

This is a repository copy of Origin and anatomy of two different types of mass-transport complexes: a 3D seismic case study from the northern South China Sea margin.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/79867/

Version: Accepted Version

Article:

Gong, C, Wang, Y, Hodgson, DM et al. (4 more authors) (2014) Origin and anatomy of two different types of mass-transport complexes: a 3D seismic case study from the northern South China Sea margin. Marine and Petroleum Geology, 54. 198 - 215. ISSN 0264-8172

https://doi.org/10.1016/j.marpetgeo.2014.03.006

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Accepted Manuscript

Origin and anatomy of two different types of mass-transport complexes: A 3D seismic case study from the northern South China Sea margin

Chenglin Gong, Yingmin Wang, David M. Hodgson, Weilin Zhu, Weiguo Li, Qiang Xu, Dong Li

PII: S0264-8172(14)00075-0

DOI: 10.1016/j.marpetgeo.2014.03.006

Reference: JMPG 1932

To appear in: *Marine and Petroleum Geology*

Received Date: 10 November 2013

Revised Date: 21 February 2014

Accepted Date: 9 March 2014

Please cite this article as: Gong, C., Wang, Y., Hodgson, D.M., Zhu, W., Li, W., Xu, Q., Li, D., Origin and anatomy of two different types of mass-transport complexes: A 3D seismic case study from the northern South China Sea margin, *Marine and Petroleum Geology* (2014), doi: 10.1016/j.marpetgeo.2014.03.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Origin and anatomy of two different types of mass-transport
- 2 complexes: A 3D seismic case study from the northern South
- 3 China Sea margin
- 4 Chenglin Gong^{a, b *}, Yingmin Wang^{a, b *}, David M. Hodgson^c, Weilin Zhu^d,
- 5 Weiguo Li^{e,} Qiang Xu^f, Dong Li^f
- ^a State Key Laboratory of Petroleum Resources and Prospecting (China University of Petroleum, Beijing),
 Beijing 102249, People's Republic of China
- 8 ^b College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
- 9 ^c Stratigraphy Group, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- 10 ^d China National Offshore Oil Corporation Ltd (CNOOC)., Beijing 100010, People's Republic of China
- 11 ^e BP America Inc., Houston, TX, United States
- 12 ^fCNOOC Research Center, Beijing 100027, People's Republic of China

13 A B S T R A C T

- 14 Integration of 2D and 3D seismic data from the Qiongdongnan Basin along the
- 15 northwestern South China Sea margin has enabled the seismic stratigraphy, seismic
- 16 geomorphology and emplacement mechanisms of eight separate, previously
- 17 undocumented, mass-transport complexes (MTCs) to be characterized. The MTCs
- 18 can be grouped into two types:
- 19 (1) Localized detached MTCs, which are confined to submarine canyons and
- 20 cover hundreds of km^2 , consist of a few tens of km^3 remobilized sediments and show
- 21 long striations at their base. They resulted from small-scale mass-wasting processes
- induced by regional tectonic events and and gravitational instabilities on canyon
- 23 margins.

^{*} Correspondence: Chenglin Gong, State Key Laboratory of Petroleum Resources and Prospecting (China University of Petroleum, Beijing), Fuxue Road No. 18, Changping, Beijing 102249, China. Weiguo Li, BP America Inc., Westlake Park Blvd., Houston, TX, United States 77079. E-mail: <u>chenglingong@hotmail.com</u> (C. Gong), <u>wgliuh@gmail.com</u> (W. Li)

24	(2) Regional attached MTCs occur within semi-confined or unconfined settings
25	and are distributed roughly perpendicular to the strike of the regional slope. Attached
26	MTCs occupy hundreds to thousands of km ² and are composed of tens to hundreds
27	of km ³ of remobilized sediments. They contain headwall escarpments, translated
28	blocks, remnant blocks, pressure ridges, and basal striations and cat-claw grooves.
29	They were created by large-scale mass-wasting processes triggered by high
30	sedimentation rates, slope oversteepening by shelf-edge deltas, and seismicity.
31	Our results show that MTCs may act as both lateral and top seals for underlying
32	hydrocarbon reservoirs and could create MTC-related stratigraphic traps that
33	represent potential drilling targets on continental margins, helping to identify
34	MTC-related hydrocarbon traps.

- Keywords: Mass-transport complexes, the northern South China Sea margin, seismic 35

stratigraphy, seismic geomorphology, MTC-related hydrocarbon traps 36

1. Introduction

38	As petroleum exploration and production moves into greater water depths,
39	and the availability of high-quality seismic data from continental margins becomes
40	more widespread, mass-wasting processes and their deposits, MTCs, have been the
41	focus of research (e.g. Canals et al., 2004; Weimer and Shipp, 2004; Evans et al.,
42	2005; Moscardelli et al., 2006, 2012; Jackson, 2011, 2012; Shipp et al., 2011;
43	Olafiranye et al., 2013). This is because they: (1) constitute a major component of
44	the stratigraphy in many deep-water siliciclastic systems (Moscardelli et al., 2006;
45	Posamentier and Walker 2008; Gong et al., 2011; Ogiesoba and Hammes, 2012;
46	Olafiranye et al., 2013); (2) transport large volumes of sediments from continental
47	shelves and/or upper slope into deep-water settings (Canals et al., 2004; Haflidason
48	et al., 2005; Hjelstuen et al., 2007; Talling et al., 2007); (3) represent significant
49	geohazards for coastal communities, nearshore navigation, and seabed infrastructure
50	(Shipp et al., 2004; Weimer and Shipp, 2004; Mosher et al., 2010; Shipp and Lu,
51	2011; Zhu et al., 2011; Jackson, 2012); (4) need to be considered in the assessment
52	of deep-water drilling programs (Moscardelli et al., 2006; Algar et al., 2011;
53	Richardson et al., 2011; Shipp and Lu, 2011); and (5) can act as seals and poor
54	reservoirs (Moscardelli et al., 2006; Weimer and Slatt, 2007; Riedel et al., 2012).
55	Generally, MTCs are considered to be poor reservoirs due to low porosities and
56	permeabilities (e.g. Shipp et al., 2004; Moscardelli et al., 2006; Weimer and Slatt,
57	2007; Zhu et al., 2011), although sand-prone MTCs have been recognized (e.g., the
58	eastern Mexico; Loucks et al., 2011). They can act as seals for underlying petroleum

59	reservoirs, giving rise to alternative exploration targets in many parts of the world
60	(Moscardelli et al., 2006; Weimer and Slatt, 2007; Zhu et al., 2011). However, the
61	exploration significance of MTCs remains understudied.
62	Three-dimensional seismic data have proven to be one of the most powerful
63	tools for the geological investigation of both ancient and recent MTCs (Moscardelli
64	et al., 2006, 2012; Moscardelli and Wood, 2008; Jackson, 2011, 2012; Riedel et al.,
65	2012; Olafiranye et al., 2013). A number of component elements of MTCs, such as
66	basal grooves, remnant blocks, megaclasts, pressure ridges, have been recognized by
67	many geologists from the analysis of 2D and/or 3D seismic data from deep-water
68	basins worldwide (Moscardelli et al., 2006, 2012; Moscardelli and Wood, 2008; Bull
69	et al., 2009; Jackson, 2011, 2012). However, there is scope for more quantitative
70	approaches to the analysis of MTCs and their component elements using seismic
71	data. Several aspects of MTCs, particularly their geomorphological characteristics,
72	triggering mechanisms, and exploration significance, are still not fully understood
73	(Canals et al., 2004; Weimer and Shipp, 2004; Evans et al., 2005; Shipp et al., 2011).
74	Despite continuing investigation of MTCs worldwide, studies of MTCs in the
75	northern South China Sea margin are still limited. Zhu et al. (2011), however,
76	documented the external morphology and internal architecture of several MTCs in
77	Yinggehai Basin along the northwestern South China Sea margin (see Fig. 1 for their
78	study area). MTCs constitute more than 60% of the Pliocene-Quaternary succession
79	in the Qiongdongnan Basin (Gong et al., 2011). In contrast to the MTCs documented
80	by Zhu et al. (2011) and many other studies, MTCs occurring in the study area of the

81	Qiongdongnan Basin are unusual because they are distributed both subparallel and
82	roughly perpendicular to the strike of the regional slope. In addition, increased
83	exploration activities in the study area and the northern South China Sea margin
84	require characterization of these MTCs and understanding their roles in controlling
85	hydrocarbon accumulations. The widespread occurrence of the best-developed
86	MTCs and rich amount of data in the Qiongdongnan Basin permit (1) investigation
87	of cross-sectional seismic expression and geomorphological characteristics of
88	MTCs ; (2) discussion of possible triggering mechanisms of the studied MTCs; and
89	(3) addressing MTC-related hydrocarbon trapping mechanisms. Our results will
90	contribute to a better understanding of the origin and emplacement processes of
91	MTCs and the prediction and identification of MTC-related hydrocarbon traps on
92	continental margins.

