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Abstract

This paper investigates the feasibility of the fuzzy ARTMAP neural
network for statistical classification and learning tasks in an on-line setting.
The inability of fuzzy ARTMAP in implementing a one-to-many mapping
is explained. Thus, we propose a modification and a frequency measure
scheme which tend to minimise the misclassification rates. The
performance of the modified network is assessed with noisy pattern sets in
both stationary and non-stationary environments. Simulation results
demonstrate that modified fuzzy ARTMAP is capable of learning in a
changing environment and, at the same time, of producing classification
results which asymptotically approach the Bayes optimal limits. The
implications of taking time averages, rather than ensemble averages, when
calculating performance statistics are also studied.
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1 Introduction

Feedforward neural networks such as the Multilayered Perceptron (MLP) networks and
the Radial Basis Function (RBF) networks possess some attractive properties when the
objective is to develop a classifier to operate in a probabilistic environment. These
network structures have been proven to be able to represent any smooth enough function
to an arbitrary degree of accuracy [1,2]. Thus, it is likely that feedforward networks can
offer a direct solution to the problem of developing a one-from-many classifier. However,
such an approach is only viable when there is good reason to believe that the data
environment is stationary and that the data sample used in training is sufficiently
representative. In cases where learning takes place in a non-stationary environment, it is
either necessary to allow the feedforward networks to carry on leamning or to re-train
them off-line. Nevertheless, it is well-documented that networks of the Adaptive
Resonance family offer a way out of this problem—the so-called stability-plasticity
dilemma [3,4). They are able to learn continuously in a changing data environment and
acquire knowledge in siru whilst simultaneously providing useful classification results.
This paper investigates the classification ability of fuzzy ARTMAP (FAM) [5], a variant
of the supervised Adaptive Resonance Theory (ART) networks, in purely statistical
learning tasks and compares the results with Bayesian decision theorem.

2 Fuzzy ARTMAP (FAM)

FAM is an extension of the ARTMAP network [6] which makes use of the operation of
fuzzy set theory instead of the classical set theory that governs the dynamics of
ARTMAP. A FAM network consists of two fuzzy ART [7] modules, ART, and ARTy,
connected by a map field as shown in Fig. 1. During supervised learnitig, an input pattern
vector a is fed to ART, with its target vector b to ARTy. ART, and ART], cluster their
input vectors independently. An intervening map field (Fap) adaptively associates
predictive antecedents in ART, with their consequents in ARTy,




In ART, (as well as in ART}), an input vector a first registers itself at the F;, layer in
complement-coded format, i.e. A=(a, 1-a), to avoid the category proliferation problem
[7.8]. This pattern vector is faned-out to all the nodes in the F», layer via a set of Long
Term Memories (LTMs) or weights. The response of each F,, node is based upon a
fuzzy choice function

'A AWq_ j’
o, +lwa_ j,
where w,_ j 1s the weight vector of the jth F,, node, a, is the choice parameter [5,7] of

ART, and the fuzzy "and" operator (A) and the norm I are defined as:
(x A y); = min(x;,3;) and [x] = ¥ |x,| (9]

The maximally activated node is selected as the winner and all other nodes are suppressed
in accordance with the winner-take-all competitive structure. The winning F;, node then
feeds back its weight vector to Fia- This weight vector represents the category prototype
of the winning node and is used for comparison with the input vector against a vigilance
threshold. Resonance is said to occur if the vigilance test is satisfied, i.e.

,A AWqa J’

4]

where p, is the vigilance parameter of ART, and w,_; is the winning Jth node in Fp,.
Otherwise, a mismatch signal is sent to Fy, to reset the winning node for the rest of the
pattern matching cycle. The input vector A is now re-transmitted to Fy, to select a new
winner. This search cycle ends when the current category prototype is able to meet the
vigilance test or a new node is recruited in Fp, with the input pattern coded as the
prototypical weight vector.

2 Pq

After resonance has occurred in ART, and ART}, a predictive signal is sent from the
winning F,, node to the map field. If this prediction is disconfirmed by the winning node
in Fpy, i.e. the map field vigilance test fails, a control strategy called match-tracking is
initiated. Match-tracking increases Pq to a value which triggers a search in ART,. Thus,

P, 1s made slightly greater than ]A AWy . _]I/ |A| to cause the ART, vigilance test to fail.

In such a way, match-tracking provides a means to select a node in F,, which fulfils both
the ART, and the map field vigilance tests. If such a node does not exist, Fy, is shur
down for the rest of the input presentation [5,6].

