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Abstract

This paper presents an investigation into the nature of advanced high performance complex
instruction set computer (CISC) processors, reduced instruction set computer (RISC)
processors and digital signal processing (DSP) devices. Several DSP and control
algorithms of regular and irregular nature are considered to explore the real-time
characteristics of the different 'p'fdbes'éors. The algorithms are implemented on several
CISC, RISC and DSP processors. The hardware and software resources and capabilities of
the processors and the characteristics of the algorithms are discussed to provide a
matching between the algorithms and the architectures. Finally, a comparison of the
results of the implementations is made, on the basis of real-time computation performance,
to lead to merits of development of fast processing techniques for real-time DSP and

control applications.

Key words: Digital signal processing, complex instruction set computer, reduced

instruction set computer, active vibration control.
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1 Introduction

Microprocessor - the brain of the computer is now a part of the development of human
life. In modern real-time digital signal processing (DSP) and control applications involving
complex and computationally intensive algorithms, however, performances are limited as
sampling times are becoming shorter with increasing performance demands. The
technology is developing at a rapid pace to overcome these high performance demands.
The basis of the development of microprocessors technology is based on the (i) processing
speed, (ii) processing ability, (iii) communication ability, and (iv) control ability. Every
year brings new devices, new functions, and new possibilities. An imaginative and effective
architecture for today could be klunker for tomorrow, and likewise, a ridiculous proposal
for today may be ideal for tomorrow. There are no absolute rules to say that one
architecture is better than another. In terms of design strategy, performance and facility
every microprocessor possesses its own speciality (Carr, 1990; Stone, 1990).

For microprocessors with widely different architectures, performance measurements
such as MIPS (million instructions per second) and MFLOPS (million floating-point
operations per second) are meaningless. Of more importance is to rate the performance of
each microprocessor on the type of program likely to be encountered in a typical
application. The different architectures of microprocessors and their different clock rates,
memory cycle times etc. all confuse the issue of attempting to rate the processors. This is
an inherent difficulty to select microprocessors, for better performance in signal processing
and control system development applications. The ideal performance of a microprocessor
demands a perfect match between processor capability and the program behaviour.
Processor capability can be enhanced with better hardware technology, innovative
architectural features and efficient resources management. From the hardware point of
view, currently performance varies due to the fact that whether the processor possesses
pipeline facility, superscalar facility, is microcode operated, has internal cache or internal
RAM, built-in math-coprocessor, floating point unit etc. In contrast, program behaviour is

difficult to predict due to its heavy dependence on application and run-time conditions.
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There are also many other factors affecting program behaviour, including algorithm design,
data structures, languages efficiency, programmer skill, and compiler technology
(Anderson, 1991; Hwang, 1993).

Conventional processors such as the Intel 486, 386, M68040, VAX/8600 and IBM
390 fall into the family known as CISC architecture. The typical clock rate of today's CISC
processors ranges from 33 to 50 MHz. With microprogrammed control, the cycles per
instructions (CPI) of different CISC instructions varies from 1 to 20. The CISC processors
possess 8-24 general purpose registers, mostly with a unified cache for instructions and
data, recent designs also use split caches. The addressing modes are normally within 12 to
24. Some modern CISC central processing units (CPUs) use hardwired control instead of
microprogrammed control. In contrast, today's RISC processors, such as the Intel 1860,
SPARC TMS390S10, MIPS R3000 and IBM RS/6000 have faster clock rates ranging
from 20 to 120 MHz determined by the implementation technology employed. With the
use of hardwired control, the CPI of most RISC instructions has been reduced to 1 to 2
cycles. The RISC processors possess limited addressing modes (typically, 3 to 5) and large
numbers of general purpose registers (typically 32 to 192) with mostly split data cache and
instruction cache. The superscalar processors, which allow multiple instructions to be
issued simultaneously during each cycle, form a special subclass of RISC processors. Thus,
the effective CPI of a superscalar processor should be lower than that of a generic scalar
RISC processor. The clock rate of a superscalar processor matches that of a scalar RISC
processor. The very long instruction word (VLIW) architecture uses even more functional
units than a superscalar processor. Thus, the CPI of a VLIW processor can be further
lowered. Due to the use of very long instructions, VLIW processors have been mostly
implemented with microprogrammed control. Thus, the clock rate is slow with the use of
read-only memory (ROM). A large number of microcode access cycles may be needed for
some instructions (Hwang, 1993). In contrast, an important goal in DSP hardware design
is to optimise both the hardware architecture and the instruction set for DSP operations.
This is achieved by making extensive use of the concepts of parallelism. In particular, the

key architectural features used are (i) Harvard architecture, (i) pipelining, (iii) fast,
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dedicated hardware multiplier/accumulator, (iv) special instructions dedicated to DSP, (v)
replication (more than one ALU, multiplier or memory unit) and (vi) on-chip
memory/cache. The main advantage of DSP devices over general purpose microprocessors
is that they contain dedicated circuitry which provides high resolution and high speed
arithmetic operations. In some cases, for instance TMS320C40, the device possesses
special features, e.g. parallel high speed communication links.

All microprocessors possess their own speciality for specific applications. This leads
to inherent difficulties to explore comﬁarative performance of different microproceésors.
To explore the real-time performance in particular applications it is essential to implement
the algorithm of that application into the processors. This paper presents an investigation
into the performance evaluation of currently available high performance CISC, RISC and
DSP processors in real-time applications. It explores the comparative hardware and
software resources and real-time computational performances in implementing several
complex and demanding algorithms in control and signal processing applications. These
include, a fast Fourier transform (FFT) algorithm, a second order correlation algorithm,
two different adaptive filter algorithms, a simulation algorithm of a flexible manipulator
system and simulation, identification and active vibration control algorithms for a flexible
beam system. The algorithms considered are described and classified according to their
degree of regularity. The classifications are made on the basis of algorithms structure and
in comparison to each other.

