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Abstract 

 

A thermal phase-field model constructed in the �thin-interface� limit and 

incorporating a number of advanced numerical techniques as such 

adaptive mesh refinement, implicit time-stepping and a multigrid solver 

has been used to study the isolated diffusive melting of dendritic 

fragments. The results of the simulations are found to be fully consistent 

with the experimental observation of such melting in microgravity during 

the Isothermal Dendrite Growth Experiment. It is found that the rate at 

which the ratio of semi-major to semi-minor axes changes is a function of 

the melt Stefan number, which may help explain why both melting at 

(approximately) constant ratio and melting at slowly increasing ratio have 

been observed. 

 

1. Introduction 

 

Following the recent publication of a series of papers [1, 2, 3] relating to the cyclic 

melting of material as part of the Isothermal Dendrite Growth Experiment (IDGE) 

there has been a resurgence of interest in the melting of dendritic crystal fragments. 

Three IDGE experiments were flown [4, 5, 6] in the cargo bay of the space shuttle in 

order to study the dendritic solidification of the plastic crystals succinonitrile (SCN) 

and pivalic anhydride (PVA) in the very stable, low gravity environment provided by 

this platform. Therefore, unlike terrestrial melting experiments in which the fragments 

experience sedimentation due to the density difference between the solid and liquid 

phases, the dendritic fragments observed during the melting phase of the IDGE 

remained stationary within their parent melt. The consequent elimination of Stoke�s 

flow means that the heat transfer between the crystal and the melt can, to a very high 

degree of precision, be regarded as purely diffusive.  

 

During the IDGE experiments the SCN (IDGE-1 & 2) or PVA (IDGE-3) test 

substances were brought to a uniform undercooling at which they were held to within 

± 0.002 K prior to the nucleation of crystallisation. Following nucleation an array of 

dendritic crystals would propagate into the melt, the growth of which could be 

observed and photographically recorded through the transparent SCN or PVA melt. 

The results thus obtained have provided an invaluable data set against which theories 

of dendritic growth have been tested, including verification of the Ivantsov 

relationship [7] between undercooling and growth Peclet number [8] and that the 

radius selection eigenvalue, σ*, is not constant but varies with undercooling [9]. Once 

the growth phase was complete the temperature was raised in order to remelt the 

dendritic mush so that the cycle could be repeated. As the focus of the experiment was 

the solidification stage of the process, not the subsequent remelting, the remelting 

phase was much less carefully controlled and less well recorded. Despite this, during 



the final IDGE experiment video data of around 100 melting cycles in PVA was 

captured at 30 fps. It is the analysis [1, 2, 3] of these data that has stimulated the 

renewed interest in the melting of dendritic fragments.  

 

The quantitative analysis of the melting of dendritic fragments conducted by [1, 2, 3]  

was generally restricted to the later stages of the melting cycle, wherein the complex 

interpenetrating array of side-branches can be reduced to a series of isolated crystals. 

Moreover, the almost complete melting back of secondary and tertiary arms gives rise 

to fragments, each of which can be approximated closely as a figure of revolution 

with an elliptic cross-section. These ellipsoidal crystallites were characterised by their 

semi-major and semi-minor axes, C and A , respectively. The primary conclusions of 

this analysis were that for the majority of the melting phase the ratio C /A  would 

either remain approximately constant [1] or would increase slowly with time [2] but 

that in the very final stages of melting C /A  would collapse rapidly toward 1, such 

that at extinction the fragments were always spherical. This phenomenon was 

attributed to capillarity effects whereby the higher curvature, and consequentially 

slightly depressed melting temperature, at the tip of the elliptic fragment relative to its 

equator gave rise to a heat flow from the equator towards the tip which would 

accelerate melting near the tip, thereby reducing the C /A  ratio towards unity [1, 2]. 

However, due to the small length scales associated with capillary effects, this 

equalisation of C  and A  would naturally be restricted to the terminal stages of 

melting, as observed experimentally.  

 

Simulation of the melting phenomenon was undertaken [1, 3] using a quasi-static 

model in which the dendritic fragment was assumed to be an ellipsoid of revolution 

with fixed C /A  ratio. The Gibbs-Thomson relationship was used to establish the 

surface temperature of the ellipsoidal dendrite fragment and the conduction equation 

solved to calculate the heat flow into the crystal from the surrounding liquid. The 

volume rate of melting was then calculated and the size of the crystal reduced 

accordingly, whilst maintaining C /A   as a constant. This model appears to give 

excellent agreement with regard to the rate at which C decreases with time but, by 

virtue of the assumed constant C /A  ratio, is unable to demonstrate the capillary 

mediated spheroidisation of the crystal during the terminal stages of melting.  