2.1  One-to-many Mapping

One-to-many mapping is defined as the formation of an association from an F,, category
node to more than one Fy, target output via the map field. Obviously, this association is
prohibited in the ARTMAP (both the binary and fuzzy versions) networks to avoid any
confusion during recall, hence prediction, from an F», category node 1o its Fop predictive
answer. However, in statistical pattern classification, overlapping regions can occur in the
input space where the same cluster may belong to more than one target output, subject to
different probabilities of class membership. It is therefore useful if this one-to-many
mapping can be established.



2.2  Modified Fuzzy ARTMAP

One way to implement the one-to-many mapping has been proposed in [10] and is
explained below. When the input vector is a fuzzy subset of an Fy, category node, it will
match perfectly with the category prototype and the ART, vigilance test produces
|AAw,_j|/|A|=1. If the winning category has previously been associated with a

different target output, the prediction will be disconfirmed and match-tracking is
triggered. So, p, has to be increased to a value slightly greater than unity. This implies
that no other nodes can satisfy the ART, vigilance test and the current input will be
ignored.

In view of the above scenario, we propose that during match-tracking, the ART, vigilance
parameter is constrained by

0<p, <min(1, |AAwg_s|/|A]
where A is the current input vector to F,, in complement-coded format and W,y is the
winning Jth node in F,,. Thus, if no other Fy, node is able to meet the vigilance test, a
new node can be recruited to code the input vector. Now it seems that it is possible to
have two similar category nodes to map to different target outputs. This modification is
applicable to both the binary and fuzzy ARTMAP networks. Indeed, in the simulations

described later which involve only binary data, the fuzzy and binary realisations of
ARTMAP are identical.

In FAM, if a tie occurs in the choice function, the winning F», node is selected in the
sequence of 1,2,...[5]. To ensure that similar category nodes have a fair chance to be
selected as the winner, we introduce a frequency measure scheme. This frequency
measure records the number of correct predictions an Fy, category node has
accomplished. This information not only facilitates the selection of the winner but also
reflects the prior probabilities represented by each F,, category prototype. There are two
variants of the frequency measure scheme [10]: INC and INC/DEC based on the reward
and reward-penalty rationale. The INC method INCreases the frequency count of each
F,, node for correct predictions and no penalty is imposed for incorrect predictions.
Conversely, the INC/DEC method INCreases or DECreases the frequency count of each
F», node for correct or incorrect predictions accordingly.

3 Simulation Studies

We assess the performance of FAM and modified FAM in classifying noisy data set into
two classes in stationary and non-stationary environments. The class distributions are
fully governed by the prior class probabilities (P(c;) and P(cy)) and the conditional
probabilities or likelihoods (P(xlc;) and P(xl ¢2)). By applying Bayes' theorem to these
parameters, a data set with a specific posterior probability distribution can be generated.
Appendix A shows the parameters used in the following simulations. All the experiments
below employ the single-epoch, on-line learning strategy with fast-learning [5,6] and the
INC method is adopted for the frequency count. The on-line operational cycle proceeds
as follows: an input vector is first presented to ART, and a prediction is sent to ARTy,
The predicted output is compared with the actual output and the outcome gives a
classification result (prediction). Learning then ensues to cluster the input and target
vectors (learning).



3.1 Stationary On-line Learning and Classification

Two classes of noisy data samples for the two-bit parity (commonly known as XOR) and
four-bit parity problems were generated. In each case, 5000 samples were used and a
1000-sample window was applied to calculate the on-line classification results, e.g., the
accuracy at sample 2000 was the number of correct predictions from samples 1001-2000
expressed as a percentage. Although the data statistics are time-invariant, tackling the
task on-line is in fact a non-stationary process owing to the build-up of templates—the
so-called finite-operating-time problem.

Table 1 shows the average accuracy (Acc.) of 5 runs at the end of the experiment.
Although the standard deviation (Std. Dev.) is estimated from a small sample size (5
runs), it does serve as an indication of how the results disperse across the averages. Fig.
2 depicts some typical accuracy plots against increasing number of samples. From the
results, it is clear that modified FAM outperforms FAM in all cases with closer proximity
to the Bayes limits and smaller standard deviations. Note that some of the results exceed
the theoretical Bayes limits because of the use of the window method in calculating the
accuracy.

Bayes XOR Four-bit Parity
Limits FAM Mod. FAM FAM Mod. FAM
Acc. | Acc. | Std. | Acc. | Std. || Acc. | Std. | Acc. | Std.
(%) | (%) [ Dev.| (%) | Dev. | (%) | Dev. | (%) | Dev.
55 1501 14 [ 556 1.3 (498 | 23 | 536 0.3
65 || 51.2] 83 | 646 ] 1.0 || 56.8| 8.2 [ 649 | 03
75 | 573112757 1.0 || 674 | 5.2 | 75.2| 09
85 || 705|157 | 852 | 1.8 | 77.1 | 3.6 | 854 | 0.6
95 8591123 [950| 03 | 931 1.8 | 950 0.8

Table 1 Results for the XOR and four-bit parity problem
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Fig. 2 Modified FAM is able to achieve the Bayes limits more closely than FAM
with smaller standard deviations in a stationary environment.



