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Abstract

Rule extraction from Artificial Neural Networks (ANNs) is an essen-
tial step towards the integration of ANNs and Knowledge-based Sys-
tems (KBSs). Two central questions addressed in this paper are what
1s a suitable format embodying ANN knowledge correctly and effi-
ciently; and how is the knowledge extracted.

A General Rule is defined in an efficient format to represent the
knowledge from ANNSs. General Rules are extracted from a trained
Multilayer Perceptron (MLP). The inputs of the MLP correspond to
the premises, and the outputs, to the conclusions of the rules. Two cri-
teria are used to ascertain the significance of input components for the
construction of rules.

The first criterion, the Potential Default Set (PDS) is drawn up from
the weighted connections combined with the input/output correspon-
dence of a training pattern. A subset of the inputs in the training pat-
tern which is possibly redundant, is defined as the PDS.

The second criterion, the Feature Salient Degree (FSD) is computed
by checking through the training pattern set. The FSD embodies the
causal bond of the changes on each input bit and on each output bit.

The system using both PDS and FSD is demonstrated by application
to typical logic problems such as AND, OR, XOR and by interpreta-
tion for unknown data. Clinical data have also been used to assess the
performance of the method in the real-world. The rules derived here
have been evaluated by a domain expert and are found to conform
with his view of the problem.

The computational complexity is a third order polynomial of the
problem size.

Key Words: Rule Extraction, Hybrid Knowledge-based System, Neu-
ral Network
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1. The Role of Rule Extraction in Knowledge Engineering

Artificial Neural Networks (ANNs) and Knowledge-based Systems (KBSs) represent knowl-
edge and intelligence processes at different levels [Fu 94]. Integration of the two types of Sys-
tem promises to overcome their individual shortcomings. ANNs can automatically learn
emergent properties from the original domain data, but it is difficult to show explicit knowl-
edge of what it has learned. Conversely, most KBSs use rules of inference based on high level
knowledge representations sympathetic to the human, but suffer the knowledge acquisition
bottleneck.

Successful integration of ANNs and KBSs may lead to completely automatic processing
throughout the life-cycle of knowledge engineering. Extraction of rules from the ANN for use
by the KBS is the essential step in the integration of the two systems.

A desirable characteristic of rule extraction is that the rules from the ANN should be: capable
of interpretation by the KBS; accurate and complete with respect to what the ANN has
learned; and efficient for the KBS to use. We present in this paper a method of extractin grules
from a Multilayer Perceptron (MLP) feedforward neural network which fulfils the require-
ments.

The paper is organised as follows. Section 2 reviews some related work on Rule Extraction
from ANNs. Section 3 explains the advantages of the format for the General Rules, also in-
cluded is a discussion of the terminology used. The extraction method for the General Rules
is given in Section 4. Section 5 reports on some experiments and Section 6 further discusses
the method and summarises the central issues in this paper.

2. Review of Previous Work

Rule extraction from neural networks can be categorised into Black-Box [Sait 90] or Open-
Box (White-Box) [Towe 90] approaches. The former ignores the internal structures of ANNSs,
and generates rules referring only to the correspondence of input and output values. The latter
identifies rules according to observation of the internal connection structures of ANNs.

[Sait 90] extracts rules from a trained MLP based on correlation of inputs and outputs, as the
MLP is fed with input patterns with bits switched. This leads to a combinatorial problem and
some effort was expended to try to relieve this, such as by limiting the switching only to pos-
itive input bits among the training patterns, and controlling the number of input bits to be
switched. [Towe 90], [Towe 93A], and [Towe 93B] explain the KBANN system, which first
encodes the domain knowledge (rules) as the connections in an MLP, then extracts the refined
rules from the trained network. In order to reduce combinations of the antecedents of the
rules, KBANN also modifies the weights into a few uniform groups during a secondary train-
ing without changing the knowledge encoded, identical weights in a group can then be rep-
resented as an MofN relation. [Carp 93] shows extraction of fuzzy rules from a self-
organising supervised learning neural network -- fuzzy ARTMAP, by two techniques: prun-
ing the nodes which correspond to the rules to be extracted, and quantifying learned weights.
[Ride 94] develops a collection of methods to generate hierarchical “if then” rules from a
multilayer Class-Entropy Minimisation Network. The rule extraction procedure comprises
partitioning-pruning-retraining cycles. The rules are extracted from every connection layer
respectively. As a consequence they are in a format of a cascaded embedding of the form “if-
then-else...”. [Boch 90] uses a general formula called the validity domain to ease the genera-
tion of rules from an MLP. [Died 90] demonstrates a connectionist semantic network having
an explicit conceptual hierarchy as an explanation component to answer “how” questions.
[Maho 93] describes the RAPTURE system, which uses two subsystems: a modified MLP to