 

In this paper we use a thermal phase-field model to solve for the evolution of an 

initially elliptic dendrite fragment as it melts in its superheated parent melt. In contrast 

to the quasi-static model used in [1, 3] the phase-field model solves the free boundary 

problem so we neither have to assume a constant C /A  nor indeed that the fragment 

retains an elliptic section during melting. Consequently, we can independently test, 

using a well established simulation methodology, whether or not capillary forces drive 

melting fragments towards an aspect ratio of unity as they approach extinction. The 

downside to the phase-field methodology is its highly computationally intensive 

nature. For this reason we have restricted the simulations presented here to 2-

dimensions. 

 

2. Description of the Model 

 

We use a standard phase-field model based upon that presented by Karma & Rappel 

[10, 11]. Following non-dimensionalization against characteristic length and time 
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scales, W0 and τ0, the evolution of the phase-field, φ, when expanded [12] into the 

form used in the numerical implementation presented below, is given by 
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where the solid and liquid phases correspond to φ = 1 and φ = -1 respectively, 

ψ = arctan(φx/φy) is the angle between the normal to the interface and the x-axis and 

A(ψ) = 1 + ε.cos(ηψ) is an anisotropy function with strength ε and mode number η.  

The dimensionless coupling parameter, λ, is given by [10] as  
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where D is the thermal diffusivity and in order to simulate kinetic free growth it is 

shown in [11] that a1 and a2 take the values 5√2/8 and 0.6267 respectively.  The 

capillary length scale, d0, is given by  
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with Tm being the melting temperature, L the latent heat of fusion, cp the specific heat 

capacity, ρ the density and γ the interfacial energy between the solid and liquid.  

 

The evolution of the dimensionless temperature field, θ, is given by  
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where θ is related to physical temperature, T, via 
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The governing equations are descretized using a finite difference approximation based 

upon a quadrilateral, non-uniform, locally-refined mesh with equal grid spacing in 

both directions [13, 14].  This allows the application of standard second order central 

difference stencils for the calculation of first and second differentials, while a 

compact 9-point scheme has been used for Laplacian terms, in order to reduce the 

mesh induced [15] anisotropy.  To ensure sufficient mesh resolution around the 

interface region and to handle the multi-scale nature of the problem local mesh 

refinement (coarsening) is employed when the weighted sum of the gradients of φ and 

θ exceeds (falls below) some predefined value. 
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A potential draw back of using adaptive mesh refinement when using an explicit 

solution scheme is that the time step scales as h
2
, where h is the mesh spacing at the 

finest refinement level. On heavily refined meshes this can lead to unfeasibly small 

time steps. In order to overcome this limitation an implicit temporal descretization is 

employed here based on the second order Backward Difference Formula with variable 

time-step. This is an A-stable [16] implicit linear 2-step method for which we have 

previously demonstrated that the time-step is independent of h.  

 

When using implicit time discretisation methods it is necessary to solve a very large, 

but sparse, system of non-linear algebraic equations at each time-step.  Multigrid 

methods are among the fastest available solvers for such systems and in this work we 

apply the non-linear generalization known as FAS (full approximation scheme [17]).  

The local adaptivity is accommodated via the multilevel algorithm originally 

proposed by Brandt [18]. The interpolation operator is bilinear while injection is used 

for the restriction operator. For smoothing the error we use a fully-coupled nonlinear 

weighted Gauss-Seidel iteration where the number of pre- and post-smoothing 

operations required for optimal convergence is determined empirically. Full details of 

the numerical scheme are given in [13, 14]. 

 

3. Results and Discussion 

 

Phase-field simulations of melting have been undertaken by starting from an initial 

solid seed with an elliptical section. The geometry of the seed is therefore uniquely 

defined by its semi-major and semi-minor axes,C  and A , respectively. The 

normalised temperature of the seed is taken as θ = 0 (equivalent to setting T = Tm in 

the solid). Due to curvature effects this will be marginally above the local equilibrium 

melting temperature, although this small effective superheating of the initial solid 

results in negligible melting.  The surrounding liquid, and the far field boundary of the 

domain, are set to a uniform normalised temperature of θ = St
+
, where St

+
 is the 

melting Stefan number. This equivalent in our non-dimensional scheme to defining  
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where T∞ is the far-field temperature. This is the identical definition to that used in [2, 

3]. The computational domain, Ω, is taken to be very large, relative to the semi-major 

axis,C, of the fragment. Here we take very large to mean that if we apply a Dirichlet 

condition on the domain boundary, such that its temperature is fixed at St
+
, the 

thermal gradient at all points on the boundary remains 0 throughout the solution. In 

this way the boundary does not influence the melting behaviour of the dendritic 

fragment and the solution is rendered independent of the actual size of the domain. 