93 **2. Regional setting and the study area**

The South China Sea is the largest $(> 3.5 \times 10^6 \text{ km}^2)$ and deepest (> 5000 m)94 marginal sea along the western Pacific Ocean (Fig. 1). Several Cenozoic rift basins 95 developed along the northern South China Sea margin, and from west to east they 96 are the Beibuwan Basin, Yinggehai Basin, Qiongdongnan Basin, Pearl River Mouth 97 Basin, and Taixinan Basin (Xie et al., 2006, 2008; Gong et al., 2013) (Fig. 1). The 98 study area is located in the Qiongdongnan Basin, which is bounded to the west by 99 100 the Red River Fault Zone and to the east by Pearl River Mouth Basin (Zhu et al., 2011; Gong et al., 2013) (Fig. 1). 101

102 The evolution of the Qiongdongnan Basin is closely linked to the strike-slip

103	movements along the Red River Fault, which underwent sinistral slip during the
104	period of 35 \sim 20 Ma and dextral movement since 5.5 Ma (Xie et al., 2006, 2008;
105	Gong et al., 2011; Zhu et al., 2011). Driven by the strike-slip movement of the Red
106	River Fault, Qiongdongnan Basin underwent two tectonic stages, namely a rifting
107	stage from Paleocene to Early Oligocene, and a post-rifting stage from Early
108	Miocene to Quaternary (Xie et al., 2006, 2008; Gong et al., 2011; Zhu et al., 2011).
109	The fill of the Qiongdongnan Basin can be divided into syn-rift and post-rift
110	supersequences, separated by a regionally important unconformity, the T60 surface,
111	dated at 23.3 Ma (Zhu, et al., 2009; Gong et al., 2011). Neritic, deltaic and nearshore
112	environments and the associated depositional systems are widely developed within
113	the syn-rift supersequence (Xie et al., 2006, 2008). 'Typical' deep-water deposits
114	(e.g., the Central submarine canyon, deep-marine channels, and MTCs, etc.) became
115	widely developed within the post-rift supersequence, in response to the development
116	of a prominent shelf-slope-basin physiography from 5.5 Ma onwards (Xie et al.,
117	2006, 2008; Gong et al., 2011). The Central submarine canyon occurring in the study
118	area is the largest deep-marine canyons in the northern South China Sea margin, has
119	a total length of approximately 425 km, width of 3 to 12 km and an average area of
120	50,000 km ² and show 'S' shape in plan view (Gong et al., 2011). Previously
121	undocumented MTCs developed within the post-rift supersequence in the
122	Qiongdongnan Basin are the focus of this study (Figs. 1 to 3).

3. Database and methodology

3.1 Database

125	The primary source of data used in this case is 1670 km ² of 3D seismic data,
126	tied to 2D regional seismic transects from the Qiongdongnan Basin (Fig. 1), which
127	were acquired and provided by China National Offshore Oil Corporation (CNOOC).
128	The dominant frequency of the time-migrated volume varies with depth, but is
129	approximately 40 Hz for the interval of interest, with an estimated vertical resolution
130	of \sim 15-20 m. The bin spacing of the time-migrated volume used in this study is 25
131	$m \times 12.5~m$ and has a 4 ms vertical sampling rate. The regional 2D seismic lines
132	have a dominant frequency of \sim 30 Hz in the interval of interest, with an estimated
133	vertical resolution of \sim 20-30 m. Both 2D and 3D seismic-reflection data were
134	processed to zero phase and are displayed using 'SEG reverse polarity', where an
135	increase in acoustic impedance is represented by a negative (trough) reflection event.
136	3.2 Methodology
137	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically
137 138	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from
137 138 139	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from BS1 to BS8 from chronologically oldest to youngest), were identified in the
 137 138 139 140 	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from BS1 to BS8 from chronologically oldest to youngest), were identified in the Pliocene-Quaternary sedimentary interval in the Qiongdongnan Basin (Figs. 2 and 3).
 137 138 139 140 141 	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from BS1 to BS8 from chronologically oldest to youngest), were identified in the Pliocene-Quaternary sedimentary interval in the Qiongdongnan Basin (Figs. 2 and 3). Three-dimensional perspective view maps of the eight basal bounding surfaces were
 137 138 139 140 141 142 	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from BS1 to BS8 from chronologically oldest to youngest), were identified in the Pliocene-Quaternary sedimentary interval in the Qiongdongnan Basin (Figs. 2 and 3). Three-dimensional perspective view maps of the eight basal bounding surfaces were generated (Figs. 4A to 11A), in order to understand bathymetric controls on the
 137 138 139 140 141 142 143 	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from BS1 to BS8 from chronologically oldest to youngest), were identified in the Pliocene-Quaternary sedimentary interval in the Qiongdongnan Basin (Figs. 2 and 3). Three-dimensional perspective view maps of the eight basal bounding surfaces were generated (Figs. 4A to 11A), in order to understand bathymetric controls on the development of their overlying MTCs. Depth measurements were estimated, using
 137 138 139 140 141 142 143 144 	Eight intervals of chaotic seismic facies (MTC1 to MTC8 from chronologically oldest to youngest), together with eight basal bounding surfaces (numbered from BS1 to BS8 from chronologically oldest to youngest), were identified in the Pliocene-Quaternary sedimentary interval in the Qiongdongnan Basin (Figs. 2 and 3). Three-dimensional perspective view maps of the eight basal bounding surfaces were generated (Figs. 4A to 11A), in order to understand bathymetric controls on the development of their overlying MTCs. Depth measurements were estimated, using 2000 m/s for the shallow siliciclastics in the study interval of interest and 1500 m/s

146

This study is principally based on 'classical' 2D seismic facies analysis (Vail et

147	al., 1977) and 3D seismic geomorphology approach (Posamentier et al., 2007),
148	through which the stratigraphic architecture and seismic geomorphology of the
149	documented MTCs and their component elements are quantitatively analyzed.
150	Two-way traveltime (TWT) structural maps of the basal bounding surfaces of the
151	studied MTCs were made in order to understand the topographic controls on the
152	development of their overlying MTCs. Coherence images provide enhanced
153	visualization of small-scale depositional features and allow accurate mapping the
154	external morphology and internal architecture of the documented MTCs.
155	Root-mean-square (RMS) amplitude is a seismic attribute that calculates the square
156	root of the sum of time-domain energy (square of amplitude), affording high
157	amplitudes the maximum opportunity to stand out from background contamination.
158	RMS amplitude, therefore, can be used to describe the internal architecture of the
159	documented seismic facies. 3D coherence probes, amplitude cubes and RMS
160	attribute probes were created and are used to delineate the plan-view morphology of
161	the documented MTCs and their component elements, using Landmark Seisworks,
162	PostStack/PAL, and GeoProbe software.

163 **4. 3D seismic stratigraphy and geomorphology of the documented MTCs and**

164 their component elements

- 165 Ten seismic facies were recognized in the documented MTCs in the
- 166 Qiongdongnan Basin study area based on seismic reflection configuration (reflection
- 167 continuity and amplitude), cross-sectional geometry and stratal terminations.
- 168 Interpretations of seismic facies are based on recognition criteria established from

169	published seismic-reflection datasets (e.g. Posamentier and Kolla, 2003; Shipp et al.,
170	2004; Moscardelli et al., 2006, 2012; Bull et al., 2009; Gamboa et al. 2010; Jackson,
171	2011, 2012; Olafiranye et al., 2013). See Table 1 for a complete description and
172	interpretation of all seismic facies.
173	4.1 Seismic facies description
174	4.1.1 Seismic facies 1: Irregular-shaped chaotic seismic facies
175	Seismic facies 1 is made up of chaotic, low-amplitude reflections with variable
176	seismic reflection continuity and displays irregular-shaped cross-sectional geometry
177	(cool color-shaded areas in Fig. 4C; Table 1). Reflections associated with this
178	seismic facies are inclined towards canyon margins and downlap toward the thalweg
179	of submarine canyons (Fig. 4C; Table 1). In plan form, this seismic facies exhibits
180	an irregular morphology and can cover an area ranging from tens to hundreds of
181	square kilometers (Fig. 4B; Table 1). In seismic geomorphic images, it is represented
182	by light-colored zones and occurs on both flanks of the Central submarine canyon
183	(Fig. 4B and 5B; Table 1).
184	4.1.2 Seismic facies 2: Long linear seismic facies
185	Seismic facies 2 is represented by laterally discontinuous, alternating high- and
186	low-amplitude reflections (Fig. 5C; Table 1). This seismic facies is expressed in map
187	view as light-colored, narrow, west-east-trending linear bands that continue for more
188	than 30 km across the 3D seismic survey (Figs. 4B, 5B and 6B; Table 1). These
189	linear bands are parallel to subparallel to the long axis of the Central submarine
190	canyon with no evidence of divergent patterns (Figs. 4B, 5B, 6B and 11B; Table 1).

