recognition an
image is observed and compared with memories of past observations, the pathologist then
makes decisions as to whether the present image is sufficiently similar to past observations of
a particular diagnostic category to be assigned to that category. This process of decision-
making may take a very short period of time with no awareness of the process if the lesion falls
into a well-recognised diagnostic grouping, such as basal cell carcinoma of the skin. Heuristic
algorithms may be applied to lesions which are not classified by pattern recognition and usually
consist of branching trees with mutually exclusive branchin g points. Disadvantages of tﬁegé are
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into a diagnostic group very distant from the actual diagnosis and that some lesions have
features which lie on the borderline between criteria for the branching points. In the
cytodiagnosis of FNAB there are some observable features which are cited as being important
in the recognition of malignant cells, such features include variation in size of the epithelial cell
nuclei (pleomorphism), increase in the size of epithelial cell nuclei, prominent multiple
nucleoli within epithelial cell nuclei and intracytoplasmic lumina (Bottles et al., 1988; Trott,
1991; Quincey et al., 1991). However these publications do not attribute weights to these
features or indicate the significance of combinations of these features.

Some expert systems have been described which attempt to use human observations of features
in FNAB and then apply computers to process these observations and attach weight to the
presence and combination of features. Heathfield et al. (1990) describe a rule-based expert
system with rules derived from cytopathological textbooks and discussions with pathologists
but they do not give any results for the performance of the systemn on a test set of data. A
Bayesian belief network has been developed by Hamilton et al. (1994) using the observed
features of bare nuclei, cellularity, cohesion, pleomorphism, cell arrangement, nuclear size,
nucleoli, intracytoplasmic lumina, apocrine cells and mucinous background. The conditional
probability matrices relating each observed feature to the diagnosis were defined by a
cytopathologist. The network was tested using 40 cases, it is difficult to assess the results
because four categories of diagnosis were used (benign, malignant, atypical probably benign
and suspicious) but 6% of the true benign cases and 9% of the true malignant cases were
assigned to an equivocal category. Wolberg and Mangasarian (1993) have produced a large
study with a 420 case training set and 215 case test set and they have used a user-modified
computer-generated decision tree, the multisurface method of pattern separation and a
connectionist system with a back-propagation learning algorithm. Nine cytological features
were observed and given a scalar value of 1-10. On the test data set the decision tree method
gave a specificity of 97% with a sensitivity of 93%, the connectionist network a specificity of
99% and a sensitivity of 97%, the multisurface separation method produced 100% specificity
and sensitivity but some cases (such as cystosarcomas and cancer judged to have been missed
by the aspirating needle) were excluded before analysis.

In previous work by the authors (Downs, Harrison and Cross, 1994) we applied a powerful, but
little-known, neural network model (termed ARTMAP) to this task. Various configurations of
the model gave an accuracy of 94-95%, a sensitivity of 90-96%, and specificity of 92-99%
(for full details see Downs, Harrison and Cross, 1994). The model was shown to perform at
least as well as an expert human pathologist. However, these results were achieved using the
high-quality feature assignments provided by the human expert. Less experienced pathologists
are more likely to make incorrect feature assignments and thus provide “noisier” input data to
the model. This paper provides performance results for ARTMAP under such conditions.
Additionally, ARTMAP possesses symbolic rule extraction capabilities which support the
validation and justification of its diagnostic predictions. A detailed discussion of the ARTMAP
rules used in this domain is therefore provided.

The structure of the remainder of this paper is as follows therefore. Section 2 describes
ARTMAP and justifies the selection of this particular model for the task. Section 3 describes
the data used in the study, and the trials performed with ARTMAP. Section 4 details the results.
Section 5 describes and evaluates the symbolic rules extracted from ARTMAP that are used to
make diagnosis decisions. Section 6 discusses the findings and suggests directions for further
research.



2 ARTMAP

2.1 Motivation for use of ARTMAP

Advances in neurocomputing have opened the way for the establishment of decision support
systems which are able to learn complex associations by example. The main thrust of work in
this area has been in the use of the so-called feedforward networks to learn the association
between evidence and outcome. Examples of such networks include the MultiLayer
Perceptron, MLP, (Rumelhart, Hinton and Williams, 1986) or the Radial Basis Function
networks, RBFN (Moody and Darken, 1989).