From a practical point of view we find that using a domain of ≈15C  is large enough 

for this condition to be maintained. Fortunately, the adaptive nature of the numerical 

scheme means that very few elements are required far from the melting fragment and 

consequently the computational overhead on using such a large domain is minimal.  

 

Simulations have been undertaken for Stefan numbers in the range 0.1 � 0.4, which 

gives some overlap with experiment, where the maximum Stefan number applied to 

PVA during the IDGE experiments is 0.16. Most simulations have been conducted at 
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a melting Stefan number, St
+
, of 0.2. This higher Stefan number has been used as the 

slow melting resulting from the application of a lower Stefan number gives excessive 

computation time. The effect of the applied Stefan number on the morphology of the 

melting crystal will be examined later in this section and, as pointed out in [2], was 

subject to variation from location to location within the experimental apparatus. Also, 

unless otherwise specified all simulations have been conducted with zero anisotropy. 

In cases where an anisotropy is imposed this has a four-fold symmetry which is 

aligned with the semi-major and semi-minor axes. 

 

An example of the change in morphology of an initially elliptic dendrite fragment as it 

melts is shown in Fig. 1, which gives the contour of φ = 0 (taken here as the location 

of the solid-liquid interface) at equally spaced time intervals up to the point just prior 

to extinction. The corresponding value of C /A  as a function of time, τ, and length of 

the semi-major axes,C, is given in Fig. 2. In this particular simulation the initial value 

of C  is 5792d0, with C /A   = 4. As can be seen from the Figures the simulations 

reproduce many of the effects observed experimentally. For the majority of the 

melting cycle, typically around 75-80% of the total simulation time, the C /A   ratio 

increases, albeit very slowly, in this simulation reaching as maximum value of 5.14. 

Thereafter theC /A   ratio decreases, return to its initial value of 4 when the crystal is 

approximately 7% of its original length. During the final stages of its evolution the 

crystal spheroidises rapidly, with theC /A   ratio approaching 1 just prior to extinction. 

As suggested by [1, 2] for the experimental case, we attribute this spheroidisation 

behaviour to capillary effects, once the crystal becomes sufficiently small for such 

effects to dominate.  

 

 
 

Figure 1. Contour map of the solid-liquid interface showing the evolution 

of an elliptic dendritic fragment with initial C  = 5792d0 and C /A   = 4. 

The time interval between contours is constant.  
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Figure 2. Evolution of the ratio of semi-major to semi-minor axes as a 

function of time and length of the semi-major axis for an elliptic dendritic 

fragment with initial C  = 5792d0 and C /A   = 4. 

 

Within the thin interface model the magnitude of capillary effects are determined by 

the coupling parameter, λ, which determines the size of the characteristic length scale 

within the model, W0, relative to the capillary length, d0. As shown in Equ. ( 2), this 

also fixes the diffusivity, D. Consequently, the relative effect of capillarity is uniquely 

specified by the size of the elliptic seed relative to the capillary length, d0. This in turn 

is determined by the size of the seed in terms of W0 and λ which relates W0 to d0. The 

magnitude of capillary effects can therefore be adjusted by altering C / W0, or λ, or 

both. In this work values for λ in the range 1 � 32, have been utilised, with values of λ 

towards the upper end of this spectrum being used to simulate the largest fragments 

considered and vice versa. By comparison [19] showed that the thin-interface model 

was still convergent for values for λ of up to 72.1. In the simulation presented in 

Figures 1 & 2 the semi-major axis of the initial seed is given by C  = 320W0 and 

λ = 16, wherein C  = 5792d0. 

 

In order to study the effects of initial crystallite size on the melting behaviour a set of 

simulations have been conducted, varying C  from 90.5d0 to 46340d0. As in the 

previous simulation the initial C /A   ratio is 4 and the melting Stefan number is 0.2. 