The algorithms are implemented on a number of different CISC, RISC and DSP
processors, namely, an Intel 80860 (i860) RISC processor, a Texas Instruments
TMS320C40 (C40) DSP processor, a SPARC TMS390S10 RISC processor, an Inmos
T805 (T8) transputer RISC processor, a 486DX2 CISC processor and a 386DX CISC
processor. The hardware and software resources and capabilities of the processors and the
characteristics of the algorithms are discussed to explore the matching between the
algorithms and architectures. Finally, a comparison of the results of the implementations is
made, on the basis of real-time computation performance, to lead to merits of developing

fast processing techniques for real-time applications.
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2 Hardware

Six different RISC, CISC and DSP processors are considered in this investigation for real-
time performance evaluation in implementing several signal processing and control

algorithms. These are described below.

2.1 The 386DX (40)

The 386DX (40) is the Intel's 80386DX microprocessor. It éonsists of 275,000 transistors
with external and internal 40 MHz clock speed and nearly 12 MIPS power. This is a CISC
processor, possessing 32 - bit data bus and 32 address lines, allowing to address up to 4
gigabytes of physical memory. Moreover, the chip can handle up to 16 terabytes of virtual
memory. It incorporates 16 bytes of pre-fetch cache memory. This special on board
memory area is used to store the next few instructions of the program the chip is
executing. Independently of the calculating portion of the chip, a special circuitry loads
software code into this memory before it is needed. This small cache helps the 386 run
more smoothly, with less waiting as code is retrieved from system memory. The virtual
mode facility of the 386 processor gives freedom in running DOS program. This mode
enables a single 386 microprocessor to divide its memory into many virtual machines, each
machine alike entirely separate computer equipped with an 8086 microprocessor. This
implies the multitasking facility of the 386 processor. The processor, however, does not
have any intemal or external math-coprocessor, floating point unit and pipelining facility.

Moreover, it does not have internal cache or internal memory (Rosch, 1993).

2.2 The 486DX2 (50)

The 486DX2(50) is the Intel's CISC 80486DX2 processor. It consists of 1,200,000
transistors with internal and external 50 MHz clock speed and 54 MIPS. From a software
standpoint, the 486 is distinguished from the 386 by one flag, one exception, two page-

table entry bits, six instructions, and nine control register bits. The hardware of the 486,
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however, differs su!:;stantially from the 386 and the changes mean more speed. Most
important of these changes are a streamlined hardware design, tighter silicon design rules,
an integral math-coprocessor, instruction pipelining, a built-in floating point unit and
internal memory cache.

The streamlined hardware design (particularly its pipelining) means that the 486 can
think faster than a 386 microprocessor when the two are operating at the same clock
speed. Therefore, a 33 MHz 486 is faster than a 33 MHz 386. On most applications, the
486 is about twice as fast as a 386 at the same clock rate. Because of its improved internal
design, the 486 reduces the number of clock cycles for most instructions.

Inside the chip, size has a more important influence. The larger a logic circuit element,
the more power it can handle, and the more power it takes to make it work. Inside today's
microprocessors, the primary limit to speed is heat dissipation. Running a chip too fast will
heat its silicon until it boils its life away. Smaller circuits require less power, so they
generate less heat and can operate faster. The 486 pioneered one-micron design rules,
which means that the finest details etched into chip measure one micron across (Rosch,
1993).

The 80486 incorporates all the necessary coprocessor circ.uitry on the same slice of
silicon. This internal coprocessor nearly doubles the performance of the processor. The
faster a microprocessor operates, the more it suffers from the shortcomings of today's slow
DRAM chips. In some systems, microprocessors spend one-third or more of their time
waiting for memory to catch up. The 486 helps minimise the effect of this memory
slowdown by incorporating its own high-speed memory cache. The cache in a 486 is
organised as a four-way set associative design which essentially splits up its 8K total size
as four smaller 2K caches, an arrangement that further enhances its performance,

particularly in multi-threaded applications.
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2.3 SPARC TMS390510

SPARC is an acronym for Scalable Processor ARChitecture. Despite its independence
from hardware implementation, the "scalable” part of the SPARC name refers to chip
technology; specifically to the size of the smallest lines on the chip. The simple design of
SPARC enables the chip design rules to be tightened easily (making the lines smaller) as
fabrication technology improves. The result is a chip with finer details and more compact
layout that enables faster operation. The Texas Instruments TMS390S10 is a RISC
processor, possessing individual floating-point unit, integer unit and memory management
unit (MMU) with 50 MHz clock speed, on-chip data and instruction cache. This is a
processor within multi-tasking SUN system for which the performance at any time

depends on the number of users.