101	1120	c ·)	C1 . 1·1	1	• • • •	
191	4 1 3 Spismic	tacies 1.	Sheet-like	chaofic	seismic facia	20
1/1	1.1.5 Scismic	jucies 5.	Sheet the	chaone	scismic jucit	~0

192	In cross-sectional view, seismic facies 3 is composed of chaotic, low-amplitude,
193	and semitransparent seismic reflections and exhibits sheet-like cross-sectional
194	geometry (Fig. 6C; Table 1). It is bounded at its base by a laterally continuous,
195	bed-parallel undeformed seismic reflector (Fig. 6C; Table 1). In plan view, it is
196	represented by light- and dark-colored sheets (high and low coherence values,
197	respectively) and occupies an area ranging from hundreds to thousands of square
198	kilometers (Figs. 6B to 11B; Table 1).
199	4.1.4 Seismic facies 4: Landward dipping arcuate seismic facies
200	In plan form, seismic facies 4 is seen as extensive ridges of alternating light and
201	dark colors and are seismically imaged as a corrugated irregular surface (Figs. 7B,
202	8B and 9B; Table 1). These closely spaced ridges are commonly parallel or
203	subparallel to each other and show arcuate plan-view morphology with an
204	orientation overall parallel or subparallel to the strike of the regional slope (Figs. 7B,
205	8B and 9B; Table 1). In cross-section, seismic facies 4 is made up of packages of
206	parallel, steeply landward dipping reflections that are separated by offsets with up to
207	80 m relief (Figs. 7C and 9D; Table 1).
208	4.1.5 Seismic facies 5 and 6: Low- and high-coherence chaotic seismic facies
209	Low-coherence chaotic seismic facies (seismic facies 5) are represented by
210	chaotic, low-amplitude, discontinuous seismic reflections, whereas high-coherence
211	chaotic seismic facies (seismic facies 6) are made up of chaotic, low-amplitude
212	moderate continuous seismic reflections (Fig. 8C; Table 1). In plan view, seismic

- facies 5 is seen as low-coherence sheets (light-colored areas in Figs. 6B to 11B;
- Table 1), whereas seismic facies 6 is expressed as high-coherence sheets
- 215 (dark-colored areas in Figs. 6B to 11B; Table 1).

216 4.1.6 Seismic facies 7: Tapering-upward, block seismic facies

- 217 Seismic facies 7 consists of tapering-upward, moderate- to high-amplitude
- reflections with variable seismic reflection continuity (Fig. 9C; Table 1). In plan
- form, seismic facies 7 is up to 1.5 km wide and 120 m high and is seismically
- imaged as a corrugated irregular surface (Figs. 9B, 9C and 10B).
- 221 4.1.7 Seismic facies 8: Arcuate seismic facies
- 222 Seismic facies 8 are represented by a laterally continuous, undeformed
- 223 reflection marking the upslope margin of MTCs, where the basal surface steps up to
- 224 cut and intersect stratigraphically higher, chronostratigraphically younger slope
- stratigraphy (hot colored-shaded area in Fig. 10C; Table 1). In plan view, they
- appear as arcuate scarps oriented subparallel to the strike of the regional slope (Fig.

227 10B).

228 4.1.8 Seismic facies 9: Diverging lineation seismic facies

Seismic facies 9 appears as alternating high- and low-amplitude reflections with flat-bottomed cross-sectional geometry, which resemble a string of beads as seen in section view with basal truncation of around 10 m relief (Fig. 11C; Table 1). Each of these 'beads' is seen as a dark-colored single, narrow, northwest-southeast-trending tortuous incised scour (Fig. 11C). In plan view, they are expressed as radiating small-scour features that are continuous over 20 km in 3D coherence volumes (Fig.

235 11C; Table 1).

- 236 4.1.9 Seismic facies 10: Remnant seismic facies
- 237 Seismic facies 10 appear as discrete blocks of high-amplitude continuous
- 238 reflections and exhibit irregular-shaped cross-sectional geometry with an irregular
- top and a bed-parallel base (Fig. 11D; Table 1). In cross-section, seismic facies 10 is
- 240 represented as an undeformed 'island' surrounded by chaotic seismic facies (seismic
- facies 5 and 6). The 'islands' are seen as irregular-shaped, light-colored, single,
- north-south-trending blocks, are up to 45 m thick with a maximum long axis of 15
- 243 km (Fig. 11), and cover an area ranging from several square kilometers to a few tens
- of square meters (Figs. 11C and 11D; Table 1).
- 245 4. 2 Sedimentological interpretation
- 246 4.2.1 Seismic facies 1: Detached MTCs
- 247 Chaotic seismic facies 1 displays many of the recognition criteria typically used
- to recognize MTCs on seismic-reflection data (Moscardelli et al., 2006, 2012; Bull et
- al., 2009; Jackson, 2011, 2012; Olafiranye et al., 2013). Seismic facies 1 is further
- 250 interpreted as detached MTCs, as discussed later (Fig. 4; Table 1).
- 251 4.2.2 Seismic facies 2: Striations
- The overall seismic expression of seismic facies 2 shares many similarities with seismic reflection patterns of striations documented in many previous studies (Gee et al., 2005, 2006; Moscardelli et al. 2006; Bull et al. 2009; Jackson, 2011). Long linear seismic facies are therefore interpreted as striations (Figs. 4B, 5B, 5C and 6B; Table 1) that are differentiated from grooves due to the absence of downslope divergence

257 (Posamentier and Kolla, 2003; Moscardelli et al., 2006).

- 258 4.2.3 Seismic facies 3: Attached MTCs
- 259 The overall seismic reflection patterns of seismic facies 3 are wholly
- 260 compatible with the recognition criteria of MTCs on seismic reflection data
- 261 (Moscardelli et al., 2006, 2012; Bull et al., 2009; Jackson, 2011, 2012; Olafiranye et
- al., 2013). Where similar seismic facies have been documented, as in the Columbus
- 263 Basin along offshore Trinidad and the Santos Basin along the offshore Brazil, they
- have been interpreted as the accumulation of mud-rich sediments (Shipp et al., 2004;
- 265 Moscardelli et al., 2006; Jackson, 2012). Seismic facies 3 is further interpreted as
- attached MTCs (Fig. 6C and 6B to 11B; Table 1), as discussed below.
- 267 4.2.4 Seismic facies 4: Pressure ridges
- 268 Seismic facies 4 displays very similar seismic expression of pressure ridges that
- 269 have been described at terminal ends of MTCs in Columbus, offshore Trinidad
- 270 (Moscardelli et al., 2006), in the Norwegian continental slope (Bull et al., 2009) and
- in the Gulf of Mexico (Posamentier and Kolla, 2003). Packages of parallel, steeply
- 272 landward dipping reflections as seen from this seismic facies are generally
- interpreted as thrusts coeval to the emplacement of the MTC (Bull et al., 2009) (Figs.
- 274 7B, 8B and 9B; Table 1). Examples of pressure ridges can be seen from MTC4,
- 275 MTC5, and MTC6 (Figs. 7B, 8B and 9B; Table 1).
- 4.2.5 Seismic facies 5 and 6: Less and highly deformed MTCs
- 277 Seismic facies 5 and 6 are both expressed as chaotic, low-amplitude seismic
- 278 reflections and exhibit many of the criteria used to identify MTCs (Moscardelli et al.,

279	2006, 2012; Bull et al., 2009; Jackson, 2011, 2012). We follow the interpretation of
280	Gamboa et al. (2010) who suggested that chaotic seismic facies displaying light
281	colored coherent patterns (seismic facies 5 in this study) can be best considered as
282	less deformed MTCs, whereas chaotic seismic facies exhibiting dark colored
283	coherent patterns (seismic facies 6 in the current study) can be interpreted as highly
284	deformed MTCs (for full details see Figs. 4C and 8C of Gamboa et al. 2010) (Figs.
285	6B to 11B; Table 1).
286	4.2.6 Seismic facies 7: Translated blocks
287	Based on similar features described from similar feature occurring within
288	MTCs, seismic facies 7 is interpreted as translated blocks (Posamentier and Kolla,
289	2003; Gee et al., 2008; Bull et al., 2009; Jackson 2012; Table 1). MTC6 includes
290	well-imaged examples of translated blocks (Figs. 9B, 9C and 10B; Table 1).
291	4.2.7 Seismic facies 8: Headwall escarpments
292	Seismic facies 8 exhibits a similar seismic expression to the headwall domain of
293	a MTC in Columbus along offshore Trinidad (Moscardelli et al., 2006) and in
294	Storegga Slide in Norwegian continental slope (Bull et al., 2009) (Figs. 10B and 10C;
295	Table 1). Their arcuate plan-form geometries as seen in plan view differentiate them
296	from tectonic normal faults, and previous work suggested that headwall escarpments
297	formed in the same way as extensional faults (Bull et al., 2009).
298	4.2.8 Seismic facies 9: Cat-claw grooves
299	Similar feature described from other MTCs have interpreted radiating
300	small-scour features (seismic facies 9 in this study) as basal grooves (Fig. 11C;