The results are presented in Fig. 3, in which the evolution of theC /A   ratio is plotted 

against the length of the C  axis. However, in order to present the data in a single plot, 

the semi-major axisC  is plotted on a log scale while for comparability with Fig. 2 we 

have plotted C  increasing from right to left. For clarity, the data previously presented 

in Fig. 2 is shown in bold.  
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Figure 3. Evolution of the ratio of semi-major to semi-minor axes for 

dendritic fragments with initial lengths in the range 90.5d0 - 46340d0. 

Curve shown bold is for the dendrite depicted in Figures 1 & 2.  

 

We note that the general behaviour of the fragments during melting is independent of 

their initial size in that, for all cases, the C /A   ratio initially increases before 

decreasing again and finally collapsing rapidly to 1. All fragments therefore ended up 

near spherical just prior to extinction, as observed experimentally by [1, 2]. However, 

we also note that as the initial fragments become larger, the proportion of the 

dissolution time during which C /A   increases also becomes larger. Consequently the 

maximum value of C /A   attained increases. Both observations would be consistent 

with capillarity playing only a very minor role in the initial evolution of large 

fragments, with capillary effects becoming progressively more important as the size 

of the fragment decreases. However, it is also clear that it is not possible to identify a 

single length scale at which capillary effects dominate. Indeed, as the initial size of 

the fragments increases so does the value of C  at which the maximum in the 

C /A   ratio and the point at which C /A  returns to its initial value. This is probably 

the result of the, albeit weak, capillary effect having longer to operate due to the 

increased time to melt the larger fragments.  

 

The effect of the melting Stefan number, St
+
, is explored in Figs. 4 and 5, for an 

initially elliptic fragment with C /A   = 4 and C  = 11584d0, with St
+
 being varied 

from 0.1 to 0.4 in intervals of 0.05. As before, the same general behaviour is observed 

with all simulations showing first an increase in the C /A   ratio, followed by a 

decrease and eventual collapse towards 1 (Fig. 4). However, a significant Stefan 

number dependence is also apparent. At high Stefan number C /A   increases more 

rapidly and peaks at a higher value than at lower Stefan numbers. For St
+
 = 0.4 the 

peak value of C /A   is 7.46, compared with just 4.49 for St
+
 = 0.1. Moreover, 

presumably because of the higher values reached by C /A   during the high Stefan 

number simulations the value of C /A   remains above its initial value (in this case 4) 

for longer. Again, this would be consistent with the spheroidisation of the fragments 

in the terminal stages of melting being mediated by capillarity, with high Stefan 

number tending to produce morphologies dominated by heat transfer from the 

surrounding locale, rather than by capillarity, i.e. C /A   peaks at a higher value and 
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the onset of spheroidisation is delayed. The time taken for the complete dissolution of 

an initial fragment withC  /A   = 4 and C  = 11584d0, as a function of the melting 

Stefan number is shown in Fig. 5. The time for complete melting increases steeply as 

St
+
 decreases, particularly for values below St

+
 = 0.15, and it is due to the long 

computation times associated with these low St
+
 simulations that the simulations run 

here have generally been run a somewhat higher Stefan numbers than those that 

pertain to the experiments reported in [1, 2, 3].  

 

 
 

Figure 4. Evolution of the ratio of semi-major to semi-minor axes as a 

function of Stefan number for elliptic fragments with initial length 

11584d0. Results shown at 0.05 intervals between St
+
 = 0.1 and 0.4. 

 

 
 

Figure 5. Time taken for the complete melting of a dendritic fragment 

with initial semi-major axis of 11584d0 as a function of melting Stefan 

number.  

 

The simulations presented above are all calculated on the assumption of an isotropic 

surface energy, although it is of course the case that a prerequisite to the formation of 

dendrites is an anisotropic surface energy. However, unlike the case for growth of the 

solid from the melt, in the case of dissolution of the solid into the melt we find 
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virtually no dependence upon anisotropy. The effect of surface energy anisotropy has 

been investigated for 0 ≤ ε ≤ 0.05, and even in the case of the highest surface energy 

studied (ε = 0.05) we find that the evolution of the dendritic fragment as it melts is 

essentially identical to that of an equivalent fragment with an isotropic surface energy, 

with the C /A   ratio for the anisotropic simulation always being within 0.3% of that 

for the isotropic simulation at the same point in the evolution. Despite this the 

presence of anisotropy does alter the morphology of the tip region. This is illustrated 

in Fig. 6 which shows the region near the tip for two fragments that are identical 

except that one is growing with an isotropic surface energy and the other with a 

surface energy anisotropy of 5%. The initial fragment had C /A   = 4 and C  = 5792d0, 

with the image shown here representing the tip shape after the length had reduced by 