2.4 The T805 transputer

The transputer (TRANSistor comPUTER) is high a performance microprocessor designed
by INMOS Ltd. to facilitate interprocess and inter-processor communication and is
targeted at the efficient exploitation of very large scale integration (VLSI) technology. The
most important feature of the transputer is its external links which enables it to be used as
a building block in the construction of low cost, high performance multiprocessing
systems. Communication takes place (via these links) only between pairs of devices and it
is distributed throughout the system, thus, overcoming the classic Von Neumann bottle-
neck which is often encountered in bus-based systems. The particular technology used for
the construction data bus effectively dictates an upper bound on the number of
communications in these systems, whereas in a transputer based system, further processors
can be added indefinitely. However, it should be noted that the efficient ‘use of the
processors in an arbitrary transputer network for an arbitrary application, is still a topic of
intense research where definite solutions are not yet available. Moreover, even single
processor applications can make use of the concurrent operation of the CPU and link

processors. For example, at any one instant, the CPU might be processing one item of
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data, one of the links might be transferring the next item of data from disk to memory and
a further link might be transferring the previous calculated result from memory to disk.
The transputer family consists of several types of VLSI devices including the 16-bit
T212, T225, the 32-bit T414, T425 and the floating-point T800, T805 and T9000
processors. The architectural features of T80S5, capable of operating concurrently with

other features, are as follows (Transtech Parallel Systems Ltd, 1993).

e The T805 is 84 pin VLSI microchip measuring 27 x 27 x 2mm and a typical
architecture can incorporate a single T805 floating point transputer with 2MBytes of
external memory on a board measuring a mere 90 x 53 x 15mm.

e It is a 32-bit RISC processor, with 25MHz clock speed and is able to yield up to
20MIPS performance, including hardware support for simulating concurrence on a
single processor by time slicing the CPU.

o It has fast on-chip 4KBytes static RAM .

e It incorporates external memory controller with either multiplexed address and data
buses for economy of device pins or non-multiplexed for performance.

e It has, typically, four high speed bi-directional links for communication between pairs
of devices within the family. The links operate at speeds of 20Mbits/sec and can
achieve data transfer rates of up to 1.7MBytes/sec unidirectionally or 2.3 MBytes/sec

bidirectionally.

2.5 The i860 microprocessor

The Intel i860 has been designed for numerically and vector intensive applications. Many
of the design principles used have been adopted from supper computer technology
enabling the i860 to deliver a peak arithmetic performance of 80MFLOPS (single
precision) and 60MFLOPS (double precision) in conjunction with a peak integer
performance of 40MIPS. In particular, its high throughput is achieved from a combination

of RISC design techniques, pipelined processing units, wide data paths and large on-chip
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caches. Implemented with a single chip with over 1 million transistors, the i860 supports a
64-bit architecture and is capable of executing up to three operations each clock cycle
(25ns @ 40MHz). On a single chip the architecture supports (i) integer operations, (ii)
floating point operation, (iii) graphics operations, (iv) memory-management unit and (v)
data cache and instruction cache.

All external or internal address buses are 32-bit wide, and the external data path or
internal data bus is 64-bits wide. However, the internal RISC integer ALU is only 32 bits
wide. The instruction cache transfers 64 bits per clock cycle, equivalent to 320 Mbytes/sec
at 40 MHz. In contrast, the data cache transfers 128 bits per clock cycle. There are two
floating-point units, namely, the multiplier unit and the adder unit, which can be used
separately or simultaneously under the co-ordination of the floating point control unit.
Special dual-operation floating-point instructions such as add-and-multiply and subtract-
and-multiply use both the multiplier and adder units in parallel. Furthermore, both the
integer unit and the floating-point control unit can execute concurrently. In this sense, the
i860 is also a superscalar RISC processor capable of executing two instructions, one
integer and one floating-point, at the same time. The i860 executes 82 instructions,
including 42 RISC integer, 24 floating-point, 10 graphics and 6 assembler pseudo
operations. All the instructions are executed in one cycle each. This equals 25 ns for a 40
MHz clock rate (Hwang, 1993).

The ability to provide all these facilities, on the same silicon, enables hardware
developing systems that are less dependent on many external components normally
associated with sophisticated computer systems. The i860 is an ideal candidate for
integration into highly parallel computer environments with high computational

performance, modularity and real-state requirements.

2.6 The TMS320C40
This is a high performance Texas Instruments 32-bit DSP device with 40 MHz clock

speed, 8KBytes internal memory, 512 bytes instructions cache and is capable of 40
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MFLOPS. This DSP processor possesses six parallel high speed communication links for
inter-processor communication; 20Mbytes/sec asynchronous transfer rate at each port for
maximum data throughput. The CPU is capable of 275 MOPS with the following key

features

Eleven operations/cycle throughput, resulting in massive computing and sustained

CPU performance.

e 25ns instruction cycle times.

e 40/32-bit single-cycle floating-point/integer multiplier for high performance in
computationally intensive algorithms.

» Single-cycle IEEE floating-point conversion for efficient interface to IEEE-compatible
Processors.

e Hardware divide and inverse square root support for high performance.

 Byte and half-word manipulation capabilities for fast data (un)packing.

e Support for linear, circular, and bit-reversed addressing for high performance.

 Single cycle branches, calls, and returns for fast program control.

* Relocatable reset and interrupt vectors for easy integration into parallel processing

systems.

In contrast, the device possesses two identical external data and address buses supporting
shared memory systems and high data rate, single-cycle transfers. Separate internal
program, data, and DMA coprocessor buses for support of massive concurrent /O of
program and data throughput, thereby, maximising sustained CPU performance. It
possesses a primary register file containing 32 registers and an expansion register file
consisting of two registers for coping with interrupts. As part of the primary register file
there are twelve extended precision, 40-bit registers designed to maintain extended floating
point precision. In the normal sense of a microprocessor these act as accumulators. Eight
auxiliary 32-bit registers support a variety of addressing modes and are used to generate a

32-bit address for local or global memory. The remaining registers support other system
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functions such as stack management, processor status, interrupt management, block
instruction repeats and various addressing modes. The components in the CPU are
serviced by two 32-bit register buses and two 40-bit CPU busses enabling the CPU to
achieve a very high degree of parallelism - one of the principal attributes of the C40

(Brown, 1991; Hwang, 1993; Texas Instruments, 1991).

