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Abstract

This paper presents an investigation into the development of open-loop and closed-loop
control strategies for flexible manipulator systems. Shaped torque inputs, including
gaussian shaped and lowpass (Butterworth and elliptic) filtered input torque functions, are
developed and used in an open-loop configuration and their performance studied in
comparison to a bang-bang input torque through experimentation in a single-link flexible
manipulator system. Closed-loop control strategies using both collocated (hub angle and
hub velocity) and non-collocated (end-t)oint acceleration) feedback are then proposed. A
collocated proportional-derivative (PD) control is first developed and its performance
studied through experimentation. The collocated control is then extended to incorporate,
additionally, non-collocated feedback through a proportional-integral-derivative (PID)
configuration. The performance of the hybrid collocated and non-collocated control
strategy thus developed is studied through experimentation. Experimental results verifying

the performance of the developed control strategies are presented and discussed.

Key words:  Flexible manipulator, open-loop control, closed-loop control, PD control,

PID control.
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1 Introduction

The term 'control', in general, can characterise an open-loop strategy based on a more or a
less accurate model of the system under investigation or a feedback law making use of the
control deviation. In some cases, it may also characterise a combination of these two
categories; i.e., an open-loop strategy for the gross motion with an underlying feedback
accounting for small deviations.

Two main approaches can be distinguished when considering the control of flexible
manipulator systems. The first approach involves the development of a mathematical
model through computation of the necessary geometric, kinematic or kinetic quantities on
the basis of assuming rigid body structure. In adopting such an approach, an investigation
to reveal the accuracy of the identified parameters is required, so that a satisfactory model
is obtained. Alternatively, necessary measurements to yield information on the deflections
have to be carried out in addition to the movements of the joints. The second approach
accounts, in addition to the factors in the first approach, for deviations caused by the
elastic properties of the manipulator and thus requires additional measurements, for
example by strain gauges, optical sensors, accelerometers, etc. These measurements are to
compensate for deviations caused by elasticities and thus are used to improve the control
performance.

Due to the elastic properties of the system, the development of a mathematical
description and subsequent control of a flexible manipulator is a complicated task. A
considerable amount of basic research has been carried out on the modelling and control of
flexible manipulators for the last two decades. The control problem, to achieve high
performance, is to acquire the ability to dampen the oscillations of the structure. This is
made difficult by the presence of a large (infinite) number of modes of vibration in the
structure which are, in general, lightly damped. The modes become significant in two
ways. Firstly, because the oscillations themselves prolong the settling time or, equivalently,

give greater dynamic errors. Secondly, attempts to actively control some modes result in
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instability of other (generally high-frequency) modes, referred to as observation and
control spillover.

Vibration control techniques for flexible manipulator systems are generally classified
into two categories: passive and active control. Active control utilises the principle of
wave interference. This is realised by artificially generating anti-source(s) (actuator(s)) to
destructively interfere with the unwanted disturbances and thus result in reduction in the
level of vibrations. Active control of flexible manipulator systems can in general be divided
into two categories: open-loop and closed-loop control. 'Open-loop control involves
altering the shape of actuator commands by considering the physical and vibrational
properties of the flexible manipulator system. The approach does not account for changes
in the system once the control input is developed. Closed-loop control differs from the
open-loop control in that it uses measurements of the system's state and change the
actuator input accordingly to reduce the system oscillation.

Passive control utilises the absorption property of matter and thus is realised by a
fixed change in the physical parameters of the structure, for example adding viscoelastic
materials to increase the damping properties of the flexible manipulator. Furthermore, it
has been reported that the control of vibration of a flexible manipulator by passive means is
not sufficient by itself to eliminate structural deflection (Book et al., 1986). On the other
hand, if only active control is used, then due to actuator and sensor dynamics
destabilization of modes near the bandwidth of the actuator or sensor may result (Aubrun,
1980; Aubrun and Margulies, 1982). To avoid such destabilization a certain amount of
passive damping will be required to be employed, thus using hybrid control, ie., a
combination of active and passive control methods. Combined active/passive control
strategies have been proposed previously where low-frequency modes of vibration are
controlled by active means and the modes with frequencies just above the actively
controlled modes are controlled by passive means (Lane, 1984; Lane and Dickerson, 1984,
Plunkell and Lee, 1970).