approximately 20% in order to allow the fragment to adjust to its equilibrium shape, 

wherein the C /A   ratio had increased to 4.72. As can be seen from the figure the 

fragment with an anisotropic surface energy has a considerably higher local curvature 

at the tip relative to the fragment with the isotropic surface energy. In fact at this point 

in the evolution the local curvature at the tip for the anisotropic fragment is 2.60 times 

that for the isotropic fragment, with this ratio remaining approximately constant 

throughout the majority of the dissolution until spheroidisation of the fragment 

towards the end of the melting process. In the case of fragments with lower values of 

anisotropy similar behaviour is observed but with a correspondingly lower ratio 

between their local curvature and that of the isotropic fragment (1.14, 1.35, 1.62 and 

2.02 for anisotropies of 0.01, 0.02, 0.03 and 0.04 respectively). However, despite this 

difference in the local curvature at the tip there is minimal difference in the rate at 

which the fragments dissolve and, with the exception of the region close to the tip, the 

geometry of the fragment is approximated well by an ellipse.  

 

 
 

Figure 6. Shape of the tip of the elliptic dendrite fragment in the absence 

of anisotropy (solid) and with a surface energy anisotropy of 0.05 

(dashed). Figure is for a dendrite with initial C  = 5792d0 and C /A   = 4 

after melting to ≈ 80% of its starting length.  
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Overall we find that the results of the phase-field model are consistent both with the 

experimental data presented by [1, 2, 3] and with the hypothesis that spheroidisation 

during the terminal stages of melting is mediated by capillary effects lowering the 

temperature marginally at the fragment tip. Irrespective of the melting conditions we 

find that fragments are approximated well as being of elliptic cross section and both 

the overall shape and rate of dissolution are found to be insensitive to the level of 

anisotropy assumed for the crystal. Moreover, the model may shed light upon one 

apparent contradiction within the experimental data.  In [1] it was reported that the 

ratio C /A   would remain approximately constant until the terminal stages of melting 

whereas in [2] it was found that it would increase slowly with time during the 

majority of the melting period. We note that from the simulations the melting 

behaviour has a relatively strong dependence upon the melting Stefan number, with 

high Stefan numbers causing C /A   to increase much more rapidly than is the case at 

low Stefan numbers. We also note that, as pointed out by [3], the average melting 

Stefan number rises from 0 to a maximum of 0.16 over a period of around 2200 s, 

during which time melting occurs continuously. Moreover, it is likely that there were 

spatial, as well as temporal, variations in St
+
 [2], with regions where the local Stefan 

number is reduced due to thermal shielding by the mushy zone [20]. We therefore 

conjecture that the variation in behaviour occurs due to variations in the local Stefan 

number, with low values of St
+
 corresponding to observations of near constant C 

/A   during melting, while higher values of St
+
 correspond to those cases in which a 

continuously increasing C /A   ratio was observed during melting.  

 

4. Summary and Conclusion 

 

A thermal phase-field model constructed in the �thin-interface� limit and incorporating 

a number of advanced numerical techniques such adaptive mesh refinement, implicit 

time-stepping and a multigrid solver has been used to study the isolated diffusive 

melting of elliptic dendritic fragments. The results of the simulations are found to be 

fully consistent with the experimental observation of such melting by [1, 2, 3] in that 

during most of the melting period the ratio of the semi-major to semi-minor axes, 

C /A , increases slowly with time, but that in the terminal stages of melting this ratio 

collapse rapidly to 1 as the fragment spheroidises just prior to extinction. The model 

confirms the assumption in [3] that, notwithstanding the change in C /A , the 

dendritic fragment retains, to a very good approximation, its elliptic cross-section 

throughout melting, with deviations from this only at the very tip of the fragment. The 

rate of melting is found not to be sensitive to the assumed value for the anisotropy of 

the surface energy, although the shape of the tip and its local curvature is a function of 

anisotropy.  

 

One effect that could not be investigated experimentally is the effect of the melting 

Stefan number, St
+
, on the evolution of the dendritic fragment. Here we find that the 

rate at which C /A   increases, and the maximum value that it attains, are sensitive 

functions of St
+
, with high Stefan number favouring a greater increase in C /A .  As 

experimentally both spatial and temporal variations in St
+
 would have been likely 

during melting this may help explain why both melting at (approximately) constant 

C /A   and melting at slowly increasing C /A    were observed.  

 

Unfortunately, while the current model may give some level of physical insight into 

the processes occurring during melting, direct comparison with experiment is not 
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