refine the certainty factors of a MYCIN style rule, and a symbolic learning method with the, .o,
ID3 information gain heuristic for addition of new rules. [Fu 93] presents a system named .,
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KBCNN which constructs and revises a neural network according to the rules encoding the
initial domain knowledge. When the network performance gets stuck during training, new
hidden units are added to different layers in order to generate new concepts. Rules are gener-
ated directly from the weighted connections in the trained network. [McMi 91] explains a sys-
tem called RuleNet which extracts rules from a neural network and re-encodes them, in an
iterative projection process.

The great success of the MLP in machine leaming and the fact that it is most widely adopted
ANN, most attempts at rule extraction from ANNSs have been made on this architecture or on
its variants. However, rule extraction from MLPs has proved to be difficult owing to the
MLP’s behaviour of mingling multiple nonlinear parameters and the mutual dependence of
each layer.

In the Black-Box approach, researchers face the combinatorial obstacle. The number of situ-
ations to test is exponentially increasing with the domain size. Limits on the test number lead
to the likelihood of missing some features possibly crucial to the domain.The limitations of
the Open-Box approach include: as a special variety of the MLP architecture is designed, the
generality and learning capability are guaranteed; network pruning requires retraining which
can be very time consuming and unreliable; only certain linear features have been identified,
therefore a non-linear domain requires a larger network.

3. General Rules: An Alternative Approach

Generalisation of the extracted rules is very important. If most I/O correspondence in an ANN
is directly translated into rules, a KBS will suffer more severe combinatorial problems than
the ANN. This is because symbolic reasoning usually requires more computation than sub-
symbolic inference about problems of the same size. Many practical applications would be
meaningless to the human if many large rules were produced without generalisation.

Before going further, we explain some terminology to be used in this paper.

MLP The Multilayer Perceptron here is assumed to have only one layer of hidden units. Com-
plete weighted connections are used for any adjacent layers. The input, hidden and output lay-
ers of units are denoted as {I;}, {H,} and {O,} respectively. The two layers of weight
connections from input to hidden layer and from hidden to output layer are W,={w,,} and
W,={w,,} respectively. Binary domains only are of concern here, i.e. the input patterns are
vectors of 0 and 1. A trained MLP will give pseudo-binary outputs too, i.e. the values are in
the range either [0, A] or [1-A, 1], where the A is a pre-defined error tolerance.

Sole Fattern A sole pattern is an input pattern, taken together with one of the output bits. The
input pattern is selected from the training patterns. The output bits are either picked from the
training patterns or computed by the trained MLP. For example, for an MLP having q output
units, if the output bits are picked from the training pattern set, a single training pattern in-
cludes q sole patterns, each of which comprises the input pattern and a different output bit.

Rule A rule to be extracted is in the form
IF(C,, GC,...., C,) THEN (R));

being explained as if all the premises (or conditions) C,, C,,... and C, are true, the conclusion
R, is true. Both C; and R, are propositions, being either positive or negative (headed with a ~
if being negative). This form is equivalent to the Homn Clause Format. The premises of a rule
are projected from the input bits of a sole pattern. The conclusion is obtained from the output
bit of the sole pattern. A rule having a complete set of premises, i.e. the number of premises
is the length of the input pattern, is a Special Rule. A rule having an incomplete set of premis-
es is a General Rule. In a General Rule, the absent features are nor significant in formin g the
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conclusion, not false as some other systems imply.

A General Rule is equivalent to a set of special rules with all combinations of the values on
those absent premises in the General Rule. The fewer the premises a rule has, the more gen-
eral it is. The General Rule represents knowledge in a format of high level abstraction. It pre-
serves the salient features necessary to hold the rule’s property and ignores the trivial
features. A few General Rules will be sufficient for description of a particular domain if some
general qualities exist. Reasoning by General Rules is fast since only hard matching is need-
ed. This allows the KBS efficiently to retrieve the rules, to maintain the rule base (including
the consistency check), and to support knowledge acquisition. The General Rule enables the
KBS more suitably to generalise knowledge to new situations since the General Rule may
cover a region beyond that encountered by the system (see the example in Section 5.4).