301	Table 1), also termed 'cat-claw scours' by Moscardelli et al. (2006), as evidence of
302	abrupt changes in debris-flow conditions (Moscardelli et al., 2006; Bull et al., 2009)
303	(Fig. 11B; Table 1). Similar radiating small-scour features were documented in
304	offshore Brunei and are termed 'monkey fingers' by McGilvery and Cook (2003).
305	4.2.8 Seismic facies 10: Remnant blocks
306	Where similar seismic facies have been documented, as in Norwegian
307	continental margin (Figs. 10C and 10D in Bull et al., 2009), offshore Espírito Santo,
308	Brazil (Figs. 1B, 2A, 3A and 6A in Alves, 2010), an offshore Angola (Figs. 5 and 10
309	in Olafiranye et al., 2013), seismic facies of weakly deformed blocks of
310	high-amplitude continuous reflections with irregular-shaped cross-sectional
311	geometry were interpreted as remnant blocks or megaclasts (Jackson 2012) (Figs.
312	11C and 11D; Table 1).
313	5. General description of MTCs as documented in this case of the
314	Qiongdongnan Basin along northwestern South China Sea margin
315	Eight separate MTCs, MTC1 to MTC8, were identified in the Qiongdongnan
316	Basin. General descriptions of these eight MTCs are presented in Table 2 and are
317	provided in this section.
318	5.1 General description of MTC1 and MTC2
319	The basal bounding surfaces of MTC1 and MTC2 show a U-shaped
320	bathymetric confinement with a relief decreasing northeastward, resulting in a
321	confined setting (Fig. 4A and 5A, respectively; Table 3). Both MTC1 and MTC2 are

322 confined within the Central submarine canyon and are orientated subparallel to the

323	strike of the regional slope (Figs. 1, 2, 4A and 5A). Morphologically, MTC1 and
324	MTC2 cover an area of approximately 210 km^2 and 250 km^2 , respectively (Table 2).
325	The estimated volumes of remobilized sediments of MTC1 and MTC2 are about 9
326	km ³ and 15 km ³ , respectively (Table 2). Both MTC1 and MTC2 show long striations
327	at their base (Figs. 4B and 5B).
328	5.2 General description of MTC3, MTC4, MTC5 and MTC6
329	Three-dimensional perspective views of the basal bounding surfaces of MTC3,
330	MTC4, MTC5 and MTC6 show a semi-confined setting that comprises an
331	unconfined setting in the northern part of the study area and a confined setting in the
332	southern part, above which these four MTCs occur (Fig. 6A to 9A; Table 3). MTC3
333	has an average thickness of approximately 110 m, the volume of remobilized
334	sediments calculated for MTC3 is around 70 km ³ (Table 2). In plan view, it covers a
335	region of about 700 km^2 and is composed of mainly of seismic facies 5 and 6, less
336	and highly deformed MTCs (Figs. 4 to 11; Table 2). Sigmoid-oblique-progradational
337	seismic facies located near palaeoshelf break occur above basal bounding surface of
338	MTC3 (Fig. 2). They are composed of deformed, moderate to high amplitude and
339	moderate to low continuous reflections with wedge-shaped geometries and exhibit
340	clear, sigmoid-oblique progradational configurations (hot-colored areas in Fig. 2).
341	They share affinities with shelf-edge deltas documented by Porebski and Steel (2003)
342	and, when coupled with their locations on the shelf-slope profile and the deformed
343	and disputed seismic reflection configurations, suggest that this seismic facies can be
344	best interpreted as deformed shelf-edge deltas (Fig. 2).

345	MTC4 and MTC5 approximately cover similar areas, about 1100 km^2 (Table 2).
346	Thicknesses of MTC4 and MTC5 are variable, reaching an average thickness of
347	approximately 100 m (Table 2). Total volumes of MTC4 and MTC5 are calculated to
348	be $\sim 100 \text{ km}^3$ and $\sim 140 \text{ km}^3$, respectively (Table 2). Internally, MTC4 is
349	characterized by widespread occurrence of well-imaged arcuate pressure ridges and
350	consists predominantly of less deformed MTCs (Figs. 4B to 7B), whereas highly
351	deformed MTCs and pressure ridges (Fig. 8B) widely developed in MTC5. MTC6
352	occupies an approximate area of \sim 1200 km ² , and the thickness of MTC6 is variable,
353	reaching an average thickness of \sim 80 m (Table 2). MTC6 consists of 90 km ³
354	remobilized sediments and contains pressure ridges, translated blocks and show
355	striations at their base (Figs. 9B and 9D; Table 2).
356	5.3 General description of MTC7 and MTC8
357	MTC7 and MTC8 developed in an unconfined setting with a southeastward
358	decrease in relief (Figs. 10A and 11A; Tables 2 and 3). MTC7 and MTC8 cover an
359	area of approximately 800 km ² and 1100 km ² , respectively (Figs. 10A and 11A;
360	Table 3). The thickness of MTC7 is also variable, reaching an average thickness of
361	about 70 m, and the total volume of remobilized sediments of MTC7 is calculated to
362	be about 55 km ³ (Table 2). An estimated volume of 50 km ³ remobilized sediments
363	was transported from the continental shelf and/or upper slope to the region where
364	MTC8 developed (Table 2). Internally, MTC7 consists of high and less deformed
365	facies contains translated blocks (Fig. 10B), whereas MTC8 comprises basal
366	cat-claw grooves, translated blocks, ,and remnant blocks and is composed of highly

and less deformed MTCs (Figs. 11B, 11C and 11D).

368 6 The origin and classification of MTCs as documented in the case of the

- 369 Qiongdongnan Basin
- 370 6.1 Source areas of MTCs as documented in the case of the Qiongdongnan Basin
- 371 6.1.1 Source areas of MTC1 and MTC2
- MTC1 and MTC2 are totally confined within the Central submarine canyon 372 (the U-shaped confinement with the northeastward decrease in relief as presented in 373 Figs 4A and 5A). Gong et al. (2011) suggested large-scale and high-energy sediment 374 gravity flows were the dominant processes within the Central submarine canyon 375 around the time of MTC1 and MTC2 emplacement. Sediment gravity currents 376 flowing along the long axis of the Central submarine canyon are interpreted to have 377 378 induced small collapses and local instabilities on canyon margins, resulting in small-scale mass-wasting processes and resultant MTCs composed of collapsed 379 sediments derived from canyon margins, suggesting that MTC1 and MTC2 are likely 380 381 fed by localized source areas (Table 3). In addition, MTC1 and MTC2 show long striations at their base (Figs. 5B and 382 6B), which trend along the long axis of the Central submarine canyon. According to 383 384 Bull et al. (2009), striations directly record the translation of MTC body across the basal bounding surfaces and are indicative of transport direction of debris flow 385
- processes. The trend of striations occurring in MTC1 and MTC2 as shown in Figs.
- 387 5B and 6B suggests a transport direction along the long axis of the Central
- submarine canyon for MTC1 and MTC2. This suggests that MTC1 and MTC2 most

- 389 likely originated from collapses of the studied slope that were triggered by regional390 tectonic events as discussed later (Table 3).
- 391 6.1.2 Source areas of MTC3 to MTC8

392	MTC3 and MTC6 are linked with deformed shelf-edge deltas and occur
393	immediately basinward of these deformed shelf-edge deltas (Fig. 2). The repaid
394	progradation of shelf-edge deltas can lead to the development of gravitational
395	instabilities and large-scale sediment failures in the distal part of shelf-edge deltas as
396	the delta slope merges with the basin margin slope. This is expressed by disrupted
397	and deformed seismic reflection configurations as seen from the terminal end of
398	shelf-edge deltas (Fig. 2). These observations would support the interpretation that
399	deformed shelf-edge deltas are source area of MTC3 and MTC6 (Fig. 2, Table 3).
400	Below basal bounding surfaces of MTC4, MTC5 and MTC8 (BS4, BS5 and
401	BS8) there are clear truncation terminations occurring on the continental shelf
402	(yellow dots in Fig. 2), implying that the subaerial exposure and erosion of
403	continental shelves and/or shelf margins were common during the deposition of
404	MTC4, MTC5 and MTC8. These processes in turn supplied sediments for
405	deep-water settings where MTC4, MTC5 and MTC8 occur and, when coupled with
406	the fact that MTC4, MTC5 and MTC8 occur immediately basinward of shelf edges,
407	support the interpretation that MTC4, MTC5 and MTC8 were probably fed by
408	sediments derived from continental shelf and/or shelf margins (Table 3).
409	MTC7 occurs immediately seaward of extensive headwall escarpments
410	recognized in the northern part of the study area (Figs. 2, 10B and 10C). Bull et al.