Several methods of passive vibration control of flexible manipulator systems have

been developed over the years. These mainly include methods of implementation of a
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constrained viscoelastic damping layer to provide energy dissipation medium (Lane, 1984,
Lane and Dickerson, 1984; Plunkell and Lee, 1970; Lane and Dickerson, 1983; Kerwin,
1959; Nashif and Nicholas, 1970) and the utilisation of composite materials in the
construction of a flexible manipulator to provide higher strength and stiffness-to-weight
ratios and large structural damping than a metallic flexible manipulator (Plunkell and Lee,
1970; Alberts et al., 1986; Choi and Ghandhi, 1988; Choi et al., 1990a; Choi et al., 1990b;
Thompson and Sung, 1986; Trovik, 1980; Tzou, 1980). Observations have shown that
although passive damping provides a sharp increase in damping at higher frequency modes,
the lower frequency modes still remain uncontrolled. Moreover, the addition of
viscoelastic material and constraining layer leads to an increase in the size and dynamic
load of the system (Tzou, 1987; Tzou, 1988).

Recently, open-loop control methods have been considered in vibration control where
the control input is developed by considering the physical and vibrational properties of the
flexible manipulator system. Although, the mathematical theory of open-loop control is
well established, few successful applications in the control of distributed parameter flexible
manipulator systems have been reported (Athans and Ealb, 1966; Cesari, 1983; Citron,
1969; Dellman et al., 1956; Lee, 1960; Saga and White, 1977; Singh et al., 1989). The
method involves development of suitable forcing functions so that to reduce the vibrations
at resonance modes. The methods developed include shape command methods, computed
torque technique and bang-bang control. The shaped command methods attempt to
develop forcing functions that minimise residual vibrations and the effect of parameters
that affect the resonance modes (Aspinwall, 1980; Meckl and Seering, 1985; Meckl and
Seering, 1985; Meckl and Seering, 1987; Meckl and Seering, 1988; Meckl and Seering,
1990; Singer and Seering, 1988; Singer and Seering, 1989; Singer and Seering, 1990;
Singer and Seering, 1992; Swigert, 1980; Wang, 1986). Common problems of concern
encountered in these methods include long move (response) time, instability due to un-
reduced modes and controller robustness in case of large change of the manipulator

dynamics.
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In the computed torque approach, depending on the detailed model of the system and

desired output trajectory, the joint torque input is calculated using a model inversion

. process (Alberts et al., 1990; Bayo, 1988; Bayo and Moulin, 1989; Moulin and Bayo,
1991). The technique suffers from several problems, due to, for instance, model
inaccuracy, uncertainty over implementability of the desired trajectory, sensitivity to
system parameter variation and response time penalties for a causal input.

Bang-bang control involves the utilisation of single and multiple switch bang-bang
control functions (Onsay and Akay, 1991). Bang-bang control functions require accurate
selection of switching time, depending on the representative dynamic model of the system.
Minor modelling error could cause switching error and thus result in a substantial increase
in the residual vibrations (Sangveraphunsiri, 1984). Although, utilisation of minimum

energy inputs has been shown to eliminate the problem of switching times that arise in the

el E

bang-bang input (Jayasuriya and Choupra, 1991), the total response time, however,
becomes longer (Meckl and Seering, 1990; Onsay and Akay, 1991).

Effective control of a system always depends on accurate real-time monitoring and the
corresponding control effort. Initial discussions of the feedback control of a flexible
manipulator and the usefulness of optimal regulator as applied to this problem date back to
the early 1970s (Neto, 1972). It is known in the conventional approach that compensation
can alter the first vibrational mode by either adding some damping or extending the
bandwidth of the system (Ogata, 1970). Compensation, however, will limit the
performance of the manipulator because inputs with frequency contents above the first
vibrational mode could still cause vibration. Various modern control designs have been
proposed during the last two decades for flexible manipulator systems with different types
of vibration measuring systems.