General Rules provide system reliability, because they overlap in the problem domain, ena-
bling the KBS to confirm a special situation by application of multiple rules. After the Rule
Validation procedure, the remained General Rules are still able to cover the most (if not the
whole) problem domain.

General Rules are analogous to the human expression of knowledge, and human knowledge
formation shares similar advantages to those stated above.

As the later examples show, the size of rule base formed by General Rules is not necessarily
smaller than by using other methods. A certain amount of redundancy is beneficial to gener-
alisation and systemn reliability. The size of the rule base formed of General Rules depends on
the domain size, increasing at a polynomial rate, and on the information density of the train-
ing data.

4. Extracting the General Rules

Given a sole pattern, how can we find the smallest input subset which is sufficient to retain
the value of the output bit regardless what values are given to the rest of the input units? In-
stead of exhaustive tests by switching all combinations of the input values, which demands a
computation of O(2") for an N bit input set, our method requires a polynomial computation
of the domain size. The method takes advantage of both the Black-Box and the Open-Box
approaches.

From the Open-Box approach, a “contribution” relationship is obtained from the input units
to the output units using the weights of the trained MLP. The input bits in a sole pattern are
grouped into supporters and opponents of the output by this relationship. The opponents are
possibly redundant.

From the Black-Box approach, a Feature Salient Degree (FSD) is computed for every input
bit in a sole pattern, reflecting the possibility of a change to the output bit if the value of the
input bit is switched.

Combining the two criteria above, most bits in a sole pattern will be deemed redundant or not.
Generalised rules are collected by dropping the redundant bits. Further compression is taken
by the merging of special rules into a general one. Rule Validation is used for information
sparse or noisy situations.

In section 4.1, we explicate the Open-Box approach. Section 4.2 explains how to compute the
FSD in the training set. Both results are used in the algorithm for rule generation in Section
4.3.

4.1 Potential Default Set

In a trained MLP, an input unit [; links an output unit O, via the weighted connections with
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all hidden units. The link strength via one hidden unit Hy is wy;.w,, The summed link strength
of thel;tothe Oyis L,; = Y w,-w,,.

h
The overall link strengths between the input units and the output ones are simply the product
of the weight matrices L = W, xW .

The matrix L is explained as follows. If element L is positive, the input unit I; generally gives
positive contribution to the output unit O, owing to the increasing nature of the logistic func-
tion. In other words, if I, is switched from 0 to 1 in the input sct which is in turn fed forward
through the MLP, O, generally receives an incremental activation from I;. If I; is switched
from 1 to 0, O, generally receives a decrement in activation from I.. In the case when L,;<0,
the situations are reversed. Focusing on a sole pattern {{/;}, O,}, assuming that /; and O, de-
note an input bit and the output bit with particular values and a row L,={L,;} of the matrix L
corresponds to the O,, let us define the following sets:

Zo={1,11=1) No={1;| =0}
Z,=(L,l L,20) N;=(L,|L,<0)

If the O, is in [1-A, 1], those inputs in ZyN, or in Ny\Z, have given negative activation
contributions to O,. Switching them may change their contributions to be positive. That may
not change the output O, much because O, can only increase in the range [1-A, 1]. Converse-
ly, if O, is in [0, A] the inputs in Z, MZ, or in N, NN, have given positive contributions, and
the O, may not be changed much by switching their values. We name such sets the Potential
Default Sets, or PDSs:

(Z, AN U (N, NZ,) if O=1
(Z, NZ;) U (N, NN,)  if 0,=0

If any I, makes no significant change to an output by switching its value, it can be absent in
the premises of the rule to be generated. The inputs in the PDIS are those candidates which
may be absent from the rule to be extracted without losing the property implied from the sole
pattern.

The size of the PDS is statistically half of that of the input pattern. Hence the dimensionality
of the test space on the input values may be reduced by half.

Although the PDS reflects the statistical properties of the trained MLP and can be correctly
applied to extract the General Rules for some linear domains such as AND and OR problems,
it is not sufficient for nonlinear domains such as two bit parity (XOR). The Feature Salient
Degree introduced in the next section aims to overcome the linear limitation.