3  Software support

The development of efficient programs in high-level languages requires the necessary
software support. In this context, compilers have a significant impact on the performance
of the system. This means that some high-level languages have advantages in certain
computational domains and some have advantages in other domains. The compiler itself is
critical to the performance of the system as the efficiency of the mechanism for taking a
high-level description of the application and transforming it into a hardware dependent
implementation differs from compiler to compiler. Identifying the foremost compiler for
the application in hand is, therefore, especially challenging. The algorithms considered in
this investigation were coded in high-level languages consisting of ANSI C, 3L Paralle] C
and Borland C as appropriate for the hardware used. Table 1 shows the compilers with the

corresponding computing platforms used.

4 Algorithms

The algorithms considered in this investigation consist of fast Fourier transform (FFT),
second-order correlation, least mean square (LMS) and recursive least squares (RLS)
adaptive filters, finite difference (FD) simulation, identification and active vibration control
(AVC) of a flexible beam structure and an FD simulation of a manipulator system. These

are briefly described below.

10
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4.1 FFT algorithm
A real periodic discrete-time signal x(n) of period N can be expressed as a weighted sum of
complex exponential sequences. Because of the fact that sinusoidal sequences are unique

only for discrete frequencies from 0 to 27, the expansion contains only a finite number of
complex exponentials. The complex discrete Fourier transform (DFT) series X(k) of a

periodic discrete-time signal can be writien as

N-1
X(k)= Y x(m)Wy" (1)
n=0 .
where, W), is defined as
WN - -j2n/N (2)

Using divide-and conquer approach, equation (3) can be simplified as
L-1 M-1 ;
X(p.q) =Z{W§f [Zx(l,m)W;"jl}W;’ (3)
1=0 m=0
Equation (3) involves the computation of DFT of sequences of lengths M and L
respectively. In this manner, the total computation will be half of that of a direct DFT

computation (Proakis and Manolakis, 1988).

4.2 Cross-correlation
Cross-correlation is a measure of the similarity between two waveforms. Consider two

signal sequences x(n) and y(n) each having finite energy. The cross-correlation of x(n) and

y(n) is a sequence r,(!), defined as

r,(D= ix(n}y(n-—l); 1=0,11,... 4)
or, equivalently, as
r ()= ix(n+!)y(n); F=0.%.. (5)

11
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The index [ is the (time) shift (or lag) parameter and the subscripts xy on the cross-
correlation sequence r,,(I) indicates that the sequences are being correlated. As shifting
x(n) to the left by ! units relative to y(n) is equivalent to shifting y(n) to the right by / units
relative to x(n), the computations (4) and (5) yield identical cross-correlation sequences

(Ifeachor and Jervis, 1993; Proakis and Manolakis, 1988).

4.3 Simulation and active vibration control of a flexible beam structure

Consider a cantilever beam system of length L, with a force U(x,t) applied at a distance x
from the fixed (clamped) end of the beam at time ¢ and y(x,t) is the deflection of the
beam from its stationary (unmoved) position at the point where the force has been applied.
The motion of the beam in transverse vibration is governed by the well known fourth-order

partial differential equation (PDE)

29%y(x,1)  Oy(x,0) 1
a ox* ¥ or mU(x’t) ©)

where |1 is a beam constant given by p’ =EEAI_’ with p, A, I and E representing the mass

density, cross-sectional area, moment of inertia of the beam and the Young's modulus
respectively, and m is the mass of the beam. The corresponding boundary conditions at the

fixed and free ends of the beam are given by

y(0,)=0 and M=g
ox
9’y(L,t) 0’y(L,t) e
y(L,t y(L,t
- = d — - =
ox? ¢ = ox* 0

Note that the model, thus, utilised incorporates no damping. To construct a suitable
platform for test and verification of the control mechanism (introduced later), a method of

obtaining numerical solution of the PDE in equation (6) is required. To obtain a solution to

4 3
the PDE, describing the beam motion, the partial derivative terms _8_%{2 and a)’T(";sQ
e x

12
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in equation (6) and the boundary conditions in equation (7) are approximated using first
order central FD approximations. This involves a discretisation of the beam into a finite
number of equal-length sections (segments), each of length Ax, and considering the beam

motion (deflection) for the end of each section at equally-spaced time steps of duration At.

In this manner, let y(x,f) be denoted by y; ; representing the beam deflection at point i at

time step j. Let y(x+vAx,t+wAr) be denoted by y,,, .., Where v and w are non-
negative integer numbers.
9%y d'y

Using a first-order central FD method the partial derivatives ) and > can be
X

approximated as

azy(x,t) = Yiin "2yi,j F Vo

or* (Ar)
(®)
9*y(x,1) _ Y2~ 4}’.'+1,j +6Y,;— 4)’.‘-1,; + ¥ia;
ox* (Ax)*
_ a%y a‘y . . : e
Substituting for 3 and ey from equation (8) into equation (6) and simplifying
, X
yields
2 (Ar)?
Yijn = zyi,j =Y X {yi+2,j = 4}’i+1,j +6y1‘,j -4yt J"i-z.j}+'_m U(x,1) ©)
2 (Al‘)z 2 . . ; o .
where, X =mu . Equation (9) gives the deflection of point i along the beam at time

step j+1 in terms of the deflections of the point at time steps j and j-—1 and deflections
of points i—1, i—2, i+1 and i+2 at time step j. Note that in evaluating the deflection at
the grid point i =1 the fictitious deflection y_, ; will be required. Similarly, in evaluating
the deflection at the free end of the beam, i=n (n representing the total number of
sections along the beam), the fictitious deflections y,,,  and y,,,; will be required. To
obtain these, the boundary conditions in equation (7) are used. In a similar manner as
above, the boundary conditions in equation (7) can be expressed in terms of the FD

approximations as

13
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yl,j _y—l,!' = 0

Yo, =0 : 2Ax

(10)
Ynt1,j zyu,j * Voeisj = Yoii, i~ 2)’“1,; + 2yn-l,j e -0
. (Ax)? ’ 2(Ax)’