411	(2009) suggested that the orientation of the headwall escarpment is consistent with
412	the initial direction of mass-wasting processes. According to this hypothesis, the
413	initial transport direction of MTC7 was downslope to the south and is parallel to the
414	orientation of the headwall escarpment as presented in Fig. 10B, suggesting that
415	source area for MTC7 lies in the upper slope (Table 3).
416	6.2 Classification of MTCs as documented in the case of the Qiongdongnan Basin
417	From a sedimentological perspective, Moscardelli and Wood (2008) proposed
418	that MTCs can be classified as detached and attached types, considering their
419	triggering mechanisms and relationships to source area. This classification is
420	employed to classify MTCs documented in this study. MTC1 and MTC2 are
421	classified as 'detached MTCs', considering the fact that they are areally confined
422	within the Central submarine canyon and were fed neither by continental shelves or
423	upper slopes, but rather by canyon margins (Table 3).
424	The other five MTCs (MTC3 to MTC6, and MTC8), in contrast, all extend
425	from their shelf margins or shelf-edge delta sources to the deep-water basin (Table 3),
426	all of which can be classified as 'shelf-attached MTCs' (Table 3). The upper slope of
427	the studied margin is the source area of MTC7, suggesting that MTC7 can be
428	classified as 'slope-attached MTC' (Table 3).
429	7 Triggering mechanisms of MTCs documented in the Qiongdongnan Basin

430 Many previous studies suggested that MTCs can be triggered by a number of

431 mechanisms and triggers, including high sedimentation rates, the gas-hydrate

- dissolution, sea-level fluctuations, tectonics, seafloor oversteepening, overpressures,
- 433 earthquakes, etc. (Solheim et al., 2005; Moscardelli et al., 2006; Strozyk et al., 2009;
- 434 Gamberi et al., 2011; Jackson, 2011, 2012; Mosher and Cambell, 2011; Riedel et al.,
- 435 2012, among others). The current study suggests that a combination of factors, as
- discussed below, contributed to the initiation and development of MTCs documented
- 437 in the current case study (Table 3).
- 438 7.1 Triggering mechanisms of detached MTCs
- 439 7.1.1 Paleo-seafloor morphology
- 440 Gong et al. (2011) suggested that slope-subparallel bathymetric confinement
- 441 (the Central submarine canyon) predated the development of detached MTCs (Figs.
- 442 4 and 5). No.2 Fault and other basement faults are oriented subparallel to the strike
- 443 of the regional slope (Figs. 1 and 2). Both the slope-subparallel bathymetric
- 444 confinement and slope-subparallel faults most likely acted as a strong physiographic
- 445 'container' (the Central submarine canyon) to constrain mass-wasting processes
- responsible for the formation of detached MTCs, resulting in MTC1 and MTC2 that
- are oriented subparallel to the strike of the regional slope and are areally confined
- 448 within the bathymetric confinement (Figs. 1 to 5).
- 449 7.1.2 Regional tectonic events

450 The study area is bounded to the west by the Red River Fault and to the east by

- 451 No. 2 Fault (Figs. 1 and 2), both of which shifted from sinistral to dextral movement
- 452 at about 5.5 Ma (Xie et al., 2008; Zhu et al., 2009, 2011) (Fig. 1). As suggested by
- 453 Gong et al. (2011), the structural inversion of the Red River Fault and No. 2 Fault

454	and associated tectonic activity most likely triggered small-small slope instability
455	and localized collapses of the continental slope of the studied margin. The collapsed
456	sediments were transported downcanyon through small-scale mass-wasting
457	processes that were confined with the Central submarine canyon, resulting in
458	localized MTCs (MTC1 and MTC2) (Figs. 2 to 5). In addition, these small-scale
459	mass-wasting processes probably 'ploughed' the basal bounding surfaces of MTC1
460	and MTC2, yielding long striations (long linear seismic facies seen in plan-view
461	geomorphic images presented in Figs. 4B and 5B) oriented parallel to the long axis
462	of the Central submarine canyon.
463	7.1.3 Canyon margin oversteepening
464	These energetic sediment gravity flows induced by regional tectonic events
465	flowing along the long axis of the slope-subparallel bathymetric confinement (the
466	Central submarine canyon) could provide sufficient shear stress to flush the canyon
467	and erode canyon margins significantly. Canyon margins might become
468	oversteepened and collapse due to the significant erosion of canyon margins (e.g.
469	Hodgson et al. 2011). This in turn further contributed to the development of detached
470	MTCs (MTC1 and MTC2) consisting of sediments derived from canyon walls.
471	Similar canyon-margin-failure trigger mechanisms have been invoked by
472	Moscardelli and Wood (2008) from their 3D seismic case study from the Columbus
473	Basin, offshore Trinidad.

474 *7.2 Triggering mechanisms of attached MTCs*

475 7.2.1 High sedimentation rates, rapid slope progradation and slope oversteepening

476	Zhu et al. (2011) suggested that sedimentation rates from Pliocene (5.5 Ma) to
477	Quaternary in the Qiongdongnan Basin study area ranged from 400-800 m/My. This
478	high sedimentation rate in turn most likely resulted in rapid progradation of the basin
479	margin. This can be evidenced by the fact that shelf edges of the study area migrated
480	seaward for more than 50 km from Pliocene to present (Gong et al., 2011). In
481	response to the rapid progradation of the basin margin, the slope would become
482	oversteepened, as suggested by the fact that the average slope gradient of the study
483	area reach up to 4° to 6° (Fig. 2). All of these triggers probably induced gravitational
484	instabilities and catastrophic collapses of shelf margins and/or upper slopes, resulting
485	in large-scale mass-wasting processes and their associated attached MTCs (Table 3).
486	7.2.2 Rapid progradation of shelf-edge deltas
487	High sedimentation rates resulted in rapid progradation of shelf-edge deltas and,
488	when coupled with other slope-failure triggers (e.g., ground motion, gas hydrate
489	dissociation, sea level fluctuation, etc.) probably induced gravitational instabilities
490	and large-scale sediment failures in the distal part of shelf-edge deltas (Figs. 2 and 4).
491	This can be evidenced by the disrupted and deformed seismic reflection
492	configurations as seen from the terminal end of sigmoid-oblique-progradational
493	seismic facies (hot color-shaded areas in Fig. 2). It is likely that rapid progradation of
494	shelf-edge deltas onto the upper slope would have contributed to the development of
495	shelf-attached MTCs (Fig. 2; Table 3). Similar mechanisms triggering the
496	development of shelf-attached MTCs fed by paleoshelf edge deltas have also been

498 7.2.3 Tectonic activity and resultant seismicity

499	As discussed previously, the Red River Fault, No. 2 Fault and other basement
500	experienced dextral movement from Pliocene to present, all of which caused
501	high-frequency seismicity in the northern South China Sea margin (Zhu et al., 2009,
502	2011). Seismicity associated with this dextral movement have been documented in
503	China, northern South China Sea margin, and the eastern Vietnam, etc. (Zhu et al.,
504	2011). The tectonic activity and associated seismicity, coupled with other triggering
505	mechanisms as stated above, most likely triggered extensively catastrophic collapses
506	of continental shelves, shelf margins, shelf-edge deltas, or upper slopes by seismic
507	shaking, forming large-scale mass-wasting processes and their associated attached
508	MTCs as documented in this case (MTC3 to MTC8) (Table 3).
509	8. Lateral and vertical relationships with interstratified reservoirs
510	A seismic facies is made up of thalweg high-amplitude elements (the hot
511	color-shaded area in Fig. 12), consisting of high amplitude reflections ('HARs',
512	sensu Flood et al., 1991). HARs are contained within U-shaped basal erosional
513	surface, across which there are clear truncation terminations below and onlap
514	terminations above (Fig. 12). In plan view, they are expressed as high-amplitude and
515	high-RMS-attribute zones with irregular-shaped morphology (hot color-shaded areas
516	in Fig. 13). High-amplitude reflections confined within submarine canyons are
517	commonly interpreted as channel fills (Manley et al., 1997; Mayall et al., 2006;
518	Cross et al., 2009). Where similar seismic facies have been calibrated with borehole
519	data, as in the Amazon fans, they have proved to correspond to coarse channel-lag

520 material (Manley et al., 1997).