The MLP or the RBFN have been shown to be rich enough in structure so as to be able to
approximate any (sufficiently smooth) function with arbitrary accuracy (Cybenko, 1989; Park
and Sandberg, 1991). Thus, given sufficient data, computational resources (the MLP, in
particular, does not scale well with problem size) and time (non-linear optimization which is
non-linear in the parameters may be time consuming to perform, numerically), it is possible to
estimate the Bayes-optimal classifier to any desired degree of accuracy, directly and with no
prior assumptions on the probabilistic structure of the data. This is an attractive scenario and
has been extensively exploited in medical diagnosis.

A common criticism of the neural network approach is that the rules governing the predicted
outcome are obscure, leading to a strong resistance to acceptance amongst potential users who
wish to be convinced that the underlying model captures the salient features of the domain and
is able to offer an explanation of its diagnosis in terms understood by the user. Attempts to
extract domain rules from feedforward networks have met with limited success, with, so far,
no completely general method published (Towell and Shavlik, 1993; Ma and Harrison, 1994).

The feedback architecture, ARTMAP (Carpenter, Grossberg and Reynolds, 1991), possesses a
number of attractive features not found in feedforward networks such as: a dynamic
architecture which “designs” itself; the ability to distinguish rare from frequent events, and
more recently it has been demonstrated that, in a modified form, it can classify data optimally,
in a Bayesian sense (Lim and Harrison, In Press).

For full details of the advantages provided by ARTMAP for medical domains generally see
Harrison, Lim and Kennedy (1994) and Downs, Harrison and Kennedy (1994). However, in
this work, ARTMAP was selected primarily for two reasons. First, it has been demonstrated to
provide superior performance to both statistical and rival neural network approaches. With the
same data used in Downs, Harrison and Cross (1994), logistic regression achieved an accuracy
of 92%, sensitivity of 90%, and specificity of 94%: a MLP had accuracy, sensitivity and
specificity of 92% (Cross et al., In Press). In comparison (see section 1.1), ARTMAP showed
both superior sensitivity and specificity. Second, ARTMAP provides explicit symbolic rules
which can be easily understood by a human user. This capability will be discussed in detail
within this paper (see section 2.2.2 and section 5).

2.2 Overview of ARTMAP

ARTMAP (Carpenter, Grossberg and Reynolds, 1991) is a self-organizing, supervised
learning, neural network model for the classification of binary patterns. It is one of a series of
models based upon Adaptive Resonance Theory, or ART, (Carpenter and Grossberg, 1991) an
outgrowth of competitive learning which overcomes the stability problems of that paradigm



(Grossberg, 1987). This is achieved by utilizing feedback between layers of input and category
nodes in addition to the standard feedforward connections of competitive leaming. Thus, in
ART models, an input pattern is not automatically assigned to the category that is initially
maximally activated by the input. It should also be noted that most ART models, including
ARTMAP, employ a localist representation for category nodes owing to the so-called “winner-
take-all” competitive learning dynamics.

ARTMAP itself consists of three modules, two ART 1 systems (Carpenter and Grossberg,
1987) termed ART, and ART}, and a related structure termed the map field. During training,
input patterns are presented to ART, together with their associated teaching stimuli at ART,.
Associations between patterns at ART, and ART, are then formed at the map field. During
testing, supervisory inputs at ART,, are omitted, and instead the inputs at ART, are used to
recall a previously learned association with an ART, pattern via the map field. ARTMAP does
not directly associate inputs at ART, and ART;, Instead, such patterns are first self-organized
into prototypical category clusters before being associated at the map field. Hence generalized
associations are formed.

Training in ARTMAP almost always results in multiple category clusters forming at ART, for
each teaching category present at ART,,. Each such ART, cluster thus represents a significant
sub-region of the overall state space covered by a particular teaching category. It can be seen
therefore that ARTMAP instantiates a many-to-one mapping between ART, input patterns and
their actual classification.

For the purposes of this paper, three further features of ARTMARP are of particular note, the
voting strategy, symbolic rule extraction and caregory pruning. These are described in detail
next.