Solving equation (10) for the deflections y_, ; and y, ; at the fixed end and y,,, ; and y,., ;

at the free end yields

Yo, =0 and y,;=y;
(11)
Ypa1,; = 2= Yoej and  y,.,;= 2)’n+1,_; - 2)’.,-1, T

Equations (9) and (11) give the complete set of relations necessary for the construction of
the simulation algorithm. Substituting the discretised boundary conditions for the fixed and
free ends from equations (11) into equation (9) yields the beam deflection at the grid

points along the beam in a matrix form as

1
Y, ==Y, —NSY,+(An)°Ulx,)— (12)
m
where,
Yy, j+1 Y1 Y1,i-1
Ya,js1 Ya.i Ya,j-1
Y}H = -J+ ’ }f, = J s }.’f—l = J ’
yn,j+l yn,j yn,j-l

and S is a matrix given (for n=19, say) as

14
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fa -4 1 0 0 0 0
-4 b -4 1 0 0 0
1 4 b 4 1 0 0
0 1 4 b 4 1 0
S: . -
1 -4 b -4 1
0 1 4 ¢ -2
... 0 0 2 -4 d
where, a=7-—-;—2, b=6—%, c=5—~% and d=2—%. Equation (12) is the required

relation for the simulation algorithm, characterising the behaviour of the cantilever beam
system, which can be implemented on a digital computer easily. For the algorithm to be
stable it is required that the iterative scheme described in equation (12), for each grid
point, converges to a solution. It has been shown that a necessary and sufficient condition
for stability satisfying this convergence requirement is given by 0 <A? £0.25 (Virk and
Kourmoulis, 1988).

A schematic diagram of an active vibration control (AVC) structure is shown in
Figure 1. The unwanted (primary) disturbance is detected by a detection sensor, processed
by a controller to generate a cancelling (secondary, control) signal so that to achieve
cancellation at the observation point. The objective in Figure 1 is to achieve total
(optimum) vibration suppression at the observation point. Synthesising the controller on

the basis of this objective yields (Tokhi and Letich, 1991)

| g
G
c=[1-2L 3
-]

where, O, and Q, represent the equivalent transfer functions of the system (with input at

the detector and output at the observer) when the secondary source is off and on

respectively. Equation (13) is the required controller design rule which can easily be
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implemented on-line on a digital processor. This leads to a self-tuning AVC algorithm
comprising of the processes of identification and control. The process of identification
involves obtaining O, and @, using a suitable system identification algorithm. An RLS
parameter estimation algorithm is used here to estimate @, and @, in the discrete-time
domain in parametric form. The process of control, on the other hand, involves designing
the controller according to equation (13) and implementing this in real-time.

The identification algorithm is described here as the process of estimating parameters

of the required controller characteristics. In this manner, it consists of the processes of

estimating the system models O, and @, and the controller design calculation. The RLS
algorithm is used here for estimation of parameters of the system models @, and Q,. This
is based on the well known least squares method. Let an unknown plant with input u(n)

and output y(n) be described by a discrete linear model of order m as

y(n) =bu(n)+bun)+...+bu(n-m)—aymn-1)-...—a_ y(n—m)

or

y(n)="¥(n)O(n) (14)

where, ® is the model parameter vector and ¥, known as the observation matrix, is a
row vector of the measured input/output signals. In this manner, the RLS estimation

process at a time step k is described by

e(k)="¥(k)O(k-1)-y(k)
O(k) = ©(k—1) = P(k=)¥T(K)[1+¥ (k) P(k = )¥T (k)] "e(k) (15)
P(k) = P(k=1)= P(k=1)¥7(K)[1+ ¥ (k) P(k=1)¥7 ()] "W(K) P(k—1)

where, P(k) is the covariance matrix. Thus, the RLS estimation process is to implement

and execute the relations in equation (15) in the order given. The performance of the

estimator can be monitored by observing the parameter set at each iteration. Once
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convergence has been achieved the routine can be stopped. The convergence is determined

by the magnitude of the modelling error €(k) or by the estimated set of parameters
reaching a steady level (Tokhi and Leitch, 1992).

The process of calculation of parameters of the controller uses a set of design rules

based on equation (13). Let the system models O, and O, be described as

boo"'llj'm'z-l'*'bozz_2 b10+hlz '*'buz_2
1+a,2" +a,2° 1+a,z" +a,2°

Q(]:

(16)

Substituting for Q, and @, from equation (16) into equation (13) and simplifying yields the

required controller transfer function as

beo + bcxz + bczz £ bcaz + baz

C= (17)
l+a,z" a2 +as2” +ac g™
where,
co(b bm) .
( c) = bm +booaw aa(boo blo) by, + bya, — boay, — by,
cz(b 0) by + by, +byay,, a 2(b00 b:o) by, + by ay, + by ay, = byag, —byay — by,
( bw) bpay, + by, acs(boc bm) bya, +bya, —ba, — ba,,
( ) bya,, ac4(boo bm) bpa, —b,aq,.
(18)

This gives the set of design rules for calculation of the required controller parameters.