521	MTCs are commonly considered as poor reservoirs and may serve as excellent
522	seals (Moscardelli et al., 2006; Weimer and Slatt, 2007; Zhu et al., 2011). In
523	cross-section, channel fills are blanketed and overlain by low-permeability and
524	low-porosity MTCs (MTC1, MTC2 and MTC3) (Fig. 12). In plan view, channel fills
525	are surrounded by MTCs (hot color-shaded areas in Figs. 13). MTC-related
526	stratigraphic traps could form, provided that these channel fills are charged by
527	deeper source rocks through hydrocarbon migration pathways and that the MTCs
528	(MTC1, MTC2 and MTC3) act as lateral and top seals and prevent hydrocarbons
529	from leaking out. MTC-related stratigraphic traps as recognized the current case
530	study occupy an area of ca. 37 km^2 (hot color-shaded areas in Figs. 12 and 13). This
531	type of stratigraphic trap may be common and represent potential drilling targets on
532	many other MTC-bearing continental margins.

533 9. Conclusions

534	This study integrates plan-view geomorphic images of previously
535	undocumented MTCs with detailed seismic facies characterization of these MTCs to
536	document their stratigraphic architecture, seismic geomorphology, triggering
537	mechanisms, and exploration significance.
538	(1) Eight MTCs, MTC1 to MTC8, were identified and are classified as detached and
539	attached MTCs. Detached MTCs developed within bathymetric confinement
540	occupy areas of hundreds of km ² and consist of tens of km ³ of remobilized
541	sediments. Attached MTCs occurring within semi-confined or unconfined
542	settings are areally extensive (hundreds to thousands of km ²) and consist of few
543	tens to few hundreds of km ³ remobilized sediments.
544	(2) Internally, detached MTCs display irregular cross-sectional geometry and contain
545	long linear striations, whereas attached MTCs exhibit sheet-like cross-sectional
546	geometry, consist mainly of weakly and highly deformed MTC materials and
547	contain headwall escarpments, translated blocks, remnant blocks, pressure ridges,
548	striations and cat-claw grooves.
549	(3) Detached MTCs resulted from small-scale mass-wasting processes induced by
550	regional tectonic events and gravitational instabilities on canyon margins.
551	Attached MTCs, in contrast, were created by large-scale mass-wasting processes
552	triggered by high sedimentation rates, slope oversteepening, rapid progradation
553	of shelf-edge deltas, tectonic activity and seismicity.
554	(4) From a sedimentological perspective, this study documents stratigraphic

555	architecture, seismic geomorphology and triggering mechanisms of two different
556	types of MTCs, contributing to a better understanding of the range and
557	distribution of MTCs.
558	(5) From a hydrocarbon exploration perspective, our work suggests that detached
559	MTCs could create MTCs-related stratigraphic traps that may be common and
560	probably represent potential drilling targets in deep-water basins, helping to
561	identify MTC-related hydrocarbon traps on continental margins.

562 Acknowledgments

We are grateful to CNOOC for providing the data and for its permission to publish 563 the results of this study. We thank Editor Yongtai Yang, and two reviewer, Dr. Lorena 564 Moscardelli and Dr. Michael Riedel, for taking time to plough through an earlier 565 version and make numerous constructive comments that significantly improved this 566 paper. We thank the Associate Editor of Marine and Petroleum Geology, Johannes 567 568 Wendebougr, and two anonymous reviewers for their critical but constructive reviews that significantly improved the quality of this contribution. This study was 569 jointly supported by the National Basic Research Program of China (No. 570 2009CB219407), the National Natural Science Foundation of China (No. 41372115, 571 No. 41302147 and No. 1304111), and the Science Foundation of China University of 572 573 Petroleum, Beijing (No. 2462013YXBS001). The first author wish to thank Tao Wang (former minister of the Ministry of Petroleum Industry of the People's 574 Republic of China), State Key Laboratory of Petroleum Resources and Prospecting 575 (China University of Petroleum, Beijing), and China University of Petroleum 576 (Beijing) for their support of C. Gong's PhD research and studies. 577

578 **References**

579	Alves, T.M., 2010. 3D Seismic examples of differential compaction in mass-transport deposits and
580	their effect on post-failure strata. Marine Geology 271, 212–224.
581	Bull, S., Cartwright, J., Huuse, M., 2009. A review of kinematic indicators from mass-transport
582	complexes using 3D seismic data. Marine and Petroleum Geology 26, 1132–1151.
583	Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Cattaneo, A., De Batist, M.,
584	Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva, O., Masson, D.G., Sultan, N.,
585	Trincardi, F., Bryn, P., 2004. Slope failure dynamics and impacts from seafloor and shallow
586	sub-seafloor geophysical data: case studies from the COSTA project. Marine Geology 213, 9–72.
587	Cross, N.E., Cunningham, A., Cook, R.J., Taha, A., Esmaie, E. and Swidan, N.E., 2009.
588	Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia
589	field, offshore west Nile Delta, Egypt. AAPG Bulletin 93, 1063–1086.
590	Evans, D., Harrison, Z., Shannon, P.M., Laberg, J.S., Nielsen, T., Ayers, S., Holmes, R., Hoult, R.J.,
591	Lindberg, B., Haflidason, H., Long, D., Kuijpers, A., Andersen, E.S., Bryn, P., 2005. Palaeoslides
592	and other mass failures of Pliocene to Pleistocene age along the Atlantic continental margin of
593	NW Europe. Marine and Petroleum Geology 22, 1131–1148.
594	Gamberi, F., Rovere, M., Marani. M., 2011. Mass-transport complex evolution in a tectonically active
595	margin (Gioia Basin, Southeastern Tyrrhenian Sea). Marine Geology 279, 98-110.
596	Gamboa, D., Alves, T., Cartwright, J., Terrinha, P., 2010. Mass-transport deposits distribution on a
597	'passive' continental margin: the Espírito Santo Basin (SE Brazil) during the Palaeogene. Marine
598	and Petroleum Geology 27 (7), 1311–1324.
599	Gee, M.J.R., Gawthorpe, R.L., Friedmann, J.S., 2005. Giant striations at the base of a submarine
600	landslide. Marine Geology 214, 287–294.
601	Gee, M.J.R., Gawthorpe, R.L., Friedmann, S.J., 2006. Triggering and evolution of a giant landslide,
602	offshore Angola revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary
603	Research 76, 9–19.
604	Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K., Lambiase, J.J., 2008. The Brunei slide: a giant
605	submarine landslide on the North West Borneo Margin revealed by seismic data. Marine Geology
606	246, 9–23.
607	Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., Zhang J.M., 2011. The Central submarine canyon in the
608	Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and
609	depositional processes. Marine and Petroleum Geology 28, 1690-1702.
610	Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., 2013. Upper Miocene to Quaternary unidirectionally
611	migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea. AAPG
612	Bulletin 97, 285–308.
613	Hodgson D.M., Di Celma C.N., Brunt R.L., Flint S.S., 2011, Submarine slope degradation and
614	aggradation and the stratigraphic evolution of channel-levee systems, Journal of the Geological
615	Society, 168, 625-628.
616	Jackson, C.A-L., 2012. The initiation of submarine slope failure and the emplacement of mass
617	transport complexes in salt-related minibasins: A three-dimensional seismic-reflection case study
618	from the Santos Basin, offshore Brazil. GSA Bulletin 124, 746-761.
619	Jackson, C.A-L., 2011. Three-dimensional seismic analysis of megaclast deformation within a mass
620	transport deposit; implications for debris flow kinematics. Geology 39, 203–206.