4.2 Feature Salient Degree

Concemning the sole patterns {P,} in respect to the same output unit, we first define the quan-
tity of feature salient degree (fsd) to an input bit I;; in a sole pattern P;:
. =
fsd;; = Y dist (P}, P})
{k|G#koj#o,1;21)}

where J; and J,; are the ith input values respectively in sole patterns P; and Py, O; and O, are
the output values involved in P; and P,. The function dist(P;,P,) is the distance of the input
sets in P; and Py.

The fsd is a measure of the amount of information carried by the input units with respect to

» The O, could be the output value as {/;} are fed to the MLP. This makes a difference when the MLP does not learn the
training set 100% accurately. See Section 6 for discussion.
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the training data. It represents the correlation of the changes on an input bit with a particular
value and an output bit with a particular value. It also reflects the distinct effect of the input
on the output. Here, it estimates the possibility of a change of the output value when the input
bit is switched.

For a sole pattern P;, the more sole panterns having different output values from that of P;, the
higher the fsd of its input units. Between two sole patterns P; and P, with different output val-
ues, the smaller the dist(P;,P,) is, and the higher the contributions to their fsds.

As the fsd defined above is variable relating to the input size and the training set size, a more
general Feature Salient Degree FSD which is less affected by those sizes is defined as fol-
lows.

The FSD of a problem with N input bits is the FSD defined above divided by the FSD of the
N-bit parity problem. The parity problem is highly non-linear and know to be hard for neural
networks to learn. Each bit in each sole pattern carries the same high amount of information.
The FSD of the N bit parity problem is

N/2)

fsdo = ¥ (szil). @2i+1)7

i=0

m

where [ ) indicates m combinations from n.

n
The FSD of an N input bit problem is
FSD;=fsd,/fsd0

We will use the FSD instead of the fsd in what follows.

4.3 Rule Generation Algorithm

The flow chart next shows the algorithm of rule extraction from an MLP with N inputs and
P outputs on M training patterns.

Step 1 Step 2 Step 3 Step 4 Step 5
Find next Compute Construct]
Sole Yes | pPDS rules Merge Rule
Pattern. [—% & — for Sole [—®| new rules -
Found? FSDs Pattern into global Validation
rule base
No

Rule Generation Algorithm
Step 1 and Step 2 are as described in previous Sections.

Step 3. This is the kennel procedure. A threshold 7 on the FSD is defined in advance.
i) For every input bit J;
if its FSD>T, I is reserved for a premise;
if the FSD<T and I; e PDS, I; is absent;

ii) For all other I;s from i) (FSD<T and ; € PDS), select all subsets of them so that the summed FSDs of the
subset >T,

iii) Each subset obtained in i) combining with all reserved I; selected in i), taken together with the output
bit of the sole pattern, are projected into a General Rule. A list of rules is therefore constructed.

Step 4. This deals with two sets of rules, the new list and the global rule base GRB. For a rule

A Heuristic for General Rule Extraction from an MLP 5



R1 in the new list, do one of the operations in following cases:

i) Special: if R1 is special to any rule in the GRB, ignore R1.

ii) General: if R1 is more general than some rules in the GRB, delete all rules in the GRB special to R1, and
insert R1 into the GRB.,

iii) Generalisable; if there is a rule in the GRB which has the same reserved input bits as R1, but there is
%ne bié havin;; different value with that of R1, generalise the R1 (i.e.eliminate the different bit from R1).
hen do as ii

iv) New: otherwise R1 is new in the GRB, insert it into the GRB.

Step 5. Check each rule R2 in the global rule base through the training set:

For each sole pattern Py

If R2 is more general than Py, feed input pattern to the MLP, check the result O; at the output bit corre-
sponding to P and the output value Oy in P:

1) if O; = Oy (within the error tolerance), the Correct Occurrence Count plus 1;
i) otherwise, Error Occurrence Count plus 1.
If Correct Occurrence Count > (Error Occurrence Count x 1.5), the rule is valid.

The threshold r for the FSD can be set around 1. The higher the threshold is, the more general
rules will be generated. A suggested range for the threshold 7 is [0.8, 1.2].

When a General Rule is compared with a sole pattern, there are only two situations: the rule
is more general than the sole pattern, or the two are incomparable. The premises of the rule
are a subset of the input pattern of the sole pattern in the former case.

The valid rules can be applied to an input pattern if they are more general than it. The majority
of the rules applicable decides the output value reasoned with the rule base.