2.2.1 Voting Strategy

The formation of category clusters in ARTMAP is affected by the order of presentation of input
data items (Carpenter et al., 1992). Thus the same data presented in a different order to separate
ARTMAP networks can lead to the formation of quite different clusters within the two nets.
This subsequently leads to different categorisations of test data, and thus different performance
scores. This effect is particularly marked with small training sets and/or “wide” input vectors,
where the input items may not be fully representative of the domain, and with single-epoch
training.

This effect can be compensated for by the use of the ARTMAP voting strategy (Carpenter et
al.,, 1992). This works as follows: a number of ARTMAP networks are trained on different
orderings of the training data. During testing, each individual network makes its prediction for
a test item in the normal way. The number of predictions made for each category is then totalled
and the one with the highest score (or the most “votes”) is the final predicted category outcome.
The voting strategy can provide improved ARTMAP performance in comparison with the
individual networks. In addition it also provides an indication of the confidence of a particular
prediction, since the larger the voting majority, the more certain is the prediction.

2.2.2 Symbolic Rule Extraction

Most neural networks suffer from the opaqueness of their learned associations (Towell and
Shavlik, 1993). In medical domains, this “black box” nature may make clinicians reluctant to



utilise a neural network application, no matter how great the claims made for its performance.
Thus, there is a need to supplement neural networks with symbolic rule extraction capabilities
in order to provide explanatory facilities for the network’s “reasoning”. ARTMAP has recently
been endowed with such capabilities (Carpenter and Tan, 1993; Tan, 1994). The act of rule
extraction is a straightforward procedure in ARTMAP compared with that required for
feedforward networks since there are no hidden units with implicit meaning. In essence, each
category cluster in ART, represents a symbolic rule whose antecedent is the category prototype

weights and whose consequent is the associated ARTy, category (denoted via the map field).
2.2.3 Category Pruning

An ARTMAP network can often become “over-specified” on the training set, generating many
low-utility ART, category clusters which represent rare but unimportant cases, and
subsequently provide poor-quality rules. The problem is particularly acute when a high ART,
baseline vigilance level is used during training. To overcome this difficulty, rule extraction
involves a “preprocessmg” stage of category prumng This involves the deletion of these low
utility nodes. Pruning is guided by the calculation of a confidence factor (CF) between nought
and one for each category cluster, based equally upon a node’s usage (proportion of training
set exemplars it encodes) and accuracy (proportion of correct predictions it makes on a separate
prediction set). All nodes with a confidence factor below a user-set threshold are then pruned.
Full details of the process are given in Carpenter and Tan (1993) or Tan (1994).

The pruning process can provide significant reductions in the size of a network. In addition, it
also has the very useful side-effect that a pruned network’s performance is usually superior to
the original, unpruned net on both the prediction set and on entirely novel test data.

3 Patients and Methods
3.1 Study Population

The total data set composed cytological specimens from 413 FNAB prepared by a
cytocentrifuge method and stained by the Papanicolaou method. (Dundas et al., 1988) The final
outcome of benign disease or malignancy was confirmed by open biopsy where that result was
available. In benign aspirates with no subsequent open biopsy a benign outcome was assessed
by clinical details on the request form, mammographic findings (where available) and by
absence of further malignant specimens. A malignant outcome was confirmed by histology of
open biopsy or clinical details where the primary treatment modality was chemotherapy or
hormonal therapy. Idiosyncratic cases were not removed prior to use with the neural network.

3.2 Human Observations

Ten observable features were defined to give a binary value. The features were cellular
dyhesion, intracytoplasmic lumina, “three-dimensionality” of epithelial cell clusters, bipolar
“naked” nuclei, “foamy” macrophages, multiple prominent nucleoli, nuclear pleomorphism,
nuclear size, necrotic epithelial cells and apocrine change. The precise definitions of these

! With continuously-valued category weights, rule extraction also involves a second preprocessing stage
of quantization (see Carpenter and Tan, 1993). However, we prefer to use binary data under so-called
fasi-learn conditions (Carpenter et al.,1992) which yields purely binary category weights and subse-
quently provides rules of greater clarity. Quantization is therefore omitted in this application.



features are given in Appendix 1, together with their abbreviated names used for symbolic rule
extraction. The observations on the specimens were made independently by a senior
pathologist with 10 years experience of interpreting FNAB and a junior pathologist with 18
months experience. The observations were made blind to clinical details or outcome and the
pathologists recorded their diagnosis for each case. The interobserver agreement between the
two pathologists was assessed using kappa statistics (Silcocks, 1983).