621	Loucks, R.G., Kerans, C., Janson, X., Rojano, M.A.M., 2011. Lithofacies analysis and stratigraphic
622	architecture of a deep-water carbonate debris apron: Lower Cretaceous (latest Aptian to latest
623	Albian) Tamabra Formation, Poza Rica Field Area, Mexico. In: Shipp, R.C., Weimer, P., and
624	Posamentier, H. (Eds.), Mass-transport Deposits in Deepwater Settings. SEPM Special
625	Publications, vol. 96, pp. 67–390.
626	Manley, P.L., Pirmez, C., Busch, W. Cramp, A., 1997. Grain-size characterization of Amazon Fan
627	deposits and comparison to seismic facies units. In: Flood, R.D., Piper, D.J.W., Klaus, A. and
628	Peterson, L.C. (Eds), Proceedings of the Ocean Drilling Program, Scientific Results. 155, pp.
629	35–52.
630	Mayall, M., Jones, Ed., Casey, M., 2006. Turbidite channel reservoirs e key elements in facies
631	prediction and effective development. In: Casey, M. (Ed.), Marine and Petroleum Geology, 23, pp.
632	821–841.
633	Moscardelli, L., Wood, L., Mann, P., 2006. Mass-transport complexes and associated processes in the
634	offshore Area of Trinidad and Venezuela. AAPG Bulletin 90, 1059–1088.
635	Moscardelli, L., Wood, L., 2008. New classification system for mass-transport complexes in offshore
636	Trinidad. Basin Research 20, 73–98.
637	Moscardelli, L., Hordbach, M., Wood, L.J., 2010. Tsunamigenic risk associated with mass transport
638	complexes in offshore Trinidad and Venezuela. In: Mosher, D.C., Shipp, R.C., Moscardelli, L.,
639	Chaytor, J.D., Baxter, C.D.P., Lee, H.J., and Urgeles, R. (Eds.), Submarine Mass Movements and
640	Their Consequences: 4 th International Symposium. Springer, pp. 733–744.
641	Mosher, D.C., Moscardelli, L., Shipp, R.C., Chaytor, J.D., Baxter, C.D.P., Lee, H.J., Urgeles, R., 2010.
642	Submarine mass movements and their consequences. In: Mosher, D.C., Shipp, R.C., Moscardelli,
643	L., Chaytor, J.D., Baxter, C.D.P., Lee, H.J., and Urgeles, R. (Eds.), Submarine Mass Movements
644	and Their Consequences: 4 th International Symposium - Advances in Natural and Technological
645	Hazards Research: Springer, v. 28, pp. 1–8.
646	Moscardelli, L., Wood, L., Dunlap, D.B., 2012. Shelf-edge deltas along structurally complex margins:
647	A case study from eastern offshore Trinidad. AAPG Bulletin 96, 1483–1522.
648	Mosher, Cambell, D.C., 2011. The Barrington submarine mass-transport deposits, western Scotian
649	Slope, Canada. In: Shipp, C., Weimer, P., and Posamentier, H. (Eds.), Submarine slope systems.
650	SEPM Special Publications, 96, 151–161.
651	Olafiranye, K., Jackson, C.AL., Hodgson, D.M., 2013. The role of tectonics and mass-transport
652	complex emplacement on upper slope stratigraphic evolution: A 3D seismic case study from
653	offshore Angola. Marine and Petroleum Geology 44, 196–216.
654	Porebski, S.J., Steel, R.J., 2003. Shelf-edge deltas: Their stratigraphic significance and relation to
655	deepwater sands. Earth Science Review 62, 283-326.
656	Posamentier, H.W., Kolla, V., 2003. Seismic geomorphology and stratigraphy of depositional elements
657	in deep-water settings. Journal of Sedimentary Research 73, 367-388.
658	Posamentier, H.W., Davies, R.J., Cartwright, J.A., Wood, L.J., 2007, Seismic geomorphology: An
659	overview. In: Davies, R.J., Posamentier, H.W., Wood, L.J., and Cartwright, J.A. (Eds), Seismic
660	geomorphology: Applications to hydrocarbon exploration and production. Geological Society
661	(London) Special Publication, vol, 277, pp. 1–14.
662	Richardson, S.E.J., Davies, R.J., Allen, M.B., Grant, S.F., 2011. Structure and evolution of mass
663	transport deposits in the South Caspian Basin, Azerbaijan. Basin Research 23, 702–719.
664	Riedel, M., Bahk, JJ., Scholz, N.A., Ryu, BJ., Yoo, DG., Kim, W., Kim, G.Y., 2012.

665	Mass-transport deposits and gas hydrate occurrences in the Ulleung Basin, East Sea e Part 2: Gas					
666	hydrate content and fracture-induced anisotropy. Marine and Petroleum Geology 35, 75–90.					
667	Shipp, R.C., Nott, J.A., Newlin, J.A., 2004. Physical characteristics and impact of mass-transport					
668	complexes on deepwater jetted conductors and suction anchor piles. Offshore Technology					
669	Conference, Houston, Texas.					
670	Shipp, R.C., Lu, H., 2011. Impact of a large mass-transport deposit on a field development in the					
671	upper slope of southwestern Sabah, Malaysia, offshore northwest Borneo. In: Shipp, R.C., Weimer,					
672	P., and Posamentier, H. (Eds.), Mass-transport Deposits in Deepwater Settings. SEPM Special					
673	Publications, vol. 96, pp. 199–220.					
674	Shipp, R.C., Weimer, P., Posamentier, H.W., 2011. Mass-transport deposits in deepwater settings: An					
675	introduction. In: Shipp, R.C., Weimer, P., and Posamentier, H. (Eds.), Mass-transport Deposits in					
676	Deepwater Settings. SEPM Special Publications, vol. 96, pp. 3–6.					
677	Solheim, A., Berg, K., Forsberg, C.F., Bryn, P., 2005. The Storegga Slide complex: repetitive large					
678	scale sliding with similar cause and development. Marine and Petroleum Geology 22, 97-107.					
679	Strozyk, F., Huhn, K., Strasser, M., Krastel, S., Kock, I., Kopf, A., 2009. New evidence for massive					
680	gravitational mass-transport deposits in the southern Cretan Sea, eastern Mediterranean. Marine					
681	Geology 263, 97–107.					
682	Vail, P.R., Mitchum, R.M., Thompson, S., 1977. Seismic stratigraphy and global changes of sea level,					
683	part 3: Relative changes of sea level from coastal onlap. In: Payton, C.E., (Eds.), Seismic					
684	stratigraphy applications to hydrocarbon exploration: AAPG Memoir 26, pp. 63–82.					
685	Weimer, P., Slatt, R.M., 2007. Introduction to the petroleum geology of deep-water settings. AAPG					
686	Memoir, 419–456.					
687	Weimer, P., Shipp, C., 2004. Mass-transport complexes: Musing on past uses and suggestions for					
688	future directions. Offshore Technology Conference, Houston, Texas.					
689	Xie, X., Muller, R.D., Li, S., Gong, Z., Steinberger, B., 2006. Origin of anomalous subsidence along					
690	the Northern South China Sea margin and its relationship to dynamic topography. Marine and					
691	Petroleum Geology 23, 745–765.					
692	Xie, X., Muller, R.D., Ren, J., Jiang, T., Zhang, C., 2008. Stratigraphic architecture and evolution of					
693	the continental slope system in offshore Hainan, northern continental margin of the South China					
694	Sea. Marine Geology 247, 129–144.					
695	Zhu, M., Graham, S.A., Mchargue, T., 2009. The Red River Fault zone in the Yinggehai Basin, South					
696	China Sea. Tectonophysics 476, 397–417.					
697	Zhu, M., McHargue, T., Graham, S.A., 2011. 3D seismic-reflection characterization of					
698	submarine slides on a Pliocene siliciclastic continental slope and its implications for					
699	tectonics, sediment supply, and climate change, South China Sea. In: Shipp, R.C., Weimer, P.,					
700	and Posamentier, H. (Eds.), Mass-transport Deposits in Deepwater Settings. SEPM Special					

701 Publications, vol. 96, pp. 111–126.

Table 1 Seismic facies description and interpretation

	Plan-view appearance			Cross-sectional seismic expression			
Seismic facies	Appearance	Seismic examples	Amplitude	Continuity	Cross-sectional geometry	Seismic examples	interpretations
Seismic facies 1: Irregular-shaped chaotic seismic facies	Irregular shape	Fig. 4C	Low	Variable	Irregular shaped	Fig. 4C	Detached MTCs
Seismic facies 2: Long linear seismic facies	Long linear bands	Figs. 5C and 6C	Variable	Discontinuous	V shaped	Fig. 5C	Striations
Seismic facies 3: Sheet-like chaotic seismic facies	Sheet-like beds	Figs. 6Cand 11C	Low	Variable	Sheet like	Fig. 6C	Attached MTCs
Seismic facies 4: Arcuate seismic facies	Arcuate ridges	Figs. 7C, 8C and 9D	Low	Variable	Landward dipping	Figs. 7C and 9D	Pressure ridges
Seismic facies 5: Low-coherence chaotic seismic facies	Low-coherence sheets	Fig. 8C	Low	Discontinuous	Sheet like	Fig. 8C	Less deformed MTCs
Seismic facies 6: High-coherence chaotic seismic facies	High-coherence sheets	Fig. 8C	Low	Moderate	Sheet like	Fig. 8C	Highly deformed MTCs
Seismic facies 7: Tapering-upward, block seismic facies	Corrugated irregular surface	Fig. 9C	Moderate to high	Variable	Tapering upward	Fig. 9C	Translated blocks
Seismic facies 8: Headwall seismic facies	Irregular, continuous scarps	Fig. 10C	High	Continuous	Seen as a scarp or boundary	Fig. 10C	Headwall escarpments
Seismic facies 9: Cat-claw seismic facies:	Radiating small-scour features	Fig. 11C	Variable	Discontinuous	Seen as a string of beads	Fig. 11C	Cat-claw grooves
Seismic facies 10: Remnant seismic facies:	Irregular-shaped blocks	Fig. 11C	High	Continuous	Irregular shaped	Fig. 11D	Remnant blocks

Table 2 Morphological characteristics of eight separate MTCs, MTC1 to MTC8, as documented in the case of the Qiongdongnan Basin along the northwestern South China Sea margin. The 'MTC areas', 'MTC thicknesses' and 'MTC volumes' were calculated within the limits of the 3-D seismic survey.