4.4 Complexity Analysis

Assume the trained MLP with N inputs, Q hidden units, and P outputs, there are M training
patterns, i.e. M x P sole patterns. It is usual that N >> P and M >> N,

The PDS requires a computation in max(O(NxMxP), O(NxQXP)), the latter value is for the
operation W,xW,. The FSD requires O(NxM?xP?) which is in a higher order than that of
PDS. Therefore the Algorithm Rule_generation takes a computation in O(NxM3xP3).

5. Experiments

Our algorithm has been successfully tested on many experiments, including some well
known logical problems and one real-world pathology domain. Note, there is only one output
unit in the examples, the Sole Patterns are the same as training patterns.

5.1 Two Bit AND and Four Bit OR
This Section is to show how the PDS and FSD are computed and used.
The two bit AND problem is defined as in Figure al.

ABC,
01,0,
10,0, -0
00,0, 4
11,1, BRS
Figure al. Sole Patterns Figure a2. Trained MLP

for Two Bit AND for Two Bit AND
The MLP is constructed with the trained weights in Figure a2.
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L=W, x W, =[0.824, 1.01]
Zo=(A. B}, No={).
In first sole pattern (0 1,0), (i.e. A=0, B=1 and C=0)
P;={B} and Ny={A). As the output is 0,
PDS=(Zy MZ;) U (Ng MN;)=(B).
The FSD for each bit in the sole pattern:
Sole pattern 1 has a different output only with sole pattern 3. The f$dS5 for sole pattern 1 is
f5d,,= disuPy, P3y2=1
f5d,,=0, since I;,=I5; in sole pattern 1 and 3.

The f5d0 for two bit XOR is 1 too. Therefore
FSD“=1, FSD12=0

Set the threshold T=0.8. A=0 is reserved as a premise since FSD;; > T. The B is absent since Be PDS and FSD,,<T.
The extracted rule from sole pattern 1 is

IF(~A) THEN (~C).
Table 1 lists the results for all the four sole patterns in the donuain.

Table 1: Two Bit AND

Sol_Pat | PDS FSD Rules
01,0 {B} 10 IF(~A) THEN (~C)
10,0 (A) 01 IF(~B) THEN (~C)
00,0 {AB} 0.34 0.34 None
11,1 {} 1414 IF(A,B) THEN (C)

Only PDS or FSD alone is sufficient to decide the premise selection in this example. This is
true in linear domains.

Similarly and more complex, the four bit OR problem is extracted as a set of rules:

IF (~B, ~C, ~D) THEN (=E); IF (~A, ~C, ~D) THEN (~E); IF (~A, ~B, ~D) THEN (~E);

IF (~A, ~B, ~C) THEN (~E); IF (A, B) THEN (E); IF (A, C) THEN (E);

IF (B, C) THEN (E); IF (A, D) THEN (E); IF (B, D) THEN (E);

IF (C, D) THEN (E);
which says that if any two of A, B, C and D are true then E is true; if any three of them are
false, then E is false. We can change this easily to the form MofN [Towl 90]. There seems
however no benefit to do so in automatic reasoning.

There is some redundancy in this representation. For example, those rules for conclusions E
and those for ~E are complementary to each other. Each set can be absent as the default. In
addition, there are non-empty intersections to most pairs of the rules for E (~E). For example,
each rule for E includes four special rules, the last two rules

IF (B, D) THEN (E); IF (C, D) THEN (E);
have an intersection set of
IF (A, B, C, D) THEN (E); IF (~A, B, C, D) THEN (E);

There would be no difficulty in using the representation without redundancy in this case. Qur
current representation however possesses the advantage of being easily understandable and
efficient for knowledge acquisition.

5.2 Two Bit XOR

XOR is the two bit parity problem. As a benchmark of FSD calculation, the FSD of every bit
is 1. The PDS here is not sufficient for premise selection. The data for XOR is in Table 2.
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Table 2: Two Bit XOR

Sol_Pat PDS FSD Rules
01,1 (A} 11 IF(~A,B) THEN (C)
10,1 {B} 11 IF(A,~B) THEN (C)
11,0 {AB] 11 IF(A, B) THEN (~C).
00,0 {) 11 IF(~A.~B) THEN (~C)

5.3 Asymmetric Domain
Here is another problem with four inputs, A, B, C, D and one output E. E is true if A is false

and any other two inputs are true. If A is true, only all B, C and D being true can conclude E
to be true. Otherwise, E is false. The sole patterns are:

Table 3: Sole Patterns of Asymmetric Domain

Label |SP1|SP2|SP3|SP4|SP5|SP6]SP7|SP8|SPOfSP10|SP11|SP12|SP13}SP14 | SP15 | SP16
A oy1jo0f1|o0o}j1y0}1)0 1 0 1 0 1 0 1
B ojoj1j1|0f{0|1|1]0 0 1 1 0 0 1 1
C 0(0j0]0|1 171(1]0 0 0 |0 1 1 1 1
D ojo0j0|j0j0|O0|0}]0]1 1 1 1 1 1 1 1
E o|joj{oj0jO|O]1]0O]|O 0 1 0 1 0 1 1

L=[-1.401.151.33 1.15]
Threshold=0.8:

Table 4: Results of Asymmetric Domain

Sol_pat PDS FSD Rules

0000,0| {A) 0.04 0.50.50.5 | IF (~B, ~C) THEN (~E); IF (~B, ~D) THEN (~E); IF (~C, ~D) THEN (~E);

1000.0 (1 03030303 None. There are 4 rules extracted, all are special to those above.

0100,0| {AB) [0.080.081.11.1| None. The extracted rule IF (~C, ~D) THEN (~E) appeared before.

1111,1 {A} 03141414 IF (B, C, D) THEN (E);

The extracted rules are
IF (~C, ~D) THEN (~E); IF (-B, ~D) THEN (~E); IF (A, ~D)THEN (-E); IF (-B, ~C) THEN (-E);
IF (A, ~C) THEN (~E); IF (A, ~B) THEN (~E); IF(~A, B, C)THEN (E); IF (~A, B, D) THEN (E);
IF (~A, C, D) THEN (E); IF (B, C, D) THEN (E);

just a necessary and sufficient set of General Rules to the conclusions ~E and E respectively.

5.4 Incomplete Training Set
Quality of learning may be assessed by reasoning on patterns not used in training. Most

ANNSs can only classify an unseen pattern intimate to its neighbours in terms of Euclidean
distance. To a parity domain with an incomplete training pattern set, they can not correctly
reason on the unseen patterns. The following is a four bit parity domain with an incomplete
training set missing 5 patterns (shaded):

A Heuristic for General Rule Extraction from an MLP 8




Table 5: Sole Patterns of Incomplete 4 Bit Parity Domain

Label { SP11 SP15 | SP16
A 0 0 1
B 1 1 1
c 0 1 1
D 1 1 1

L_E 0 1 ]l 0]

The trained MLP will reason on the whole sole pattern as shown in the following in a simpli-
fied format. The conclusions are rounded as integers if they fall in the tolerance range (0.1
here), including those patterns absent in training set:

Table 6: Results by trained MLP for Incomplete 4 Bit Parity Domain

Label |SP1|sp2fse3]sp4 sz?ﬁlsm sP12 |
A 01 1 ; 0 1 1
B 0|0 1 1
C 010 0 0 1
D 0lotolo 1 1
=TT Fofof: 1 0]

Only one untrained pattern “SP5” is correctly classified. The other four are misclassified.

The General Rules extracted from this trained MLP are
IF (~A, ~C, ~D) THEN (~E); IF (B, ~C, ~D) THEN (~E);
IF (~A, B, ~C) THEN (~E); IF (A, B, C, D) THEN (~E);
IF (A, C. ~D) THEN (E); IF (~B, D) THEN (E):
IF (~B, C) THEN (E);

The rule validation procedure yields:

IF (~A, B, ~D) THEN (~E);
IF (A, ~B) THEN (E);
IF (A, ~C, D) THEN (E);

Check rule IF (~B, C) THEN (E);
Check rule IF (~A, C, D) THEN (E);

Check rule IF (~A, ~C, ~D) THEN (~E), Correct Occurrences: 1; Error Occurrences: 0
Check rule IF (B, ~C, ~D) THEN (~E); Correct Occurrences: 1; Error Occurrences: 0
Check rule IF (~A, B, ~D) THEN (~E); Correct Occurrences: 1; Error Occurrences: 0
Check rule IF (~A, B, ~C) THEN (~E); Correct Occurrences: 1; Error Occurrences: 0
Check rule IF (A, B, C, D) THEN (~E); Correct Occurrences: 1; Error Occurrences: ()
Check rule IF (A, ~B) THEN (E); Correct Occurrences: 2; Error Occurrences: 0
Check rule IF (A, C, ~D) THEN (E); Correct Occurrences: 1; Error Occurrences: 0
Check rule IF (~B, D) THEN (E); Correct Occurrences: 2; Error Occurrences: 0
Check rule IF (A, ~C, D) THEN (E); Correct Occurrences: 1; Error Occurrences: 0