3.3 Method

Ten ARTMAP networks had been trained previously on 313 data items using the senior
pathologists feature assignments. A severely pruned version of each network had also been
derived using the remaining 100 items as a prediction set and a CF threshold for pruning of 0.7.
(Downs, Harrison and Cross, 1994, gives full details.)

An independent test set was derived from the junior pathologist’s feature assignments for 82
randomly selected malignant cases and 82 benign cases. Performance results on this test set
were recorded for each individual pruned and unpruned network, as well as for the voting
strategy using five unpruned nets and five pruned nets. ART, baseline vigilance for testing was
set to 0.6 for the unpruned nets and 0.5 for the pruned nets ensuring forced choice prediction.
This closely replicated the original test procedure which had used data from the senior
pathologist (Downs, Harrison and Cross, 1994).

4 Results

Table 1 below shows the junior pathologist’s performance on the test set in comparison with
that of the various ARTMAP networks. (Full details of the individual ARTMAP networks’
performance are given in tables 2 and 3 in Appendix 2).

Table 1: Relative Performance of Junior Pathologist and Network Types

Accuracy Sensitivity Specificity
(%) (%) (%)
Junior Pathologist 78.7 TT
Unpruned ARTMAP—Individual Mean 737 66.7 80.7
Unpruned ARTMAP—Voting Strategy 75.0 74.4 75.6
Pruned ARTMAP—Individual Mean 76.0 57.6 94.5
Pruned ARTMAP—Voting Strategy 75.6 573 93.9

In Downs, Harrison and Cross (At Review) it was observed that pruning had the effect of
biasing network performance towards increased specificity (an essential requirement for the
domain, see section 1), and also that the voting strategy always gave improved performance
(albeit slight) over the individual networks. With the data used here, it can be seen that the
former effect still occurs, but the latter does not. More importantly, performance of all types of
network is not significantly better than that of the junior pathologist. The unpruned networks
show better sensitivity but possess unacceptable specificity. The pruned networks achieve
higher specificity but at the expense of reducing sensitivity to a very similar level to that of the



junior pathologist.

Kappa statistics for the observations of each of the features, reflecting the level of agreement
between the senior and junior pathologists, show that for most of the features there was only a
moderate level of agreement (about 0.40 for the raw kappa scores, see table 2) and this lack of
agreement will be the cause of the reduction in network performance when using the junior
pathologist's data. Three of the features, “naked” nuclei, “foamy” macrophages and necrotic
epithelial cells, had low levels of agreement that were little better than that expected by chance.
Each of these features require a high level of interpretation by the pathologist to identify the
cell type (“naked”, “foamy” or epithelial) and to assess its apparent biological viability or non-
viability at the time of sampling (necrosis). The feature with the highest level of agreement,
nuclear size, had the clearest definition requiring least interpretation - the observer simply had
to assess whether any epithelial cell nuclei had diameters greater than twice that of adjacent
lymphocyte nuclei. The other two features which are prominent in the extracted ARTMAP
rules (see section 6) are multiple nucleoli and nuclear pleomorphism and both had reasonable
levels of agreement. The second column in table 2 gives the ratio of the raw kappa statistic to
the maximum possible kappa value in each particular confusion matrix, providing correction
for uneven marginals. However, it should be noted that the uneven marginals are themselves
caused by lack of agreement between observers so the first column may be the best reflection
of interobserver agreement.

Table 2: Kappa statistics for the confusion matrices of observations of each feature by a
senior and junior pathologist

Feature Kappa Statistic Ratio Kappa/Kappa Max

— — .
Dyshesion 0.43 0.50
Intracytoplasmic lumina 0.34 0.60
“3D” epithelial cell clusters 0.38 0.40
“Naked” nuclei 0.15 0.38
“Foamy”’ macrophages 0.18 0.56
Multiple nucleoli 0.49 0.69
Nuclear pleomorphism 0.40 0.71
Nuclear size 0.55 0.71
Necrotic epithelial cells 0.16 0.21
Apocrine change 0.44 0.99

5 Symbolic Rules

As mentioned previously in section 2.2, the ability to extract symbolic rules from neural
networks is an important enhancement to their use as decision-support tools in medical
domains. Such symbolic rules provide two advantages which, taken collectively, should help
to overcome reluctance to utilize a neural network decision-support tool.