The control algorithm consists of the process of on-line implementation of the
controller to generate the control signal. This involves the implementation of the
controller, as designed through the identification algorithm above, in discrete form using
the equivalent difference equation formulation as

ym) =3 baaln—i)- 3. agyin-J) (19)

i=0 j=1
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where, u(n) and y(n) in equation (19) correspond to the discrete input and output signals
of the controller. Note that in implementing equation (19) within the simulation
environment, the simulation algorithm becomes an integral part of the process. Thus, the
control algorithm consists of the combined implementation of equation (19) and the beam

simulation algorithm.

4.4  Simulation of a flexible manipulator system
A schematic representation of the single-link flexible manipulator under consideration is
shown in Figure 2. A control torque 7 is applied at the pinned end (hub) of the arm by an

actuator motor. 8 represents the hub angle, POQ is the original co-ordinate system while

P'OQ' is the co-ordinate system after an angular rotation 8. I, is the hub inertia, /, is the
inertia associated with a payload of mass M, and u is the elastic deflection of the arm at a
distance x from the hub. The dynamic equation of the flexible manipulator, considered as

an Euler-Bemoulli beam equation, can be expressed as

9*y(x,1) . 9'y(x,0)
EI
P or? * ox*

where, y(x,t) is the manipulator displacement (deflection) at a distance x from the hub of

=1T(x,t) _ (20)

the manipulator at time ¢ , p is the density per unit length of the manipulator material, E
is Young's modulus, / is the second moment of inertia, T(x,t) is the applied torque and
EI represents the flexural rigidity of the manipulator.

The boundary conditions at the hub end are given by

y(O,st) =0 )
a’y(0,1) .. 9°y(0,1) 1)
- EI =
L or’ox ox? Ly

where, T(¢) is the torque applied at the manipulator hub. Similarly, the boundary

conditions at the tip (end-point) of the manipulator are given by
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2 3
9 y(f,t)_Ela y(l;r) -0
PO ox 22)
3 2
I, aai%”)wla g(l;’) =0
X 29

where, L is the length of the manipulatdr. The initial conditions along the ¢ co-ordinate

are given as

y(0,t)=0  and E9-})%1—’--(‘3,2:0 (23)
The above relations describe the state of behaviour of the flexible manipulator system
which can be used to construct a simulation environment of the system.

To solve the PDE in equation (20), it is replaced by a set of difference equations
defined by the central difference quotients of the FD method (Azad, 1994). The
manipulator length and movement time are each divided into suitable number of sections of
equal length represented by Ax (x=iAx) and Ar (r=jAt) respectively. A difference
equation, corresponding to each point of the grid is, thus, developed. The displacement,

Yi.js1» Of section i of the manipulator at time step j+1 can be written as

2

At ..
Yija1 = —C[)’i—z, it Yis2, j] 7 b[)’i-l, it Yia, j] tayii—Yijat '—p““f(l .J) (24)
where, a=2 6ACE] b 4ACEL and ¢ Ar'El Using matrix notation ti
= L —————— = = % 4 udation
pAx* pAx* pAx* £ =

(24) can be written as

Yijnn =AYy — Figy F BF _ (25)

where,
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Yj+1 Nj Yii-1
Y2 j41 Ya.j _| Y2
Vi = 0 P YT s p YT 2 P
Yn.jst Yn.j Yn.j-1
(m, my, my 0 0 0 0 0 0 07 L
b a -b —c 0 00 0 0 © 1(i,J)
- - 0 At?
.c b .a b -c : 0 0 .0 0 0 . F=  B= !
A=|"- i . . . .. . . : p
0 0 0 0 0 ...—¢c b a b -c 0
0o o 00 0 ..0 m m m;m,
(0 0 0 0 0 ... 0 my my my my|

Equation (25) is the general solution of the PDE giving the displacement of section i of
the manipulator at time step j+1.

It follows from equation (24) that, to obtain the displacements y, ;,;, ¥,-;j» and ¥, .
the displacements of the fictitious pints y_, ;, ¥,4;; and y,,, ; are required. The estimation
of these displacements is based on the boundary and initial conditions related to the
dynamic equation of the flexible manipulator which in turn determine the values of m, to
my, and m;, to m,, in matrix A of equation (25). The displacement is obtained, here, for
two sets of boundary conditions, first by ignoring hub inertia and payload and then
including hub inertia and payload. The results obtained from these two sets of boundary

conditions are also compared.

4.5 LMS filter
The LMS algorithm is one of the most successful adaptive algorithms developed by
Windrow and his co-workers (Widrow et.al, 1975). It is based on the steepest descent

method where the weight vector is updated according to

W, =W, -2e,1X, (26)
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where W, and X, are the weight and the input signal vectors at time step k respectively,

I is a constant controlling the stability and rate of convergence and e, is the error given

by
€ =Y, -W,,TX,r 27

where, y, is the current contaminated signal sample. It is clear from the above that the

LMS algorithm does not require prior knowledge of the signal statistics. The weights
obtained by the LMS algorithm are not only estimaies, but these are adjusted so that the
filter learns the characteristics of the signals leading to a convergence of the weights. The

condition for convergence is given by

O<pu>1/A (28)

where, A___ is the maximum eigenvalue of the input data covariance matrix.