0

0

Correct Occurrences:
Correct Occurrences:

For input 0 1 0 0 in SP3, there are 4 rules are more general:
IF(~A, ~C, ~-D)THEN(~E); IF(B, ~C, ~D)THEN(~E); IF(~A,B,~D)THEN (~E); IF(~A, B, ~C)THEN(~E);

For 001 0in SPS5, 1 rule is more general than it:
IF (~B, C) THEN (E);
For 101 0in SP6, 3 rules are more general:
IF (A, C, ~D) THEN (E);
For 1001 in SP10, 3 rules are more general:
IF (A, ~B) THEN (E);
For 001 1 in SP13, 3 rules are more general:
IF (~B, D) THEN (E),

IF (B, C) THEN (E);
IF (~B, D) THEN (E),

IF (~B, C) THEN (E);

IF (A, ~B) THEN

1; Error Occurrences:
1; Error Occurrences:

All the General Rules are valid. Now apply the rules to the untrained patterns:

E)

IF (A, ~C, D) THEN (E);

IF (~A, C, D) THEN (E);
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All conclusions are the same as given by the MLP.

5.5 A Clinical Data Set

A set of real-world data for the diagnosis of Breast Cancer is used in this Section. The data
set consists of 413 patient records, each including ten binary-valued symptoms of breast tis-
sue samples with a conclusion whether of a malignant or a benign lesion. Although the data
set was claimed to have predictive value for the diagnosis task [Trot 91] [Koss 92], there are
only 94 distinct input patterns and 12 of them correspond to conflict conclusions appearing
at many places. Rule Validation is crucial in such noisy and redundant situation. Further de-
tails on this domain are introduced in [Down 94].

200 records were randomly selected for training and 38 General Rules were extracted. 32 val-
id rules remained after rule validation: '

IF (~ICL, ~3D) THEN (Benign); IF (ICL) THEN (Malignant);

IF (~ICL, ~Nucleoli) THEN (Benign); IF (3D, ~Naked, Necrotic) THEN (Malignant);

IF (~ICL. ~Size) THEN (Benign); IF (3D, ~Foamy) THEN (Malignant);

IF (~3D, Naked, Foamy, ~Necrotic) THEN (Benign); IF (3D, Nucleoli) THEN (Malignant);

IF (~3D, ~Nucleoli) THEN (Benign); IF (3D, Size) THEN (Malignant);

IF (~3D, ~Size) THEN (Benign); IF (~Naked, Nucleoli, Necrotic) THEN (Malignant);
IF (~3D, ~Necrotic, Apocrine) THEN (Benign); IF (~Naked, Size, Necrotic) THEN (Malignant);
IF (Naked, Foamy, ~Size) THEN (Benign); IF (~Foamy, Nucleoli) THEN (Malignant);

IF (N Pleg, ~Siz N ign): IF (~Foamy, Pleo) THEN (Malignant);

IF (Naked, ~Size, ~Necrotic) THEN (Benign); IF (~Foamy, Size) THEN (Malignant);

IF (Foamy, ~Nucleoli) THEN (Benign); IF (Nucleoli, Pleo) THEN (Malignant);

IE (Foamy, Pleo. ~Size) THEN (Bepien): IF (Nucleoli, Size) THEN (Malignant);

IF (Foamy, ~Size, ~Necrotic) THEN (Benign); IF (Pleo, Size) THEN (Malignant);

IF (~Nucleoli, ~Size) THEN (Benign); IF (Size, Necrotic, ~Apocrine) THEN (Malignant).

IF (~Nucleoli, ~Necrotic) THEN (Benign);

IF (~Nucleoli, Apocrine) THEN (Benign);

IF (Pleo. ~Size, ~Necrotic) THEN (Benign):
IF (~Size, Apocrine) THEN (Benign);

These rules were used to check the remaining 213 records, resulting in 197 records correctly
classified, 3 uncertain because there were 3 rules for and 2 rules against the conclusion in
each case, 17 misclassified among which 9 were caused by contradictory appearances of the
conclusions, i.e. there were different conclusions to identical input patterns. Disregarding the
contradictory cases in the data, the correct rate was (213-17)/(213-9)=96%. The uncertain
rate was 3/(213-9)=1.47%.