First, a domain expert can examine the complete rule set in order to validate that the network



has acquired an appropriate mapping of input features to category classes.

Second, the symbolic rules provide explanatory facilities for the network’s predictions during
on-line operation. In the case of ARTMAP this corresponds to displaying the equivalent rule
for the ART, cluster node that was activated to provide a category decision. (In the case of the
voting strategy, a number of such rules, one per voting network, would be displayed.) The
diagnosing clinician is then able to decide whether or not to concur with the network’s
prediction, based upon how valid they believe that rule to be.

Before discussing the specific rules discovered by ARTMAP for this domain, some discussion
of the general nature of the rules is needed. These are of a somewhat different nature from those
found in conventional rule-based expert systems. Expert system rules are “hard”—an input
must match to each and every feature in a rule’s antecedent before the consequent will be
asserted. In ARTMAP the rules are “soft”—recall that they are derived from prototypical
category clusters which are in competition with each other to match to the input data. Exact
matching between inputs and categories is not necessary, merely a reasonably close fit suffices.
(The degree of inexactitude that is tolerated being determined by the value of the ART,
vigilance parameter.) This provides greater coverage of the state space for the domain using
fewer rules.

Additionally, ARTMAP rules are self-discovered though exposure to domain exemplars, rather
than having been externally provided by a human expert. ARTMAP is thus able to bypass the
difficult and time-consuming knowledge- acqulsmon process found with rule-based expert
systems (Hayes Roth, Waterman and Lenat, 1983)%. A drawback of this approach is that the
rules are “correlational” rather than causal, since ARTMAP possesses no underlying theory of
the domain but simply associates conjunctions of input features with category classes. (Of
course, this problem is not specific to ARTMAP but occurs with neural networks generally.)
However, this difficulty is probably not of great importance from an applications viewpoint
since useful diagnostic performance can often be achieved from correlational features without
recourse to any “deep” knowledge of the domain.

A final general point concerns the learning rule in ARTMAP which governs the formation of
category clusters, and hence the rules that will be derived from these clusters. Under the “fast-
learning” conditions used in this application, whenever an input is successfully matched to an
existing category cluster node the new weights for that node are formed by taking the logical
AND of the input pattern and the existing weights for that cluster. This has the effect of deleting
all features from the category cluster weights that are not also present in the input pattern.
Hence, the weights tend to denote progressively more general clusters as they encode more
input patterns and more features are deleted. Additionally, all features that are still present in
the weights for a cluster once training ceases are known to have been present in all input vectors
encoded by that cluster.

Rule extraction from the 10 pruned nets used in this domain yielded 14 distinct rules, 12 for
malignant outcomes and 2 for benign. The full list of rules is shown in table 3, ranked by how
many of the 10 pruned networks each rule occurred in. No single rule in the set should be taken
as canonical, since each is derived from a node which covers only a portion (albeit an important
one) of the overall state space covered by each diagnostic category. However, taking the rules

2 However, collection of the data may itself be a non-trivial task in many medical domains.



as a whole, a picture of a typical benign or malignant case can be constructed.

Table 3: Symbolic Rules Extracted from Pruned ARTMAP Networks

Rule 1 (10 Occurrences)
IF

NO-SYMPTOMS
THEN

BENIGN

Rule 4 (7 Occurrences)
IF

FOAMY=TRUE
THEN

BENIGN

Rule 7 (3 Occurrences)

IF
FOAMY=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 10 (2 Occurrences)
IF
3D=TRUE
FOAMY=TRUE
PLEOMORPH=TRUE
SIZE=TRUE
NECROTIC=TRUE
THEN
MALIGNANT

Rule 13 (1 Occurrence)

IF
FOAMY=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE
NECROTIC=TRUE

THEN
MALIGNANT

Rule 2 (8 Occurrences)

IF
3D=TRUE
NUCLEQLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 5 (4 Occurrences)

IF
ICL=TRUE
3D=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 8 (3 Occurrences)

IF
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 11 (2 Occurrences)

IF
DYS=TRUE
ICL=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 14 (1 Occurrence)

IF
ICL=TRUE
3D=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 3 (8 Occurrences)