4.6 RLS filter

The RLS algorithm is based on the well known least squares method. An output signal

y(k) of the filter is measured at the discrete time %, in response to a set of input signals

x(k) (Ifeachor adn Jervis, 1993; Tokhi and Leitch, 1992). The error variable is given by

e(k) =¥ (k)O(k-1)-y(k) (29)

where © and W represent the parameter vector and the observation matrix of the filter

respectively. These are given by
e =[68(1), 6(2), ..., 6(m)]
¥=[y(1), ¥(2), ... w(m)]
where m represents the order and y the input sample of the filter. The new parameter

vector is given by
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O(k) = ©(k-1)~P(k=1)¥7 (K)[1+ ¥ (k)P(k -~ 1)¥7 (k)] e(k) (30)
with P(k), representing the covariance matrix at time step k, given by
P(k) = P(k=1)-P(k=)¥T(K)[1+ ¥(KP(k-D¥T ()] ¥(K)P(k-1) (1)

The performance of the filter can be monitored by observing the error variable e(k) at

each iteration.

5 Implementations and Results

The algorithms described in the previous section are of various degrees of regularity.
Regularity is a term used to describe the degree of uniformity in the execution thread of
the computation. Many of the signal processing algorithms can be expressed by matrix
computations. These are called regular iterative (RI) due to their very regular structure.
An algorithm incorporating loops and conditional jumps, amounting to varying execution
times from one iteration to another, is referred to as irregular. The algorithms considered
are implemented on the various computing platforms in this section and the results
obtained are assessed and compared on the basis of real-time performance. The matching

and mismatching between the regular/irregular algorithms and hardware are also explored.

5.1 The FFT algorithm

Figure 3 shows the real-time performance of the different computing platforms for a 512-
point FFT algorithm. As noted, the FFT algorithm is a regular DSP process and highly
matrix based. Thus, the i860, with its powerful vector processing resources, a;:hieves the
best performance among the processors. In contrast, the C40 achieves 10-15 times slower
execution time as compared to the i860. The SPARC RISC processor achieves a better
performance than the C40, 486DX2 and the T8 processor, but slower execution time as

compared to the i860. The 386DX takes the highest execution time among the processors.
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The 486DX2 achieves slower execution time as compared to the SPARC, but is faster as

compared to a single T8 and the 386DX.

5.2 Cross-correlation

To investigate the real-time implementation of the correlation algorithm, two waveforms
of 1000 samples each were used. Figure 4 shows the execution time of the different
processors. Note that the correlation algorithm is an RI type signal processing algorithm.
Thus, the superscalar vector processor i860 appears to achieve the lowest and the 386DX
the highest execution time among the computing domains. On the other hand, the T8 and
the C40 perform about 5.8 and 2.8 times slower than the 1860, respectively. The 486DX2
and the SPARC processor achieve similar execution times. The 386DX is the slowest of
all, possibly, due to the floating point operations being evaluated in software rather than
using dedicated hardware. Moreover the 386DX does not have math-coprocessor, cache

or internal memory making it slower to handle large amounts of data calculation.

5.3 Simulation, identification and control of the flexible beam

5.3.1 Simulation

Figure 5 shows the execution time for the different microprocessors in implementing the
simulation algorithm for 20 000 iterations. It is noted that in this case the superscalar i860
RISC processor performs as the fastest whereas the 386DX machine is the slowest of the
processors used. The simulation algorithm, as discussed earlier, is mainly of a matrix
based computational type for which the powerful vector processing resources of the i860
are exploited and utilised to achieve the lowest execution time. The C40 does not have
such vector processing resources making it about 6 times slower than the i860. This
implies that the C40 is not performing well in a situation where the algorithm is of a matrix

type and where extensive run time memory management is involved. The transputer, on
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the other hand, is performing about 9.864 times slower than the i860. The SPARC
processor and the 486DX2 appear to achieve similar performances, the SPARC being
slightly faster due to its RISC processor. The 386DX performance was the slowest of all
the processors in this case. This, as compared to the 486DX2 machine, is mainly due to the
floating point operations evaluated in software rather than using dedicated hardware since
it has no maths co-processor. Moreover, this machine does not have cache or internal

memory making it slower to handle calculation of large amounts of data.

5.3.2 Identification

As discussed earlier, the identification algorithm with its irregular nature is composed of
two components of similar nature and length, while estimating parameters of 0, and O,
and a process of controller design calculation. Figure 6 shows the total execution times of
the architectures used in implementing the identification algorithm over 1000 iterations. It
is noted that among the processors used the C40 is performing as the fastest and the
386DX as the slowest. The algorithm does incorporate some matrix manipulation.
However, as a result of the irregular nature of the algorithm, the i860 is found to perform
even slower than the C40. In contrast, the T8 is performing well and at similar level as the
SPARC and 486DX2 processors. The 386DX processor, on the other hand, is performing

slower than these.

5.3.3 Control

Figure 7 shows the total execution times achieved by the various architectures used in
implementing the control algorithm for 20 000 iterations. It is noted that among these
processors the i860 is the fastest and the 386DX is the slowest. Note that- the beam
simulation forms a large proportion of the control algorithm. This makes the algorithm

mainly a very regular iterative type. Thus, as in the case of the simulation algorithm, the

powerful vector processing resources of the i860 are utilised to achieve the smallest

execution time among the processors. The SPARC processor, 486DX2 machine and
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386DX machine appear to perform at similar levels as in the case of the simulation

algorithm.