3.2 Non-stationary On-line Learning and Classification

In this simulation, two classes of 25000 data samples were generated for the four-bit
parity problem. The distribution parameters were subject to step changes every 5000
samples. This simulates a severe non-stationary scenario since in many applications, one
might expect to experience a gradual change in the environment rather than a step change.
As can be seen in Fig. 3, modified FAM is able to approach the Bayes limit more closely
than FAM.
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Fig. 3 Modified FAM tracks non-stationarity in the data environment and
simultaneously achieves the Bayes limit. The average result of modified
FAM also shows smaller standard deviations than FAM.
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Fig. 4 A comparison between the ensemble and time averages. The Bayes limit
and the time average of single realisation fall mostly within the 95%
confidence interval of the ensemble average.



3.3 Ensemble Average and Time Average

So far we have only used the time average to calculate the on-line results. However, in a
stochastic process, each realisation represents only one of the many possible outcomes.
Thus, in order to measure the general performance of modified FAM in a non-stationary
environment, an ensemble of 1000 networks has been used. The results were calculated
across 1000 realisations and compared with the time average of single realisation with a
1000-sample window as in Fig. 4.

4 Summary

From the above simulations, modified FAM is able to achieve classification results which
closely approximate the Bayes limits in both stationary and non-stationary environments.
As might be expected, FAM only creates 4 nodes for the noisy XOR data set and 16
nodes for the four-bit parity data set whereas modified FAM creates 8 and 32 nodes
respectively. The formation of category prototypes depends merely on the orderings of
input presentation. Once an association has been established for a particular input pattern,
FAM will ignore the same pattern when it appears to be a member of a different class. If
spurious prototypes (owing to noise) have been developed at the early stage, most of the
patterns will be incorrectly classified which directly leads to a degradation in performance.
However, owing to the proposed modification, modified FAM is able to create two
category nodes in ART, to map to different target outputs for a specific input pattern.
Two identical category nodes are set up with one set serving as the frequently excited
prototypes while the other set acts as the spurious prototypes. The frequency measure
scheme then ensures that the most probable prototypes are selected to predict an output
and thus minimises the overall misclassification rates.

In the non-stationary experiment, modified FAM is competent to recover from drastic
changes in data statistics. It tracks the non-stationarity very well and at the same time
achieves the Bayes limit. The suitability of using the windowed time average in
calculating the results has also been validated with an ensemble of networks. From the
comparison, it implies that the time average adequately indicates the ensemble result
except close to severe changes in statistics. Note that the time average of single
realisation consistently approaches the ensemble average and falls mostly within the 95%
confidence interval.

In conclusion, we demonstrate that modified FAM is capable of classifying binary-valued
patterns optimally in stationary and non-stationary environments. It creates more
category prototypes than the original network in order to implement a one-to-many
mapping. Based on the frequency count information, the most probable prototypes are
selected to make a prediction which in turn tends to minimise the misclassification rates
and thus asymptotically approaches the Bayes limits.
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Bayes X = Even-parity Samples X = Odd-parity Samples
Limits | P(c;) | P(xlc;) P(xlcy) [ P(c,) P(xlcy) P(xlc))

55% 0.5 0.275 0.225 0.5 0.275 0.225
65% 0.5 0.325 0.175 0.5 0.325 0.175
75% 0.5 0.375 0.125 0.5 0.375 0.125
85% 0.5 0.425 0.075 0.5 0.425 0.075
95% 0.5 0.475 0.025 0.5 0.475 0.025

Table Al Parameters used for the XOR data set

Bayes X = Even-parity Samples X = Odd-parity Samples
Limits | P(¢;) | Pxley) [ Plxicy) | P(cy) P(xlcy) | P(xlc;)

55% 0.5 | 0.06875]0.05625] 05 0.06875 | 0.05625
65% 0.6 | 0.08125 | 0.04375 | 0.4 0.08125 | 0.04375
75% 04 |0.09375]0.03125| 06 0.09375 | 0.03125
85% 0.3 ]0.10625 | 0.01875 0.7 0.10625 | 0.01875
95% 0.1 |[0.11875]0.00625] 09 |o011 875 | 0.00625

Table A2 Parameters used for the four-bit parity data set