IF
3D=TRUE
FOAMY=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 6 (4 Occurrences)

IF
DYS=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Rule 9 (2 Occurrences)

IF
3D=TRUE
FOAMY=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE
NECROTIC=TRUE

THEN
MALIGNANT

Rule 12 (1 Occurrence)

IF
ICL=TRUE
NUCLEOLI=TRUE
PLEOMORPH=TRUE
SIZE=TRUE

THEN
MALIGNANT

Benign cases are likely to display either no features, or the FOAMY feature in isolation.
Malignant cases are almost certain to display a combinaton of NUCLEOLI, PLEOMORPH
and SIZE. The 3D feature is also strongly implicated in malignancy. FOAMY, ICL,
NECROTIC, and DYS may further be present, although with a lower likelihood. The senior

10



pathologist in this study confirmed the validity of these rules and the relative importance of the
features, with the exception that he places no value on the presence or absence of the FOAMY
feature. This matter will be discussed later in this section.

Wells et al. (1994) provide a canonical list of diagnostic criteria for FNAB which includes all
features used in this study, although no assessment of their relative importance or likelihood is
given. In summary, they cite FOAMY, APQCRINE and NAKED as indicators of benignancy,
and all other features used here as indicators of malignancy. The self-discovered rules of
ARTMAP show good overall agreement with these criteria apart from two notable exceptions.
First, APOCRINE and NAKED are conspicuous by their absence from any of the ARTMAP
rules. Second, FOAMY has an ambiguous status, being present in rules for both benign and
malignant outcomes.

The first discrepancy can be explained by reference to the way in which CFs are calculated for
nodes in ARTMAP based equally upon both usage and accuracy (see section 2.3). The high CF
threshold for pruning in this application requires a node to be both highly accurate and to
encode a large proportion of exemplars of a particular category. It is thus possible for a node
with very good predictive accuracy but low usage to be pruned. This indeed happens in the case
of nodes containing the APOCRINE and NAKED features, which both occur rarely in the data.
Examination of the original, unpruned networks revealed the frequent occurrence of nodes
where these features, in isolation or conjunction with the FOAMY feature, indicate a benign
diagnosis. Although such nodes usually have a perfect accuracy score, they also have a very
low usage score and hence their overall CF value falls below the threshold for pruning.

In future work this anomaly might be corrected by using a different weighting for the CF
calculation, so as to bias the overall CF score more towards accuracy than usage. However, this
has the risk that the resultant networks will possess incomplete coverage of all possible cases
in the domain owing to the absence of high usage nodes encoding general cases.

The status of the FOAMY feature is more problematic. Wells et al. (1994) classify it as an
indicator of benignancy. However, the senior pathologist in this study regards its occurrence as
little more than “background noise” which is as likely to be found in malignant cases as benign.
Its status in the ARTMAP rules is certainly ambiguous. In isolation, the FOAMY feature
frequently indicates a benign outcome. However, it is also present, in conjunction with other
features, in a number of rules with malignant outcomes.

The frequent occurrence of this feature in the rules as a whole indicates that it is present in a
large proportion of the data, regardless of outcome. (Otherwise, the feature would usually be
deleted from the node weights by the learning rule during training.) If the relative frequency of
occurrence is considered, the feature can be seen to be present in 1 of the 2 distinct rules for
benignancy, and 5 of the 12 for malignancy. Alternatively, if occurrence without regard for
distinctiveness is considered, it occurs in 7 of the 17 benign rules and 16 of the 39 malignant
rules. By either calculation the proportions are very similar. We therefore conclude that, at least
for this particular data set, the FOAMY feature tends more towards being “background noise™
than a useful indicator of benignancy. This conclusion may be tested in future work by training
new networks which omit the FOAMY feature from the inputs and observing whether
performance is subsequently degraded.

6 Discussion

The findings in section 4 indicate that although the existing ARTMAP application should prove
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useful as decision-support tool for senior pathologists (Downs, Harrison and Cross, 1994), its
performance is inadequate with poor-quality input data provided by a junior pathologist. The
results further suggest that initial feature identification rather than subsequent diagnostic
decision-making is the key criterion which distinguishes expert and neophyte performance in
this domain. If this hypothesis is verified by further research, it obviously has implications for
the training of junior pathologists in this field.