The valid rules were presented to an experienced consultant pathologist. He found that 29 of
the 32 “fit in completely with [his] views” [Cros 94], and that only 3 (underlined) appeared
anomalous at first sight. This was blamed on the appearance of “Pleo” in rules predicting be-
nignancy. However, since this feature is always accompanied by “~Size”, “It might be human
misinterpretation...” in the assessment of Pleo(morphism) which is difficult for cells whose
nuclei fall below the limits of “Size”.

The rule extraction consumed 71.5 seconds CPU time on SUN Sparc 10 workstation. The rule
validation and rule applications on the 213 records took 766 ms and 526 ms respectively.
6. Discussion and Conclusion

6.1 The Roles of PDS and FSD

In information dense situations, the FSD seems to provide determinant clues for feature se-
lection. Nevertheless, the PDS is important since it gives statistical characterisation of the do-
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main. For data in high-dimensional space the global property is likely to be more linear than
non-linear, especially in information sparse situations.

6.2 QOutput Values in Sole Patterns

There are two ways to choose the output values for sole patterns, either taken from the train-
ing patterns or calculated by recalling the MLP as the input pattern are fed in. The results are
identical if the MLP has learned the training set with 100% accuracy. However, if the MLP
is not able to learn with 100% accuracy on the training set, either because there are contra-
dictory sole patterns in the training set, or there are some complex properties beyond the
MLP’s capability (e.g. owing to a poor choice of architecture), all the results on the PDS, the
FSD and therefore the General Rules are likely to be affected by the choice in the different
ways. If the output values are chosen from the training set, the General Rules extracted reflect
the properties of the training data set, which may complement the knowledge learned by the
MLP with some features encoded in the training data set and not having been learned by the
MLP. Contradictory appearances must be penalised in this case. If the output values are cal-
culated by the MLP, the results inherit some advantages of the MLP such as generality and
resistance to noise.

How to rate redundant appearances is another issue to be considered. This has not been done
for the current algorithm.

6.3 FSD by Other Functions

The definition of the functional form for the FSD is not restricted to the one defined before.
For instance, We have also used exponential functions for fsd and fsd0 in forming FDS:

—dist (P.i" P‘) LN/?'.] 2i
e

and  fsd0= ¥ [N
(k| (j# k0,7 0, I;#1,) } i=o N1

All artificial examples in Section 5 give the same General Rules as using the previous defi-
nitions. There are slight differences on the Clinical Data domain: there were 48 General Rules
extracted; 18 patterns were misclassified and 5 were uncertain among the remaining 213 pat-
terns.

= -(2i+1)
deji = )-e )

6.4 Confidence Degree for Rules

The General Rules are well formed for knowledge generalisation. They have covered all pat-
terns in our experiments. We believe that if the occurrences observed in the rule validation
procedure are taken into account as the Confidence Degree, the General Rules can represent
the domain knowledge more accurately, especially for deciding the cases where applicable
rules have different conclusions. The Confidence Degree is more important if some previous-
ly unseen patterns are not covered by any General Rules, as in dealing with some information
sparse domains, and some other technology such as soft-matching is to be employed.

6.5 Generality of the Method

The FSD is computed in the Black-Box style, and the PDS is a linear relationship on the MLP,
both can be easily applied to most feed forward ANNs with different architectures.

6.6 Conclusion

The General Rule is a format representing only important data features, ignoring trivial ones.
This representation of knowledge provides the capabilities of generalisation, simplicity and
efficiency in knowledge engineering. It may also be used for explanation.

The General Rules are extracted from the training patterns using two criteria:
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*The FSD reveals itie salient features which are encoded in the trainjﬁg pattem set and are rec-
ognised by the MLP. It is the key criterion to decide which input values are redundant in the train-
ing context in order to generalise the extracted rules.

*The PDS reflects the statistical properties encoded in the trained MLP. Despite its linear limita-
tion, it provides important clues for feature selection at a cost of some simple computation.

The heuristic described works well on some artificial problems and more importantly, on a
real medical domain, is in agreement with medical opinion.
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