MTC	Area (km ²)	Mean thickness (m)	Volume (km ³)	Distribution
MTC1	~210	$\sim \! 120$	~9	Confined within canyon
MTC2	~250	~115	~15	Confined within canyon
MTC3	\sim 700	~ 110	\sim 70	\sim 40% of the study area
MTC4	~ 1000	$\sim \! 100$	~ 100 Fro	\sim 65% of the study area
MTC5	~1000	~ 110	~ 140 $\frac{m}{10}$	\sim 65% of the study area
MTC6	~1200	~ 80	~ 90 $\frac{10}{10}$	\sim 70% of the study area
MTC7	~ 800	\sim 70	~55 8	\sim 50% of the study area Mid slope to deep basin
MTC8	~1100	\sim 50	\sim 50	\sim 65% of the study area Upper slope to deep basin

2

Table 3 The classification, depositional topography, source area, and causal mechanisms of eightseparate MTCs as documented in the case of Qiongdongnan Basin along the northwestern SouthChina Sea margin.

MTCs	Depositional topography	Source area		Classification	Triggering mechanisms
MTC1	Topographic confinement	Canyon margins			Local instabilities on canyon
MTC2	Topographic confinement	Canyon margins	Deta	ched MTCs	margins and regional tectonic events
MTC3	Semi-confined settings	Shelf-edge deltas			High sedimentation rates
MTC4	Semi-confined settings	Continental shelves	At		Rapid shelf-edge deltas progradation
MTC5	Semi-confined settings	Continental shelves	tache	Shelf-attached MTCs	Rapid slope progradation
MTC6	Semi-confined settings	Shelf-edge deltas	IIM P		Slope over steepening
MTC7	Unconfined settings	Upper slopes	C ²	Slope-attached MTCs	Tectonics activities and associated
MTC8	Unconfined settings	Continental shelves		Shelf-attached MTCs	seismicity

Figure 1. Bathymetric map showing morphological characteristics of the study area and plan-view locations of dip-oriented regional seismic transects presented in Figs. 2 and 3. Major structure features are modified from Xie et al. (2008) and Zhu et al. (2011). Two-way traveltime (TWTT) structural maps (Figs. 4A to 11A), plan-view geomorphic images derived from 3D coherence volumes (Figs. 4B to 11B), 3D seismic amplitude (Fig. 13A) and RMS attribute volumes (Fig. 13B) cover the full 3D seismic survey marked by the rectangle with dotted outline.

Figure 2. Dip-oriented seismic traverses (for line location see Fig.1) across the entire studied margin showing stratigraphic architecture and cross-sectional seismic expression of eight successive MTCs (MTC1 to MTC8) and deformed shelf-edge deltas seen as sigmoid-oblique-progradational seismic facies (hot color-shaded areas). BS = Basal bounding surfaces.

Figure 3. Two-dimensional seismic section from three-dimensional seismic volume (see Fig. 1 for line location) showing cross-sectional seismic expression of eight successive MTCs, MTC1 to MTC8, developed within the Pliocene-Quaternary sedimentary interval in the Qiongdongnan Basin. These eight MTCs are characterized by transparent, chaotic reflection packages with variable seismic amplitude and reflection continuity. Please refer to Fig. 1 for the plan-view location of the seismic traverse presented in this figure. BS = Basal bounding surfaces.

Figure 4. (Panel A) Three-dimensional perspective views of the basal bounding surface of MTC1 (BS1). Hot and cool colors on time-structure (ms TWT is millisecond two-way traveltime) maps presented in Figs. 4A to 11A represent topographic highs and lows, respectively. (Panel B) Coherence map of a slice 160 ms above the basal bounding surface of MTC1 (BS1) showing plan-view details of MTC1. Low and high coherence in plan-view geomorphic images derived from 3D coherence volumes presented in Figs. 4B to 11B are in dark and light colors, respectively. (Panel C) Cross-section looking downstream (for line location see Fig. 4B) illustrating seismic examples of detached MTCs seen as irregular-shaped chaotic seismic facies.

Figure 5. (Panel A) Time-structure map of basal bounding surface of MTC2 (BS2) showing a well-developed, slope-parallel topographic low for the development of MTC2. (Panel B) Flattened horizontal coherence slice at 155 ms above the basal bounding surface of MTC2 (BS2) illustrating plan-view details of MTC2 and its associated linear grooves. (Panel C) Cross-section looking downstream (see Fig. 5B for line location) showing seismic appearance of grooves seen as long linear seismic facies.

Figure 6. (Panel A) Three-dimensional perspective views of the basal bounding surface of MTC3 (BS3) showing a semi-confined, topographic low with a topographic relief increasing northeastward, within which MTC3 developed. (Panel B) Coherence image of a slice 100 ms above the basal surface of MTC3 (BS3) showing geomorphological expression of MTC3 and its associated grooves, less deformed MTCs and highly deformed MTCs. (Panel C) Strike-oriented seismic lines (location shown in Fig. 6B) showing seismic examples of attached MTCs seen as sheet-like chaotic seismic faceis.

Figure 7. Shelf-attached MTCs (MTC4) recognized in the study area of Qiongdongnan Basin, as it appears on three-dimensional perspective view map of the basal bounding surface of MTC4 (BS4) and on the coherence slice taken 120 ms above the basal bounding surface of MTC4 (BS4) (upper and middle panels, respectively). (Panel C) Vertical seismic sections (line location shown in Fig. 7B) through the toe domain of MTC4 illustrating best-developed examples of landward inclined arcuate seismic facies interpreted as pressure ridges.

Figure 8. (Panel A) Time-structure map of the basal bounding surface of MTC5 (BS5) showing a semi-confined setting for the development of MTC5. Notice the southwestward decreasing in bathymetric relief and confinement. (Panel B) Flattened horizontal coherence slice seen at 120 ms above the basal bounding surface of MTC5 (BS5) illustrating seismic appearance of MTC5 and its associated highly deformed MTCs and pressure ridges. (Panel C) Strike-view cross section (see Figs. 8B and 11B for line location) to illustrate details of less and highly deformed MTCs seen as high- and low-coherence chaotic seismic facies, respectively.

Figure 9. (Panel A) Three-dimensional perspective views of the basal bounding surface of MTC6 (BS6) illustrating a semi-confined setting for the development of MTC6. (Panel B) Flattered horizontal coherence image of a slice 120 ms above the basal bounding surface of MTC6 (BS6) showing plan-view geomorphological expression of MTC6. Seismic traverses (location shown in Fig. 9B) showing seismic appearance of translated blocks and pressure ridges (panels C and D,

respectively).

Figure 10. (Panel A) Time-structure map of the basal bounding surface of MTC7 (BS7) showing an unconfined setting for the development of MTC7. (Panel B) Flattened horizontal coherence slice at 150 ms above the basal bounding surface of MTC7 (BS7) illustrating the geomorphological expression of MTC7 and its associated grooves and headwall scarps. (Panel C) Zoomed in area of seismic section (location presented in Fig. 10B) through the headwall domain of MTC7 illustrating excellent seismic examples of basinward inclined arcuate seismic facies interpreted as MTC headwalls.

Figure 11. Shelf-attached MTCs (MTC8) appeared on three-dimensional perspective view of the basal bounding surface of MTC8 and on coherence slices taken 130 ms above the basal bounding surface of MTC8 (BS8) (upper and lower panels, respectively). Seismic sections (line location shown in Fig. 11B) showing seismic examples of cat-claw grooves and remnant blocks (panels C

and D, respectively).

Figure 12. Dip-oriented seismic section (see Figs. 13 and 14 for line location) showing
cross-sectional expression of potential MTC-related stratigraphic trap configuration (see hot
color-shaded areas in the section) and channel fills (hot color-shaded area, HARs seismic facies).
BS = Basal bounding surfaces. Please refer to Figure 13 for the plan-view seismic expression of
MTC-related stratigraphic traps and channel fills and to text for a detailed discussion.

Figure 13. Channel fills seen as high-amplitude (panel A) and high-RMS-attribute zones (panel B) are blanketed and surrounded by detached MTCs, forming potential MTC-related stratigraphic traps (hot color-shaded areas) that are seen on plan-view geomorphic images derived from 3D amplitude and RMS attribute volumes (upper and lower images, respectively). Refer to Figure 12 for their cross-sectional details and to text for a detailed discussion.

- > Eight MTCs were recognized and are classified as attached and detached MTCs.
- > Detached MTCs were triggered by local instabilities.
- > Attached MTCs resulted from large-scale collapses.
- > MTC-related stratigraphic traps were identified.