5.4 RLS filter

The execution times achieved by the architectures, in implementing the RLS filter
algorithm for 1000 iterations are shown in Figure 8. It is noted that among these the C40
is performing as the fastest whereas the 386DX is performing as the slowest. The 1860 is
performing about 1.323 times slower than the C40. This is due to the irregular nature of
this algorithm. In contrast, the T8 achieves better performance as compared to the
486DX2 processor. The SPARC RISC processor achieves slower execution time as

compared to the C40 but similar to the 1860 RISC processor.

5.5 LMS filter

To investigate the real-time implementation of the LMS algorithm, the parameter p =0.04
was used. The execution times achieved by the architectures, in implementing the LMS
algorithm for 1000 iterations, are shown in Figure 9. It is noted that in this case the C40
performs as the fastest whereas the 386DX machine as the slowest of the processors used.
The LMS algorithm, as noted earlier, incorporates some degree of irregularity due to the
associated loops. The involvement of the regular DSP operations in the processes, on the
other hand, provides some degree of regularity in the algorithm as well. The exploitation
of these two aspects of the process are evident in the performance of the C40 DSP device
and the T8. The i860 vector processor does not have the resources necessary to be
exploited in implementing the highly irregular nature of the LMS algorithm and thus is
found to perform 2.83 times slower than the C40, slightly faster than the T8 and slower

than the 486DX2 and the SPARC RISC processor.
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5.6 Simulation of the flexible manipulator
Figure 10 shows the performance of the different processors in implementing the flexible
manipulator simulation algorithm for 27 536 iterations. The algorithm as described earlier,
is a very regular matrix based, similar to the flexible beam simulation algorithm. Thus, in a
similar manner, the i860 processor achieves the fastest performance and the 386DX
processor as the slowest of the processors. The SPARC processor and the 486DX2
perform at a similar level to one another, but faster than the C40 DSP processor. The C40
DSP device is about 6.3 times slower as compared to the i860 processor. This further

implies that the C40 does not have resources to exploit in implementing matrix based

algorithms.

5.7 Comparative performance of processors with different algorithms

To explore the comparative characteristics of the processors in implementing the various
algorithms, the six processors are divided into two classes. As noted and discussed above,
the i860, SPARC and the C40 dominantly outperform the rest of the processors. Thus, the
1860, SPARC and the C40 are grouped into one category and the rest into another
category. A comparative performance of the processors in the first category is shown in
Figure 11. For better presentation the execution time for identification, RLS and LMS
algorithms are magnified into 2, 4 and 8 times respectively. It is noted that the 1860
processor performs as the fastest of the processors in implementing regular and vector
based algorithms. In contrast, the C40 performs as the fastest of the processors in
implementing algorithms of an irregular nature. As compared to the C40, the SPARC
processor performs faster in implementing regular and vector based algorithms but slower
in implementing the irregular type algorithms.

Figure 12 shows a comparative performance of the processors in the second category,

namely, 486DX2, T8 and 386DX in implementing the algorithms used. It is noted that the
486DX2 performs as the fastest of the processors in implementing all, but the

identification and RLS algorithms. The T8 RISC processor performs slower than the
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486DX2 in implementing regular and matrix based algorithms. In contrast, the T8
performs relatively better in implementing irregular type algorithms (identification and
RLS) than matrix based and regular algorithms. The 386DX processor performs as the
slowest of the processors in implementing the algorithms considered. It is noted that the
superscalar i860 RISC processor is best in implementing regular matrix based algorithms

and the C40 in implementing regular or irregular but non-matrix based algorithms.

6 Conclusion

This paper has explored the real-time implementation of several signal processing and
control algorithms on a number of different computing architectures. The i860 vector
processor and the C40 DSP device with their hardware and software architectures
optimised to achieve fast processing in DSP applications are found to perform relatively
better in implementing regular and irregular DSP operations. Special features, such as
vector processing resources in an i860 RISC processor, are exploited to give even better
performance in applications involving matrix manipulations. It has been demonstrated that,
in practice, there is generally a mismatch between hardware requirements of an algorithm
and the hardware resources of an architecture leading to a disparity in their relative
performance. Therefore, to fully exploit the architectures a close match needs to be forged
between the algorithm and the underlying hardware, with due consideration of the suitable
programming language for the application, and issues such as algorithmic regularity and
granularity. It follows from the investigation presented that, equally clearly, there is no one
processor for the solution of best real-time performance in terms of computation in
implementing algorithms of different nature. Computational performance varies with

granularity of hardware and with granularity and regularity of an algorithm.
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Table 1: Compilers used for different computing platforms

Processor i860 C40 T8 SPARC 486DX?2 386DX
Compiler Portland 3L Parallel 3L Parallel ANSIC Borland C Borland C
Group C,Vv.1.0.1 C V.21 for UNIX
ANSIC
Secondary
source
Detector
Observed
C Signal

Figure: 2 Schematic representation of the flexible manipulator system.

Primary
source

Figure 1: Active vibration control structure

O™
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Figure 3: Execution times of processors in implementing the FFT algorithm.
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Figure 4: Execution times of processors in implementing the correlation algorithm.
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Figure 5: Execution times of processors in implementing the beam simulation
algorithm.
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Execution times of processors in implementing the identification
algorithm.
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Figure 7: Execution times of processors in implementing the control algorithm.
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Figure 8: Execution times of the processors in implementing the RLS filter algorithm.
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Figure 9: Execution times of the processors in implementing the LMS filter algorithm.
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Figure 10: Execution times of processors in implementing the flexible manipulator
simulation algorithm.
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Figure 11: Performance of the 1860, SPARC and C40 processors in implementing
the algorithms.
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Figure 12: Performance of the 486DX2, T8 and 386DX processors in

implementing the algorithms.
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