Further studies are required with a larger number of pathologists to evaluate the levels of
agreement in identification of the observed features used by the network. Sets of cases should
be selected for each feature which, in the opinion of an experienced pathologist, have the
feature present in 50% of the cases. This means that kappa statistics give a more realistic view
of agreement on each feature since the interlinkage that occurs when using one set for all
features is lost and features which are rare in unbiased data sets are less likely to produce
uneven marginals in the confusion matrices. The junior pathologist in this study was given a
brief training session in the identification of the features using a microscope which allows
simultaneous viewing of a slide by two observers but they did not have reference material
available during their coding of the features which was spread over several weeks.
Photographic examples of each feature could be provided to be used in visual comparison
during the coding of features and this might produce less noisy data.

It would of course also be desirable if the network could be modified so as to improve
performance on the “noisy” data provided by the junior pathologist. However, as yet we have
no substantial ideas as to how this might be achieved, if indeed it can.

The symbolic rule extraction process described in section 5 provides more positive immediate
results. ARTMAP has been shown to have acquired autonomously a valid mapping from input
features to category classifications for the domain. This mapping is made explicitly available
by means of the symbolic rules, and thus the “black box” criticism common to neural networks
is alleviated.

From a purely Al viewpoint, we would further hope that ARTMAP’s symbolic rules might
serve another purpose beyond validation and justification of predictions—the discovery of
novel information about the domain and/or the resolution of disagreements between domain
experts about diagnostic criteria. For example, the ARTMAP rules provide an indication of the
relative importance of different indicators of malignancy, based upon both frequency of
occurrence and predictive accuracy, a matter on which no canonical information seems to be
available. Furthermore, the rules suggest that the FOAMY feature should not perhaps be
regarded as an important indicator of benignancy.
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Appendix 1: Definition of Input Features

DYS: True if majority of epithelial cells are dyshesive, false if majority of epithelial cells are
in cohesive groups.

ICL: True if intracytoplasmic lumina are present, false if absent.

3D: True if some clusters of epithelial cells are not flat (more than two nuclei thick) and this is
not due to artefactual folding, false if all clusters of epithelial cells are flat.

NAKED: True if bipolar “naked” nuclei in background, false if absent.
FOAMY: True if “foamy” macrophages present in background, false if absent.

NUCLEOLI: True if more than three easily visible nucleoli in some epithelial cells, false if
three or fewer easily visible nucleoli in epithelial cells.

PLEOMORPH: True if some epithelial cell nuclei with diameters twice that of other epithelial
cell nuclei, false if no epithelial cell nuclei twice the diameter of other epithelial cell nuclei.

SIZE: True if some epithelial cells with nuclear diameters at least twice that of lymphocyte
nuclei, false if all epithelial cell nuclei with nuclear diameters less than twice that of
lymphocyte nuclei.

NECROTIC: True if necrotic epithelial cells present, false if absent.

APOCRINE: True if apocrine change present in all epithelial cells, false if not present in all
epithelial cells.
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Appendix 2: Performance of ARTMAP networks using Junior Pathologist’s
Feature Classifications

Table 4: Unpruned Network Performance

Network Number Accuracy (%) Sensitivity (%) Specificity (%)
-1 76.2 768 756 |
2 68.9 58.5 79.3
3 76.8 63.4 90.2
4 74.4 73.2 75.6
5 75.0 56.1 93.9
6 75.0 74.4 75.6
7 68.3 62.2 74.4
8 75.6 80.5 70.7
9 75.0 32.3 92.7
10 72.0 64.6 79.3
Mean 473.7 T 66.7‘ o 80.7;
Table 5: Pruned Network Performance
I;f;;g: Accuracy (%) Sensitivity (%) | Specificity (%) N%I;:;%T:Sis
;-rl =‘/‘5.6 4-757.3 T 93.9; 0 ]
2 76.8 58.5 95.1 1
3 75.6 57:3 039 1
4 75.6 549 96.3 1
5 75.6 513 939 1
6 76.8 56.1 97.6 1
7 76.8 573 96.3 0
8 76.2 61.0 914 1
9 75.6 58.5 92.7 1
___1_0 75.6 57.3= =93.9 | 1
Mean 76.0 57.6 94.5
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