When the free motion of a system consists mainly of a limited number of clearly

' separable modes then it is possible to control these modes directly using the so called
¥ independent modal space control (IMSC) method, where the controller is designed for
each mode independent of other modes (Baz and Poh, 1990; Baz and et al., 1989; Baz et
al., 1992; Gould and Murray-Lasso, 1966; Lindberg and Longman, 1984; Meirovitch and




Baruh, 1982; Sinha and Kao, 1991). The modal space control has been used for the

suppression of the manipulator's flexible motion in a three-link log loading manipulator
with which considerable improvement has been achieved over the conventional joint-based
collocated controller (Karkkainen and Halme, 1985). Although, initial investigations at the
use of IMSC lack a consideration of the location of the actuator (Meirovitch et al., 1983),
later investigations have shown that the actuator placement is important for the
suppression of spillover and, thus, methods for the optimal placement of sensors and
actuators have been developed (Lindberg and Longman, 1984; Kondoh et al., 1990;
Omatu and Seinfeld; 1986; Schulz and Heimbold, 1983).

An appreciable amount of work carried out in the control of flexible manipulator
systems involves the utilisation of strain gauges, mainly to measure mode shapes
(Sangvefaphunsiri, 1984; Hastings and Book, 1985; Hastings and Ravishankar, 1988;
Sakawa et al., 1985). There are two essential components involved in measuring the modal
response using strain gauges. The first is a method of measurement of the modes of
vibration of the flexible manipulator. The second is the development of a computational
technique for distinguishing the different modes in the overall deflection of the flexible
manipulator. Once the modal information is available a control loop can be closed for each
mode either to damp or to actively drive the manipulator in a manner which reduces the
vibration. It appears that the strain gauge measurement is very simple and relatively
inexpensive to use. However, the technique may place more stringent requirements on the
dynamic modelling and control tasks. Strain gauges have the disadvantage of not giving a
direct measurement of manipulator displacement, as they can only provide local
information. Thus, displacement measurement by using strain gauges requires more
complex and possibly time consuming computations which can lead to inaccuracies
(Hastings, 1988).

To solve the problem due to displacement measurement, as encountered in using
strain gauges only, attempts have been made to develop schemes that incorporate end-
point measurements as well (Cannon and Schmitz, 1984; Kotnik et al., 1988; Schmitz,

1985). Some researchers have proposed an approach which utilises local or global
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measurement of the flexible displacement of the manipulator to control the system
vibration (Harishima and Ueshiba, 1986; Ramasrishnan, 1985; Wang, et al., 1989). In this
method the deflection of the manipulator is detected (measured), using, for example, CCD
camera or laser beam, relative to a rotating reference frame X-Y fixed to the hub of the
manipulator. However, as an end-point position control system has smaller stability
margins than a collocated control, it is necessary to include a collocated rate feedback (hub
velocity) to obtain acceptable performance of the closed-loop system (Schmitz, 1985). By
using the end-point sensor, more accurate end-point positioning can be accomplished, but
the resulting controller is less robust to plant uncertainties than the corresponding
collocated design.

The difficulty in maintaining stability and performance robustness, due to the spillover
effects from unmodelled modes that occur when a high-order system is controlled by a
low-order controller, is of major concern in the control of flexible systems. To improve
robustness it is typically required that the controller bandwidth be sufficiently reduced
(Nesline and Zarchan, 1984). Studies have shown that most robust control techniques that
ensure stability in the presence of parameter errors can only increase damping by a limited
amount (Darato, 1987; Kosul et al., 1983). If the inherent damping is very low, this
increase may be insufficient to adequately improve the response. Moreover, the controllers
rely on accurate system models. This makes the controller very sensitive to modelling
errors, leading to a degradation in system performance and, in some cases, instability. It is
evident that, in using either global or local displacement measurement a device is required
to be attached on the manipulator, affecting the behaviour of the manipulator (Mace,
1991).

Both feedforward and feedback control structures have been utilised in the control of
vibration of flexible manipulator systems (Dougherty et al., 1982; Dougherty et al., 1983;
Hendrichfreise et al., 1987; Rattan et al., 1990; Shchuka and Goldenberg, 19891 Wells and
Schueller, 1990; Yamada, Nakagawa, 1985). These include combined feedforward and
feedback methods based on control law partitioning schemes which use end-point position

signal in an outer loop controller to control the flexible modes and the inner loop to
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control the rigid body motion independent of the dynamics of the manipulator. Although,
the pole-zero cancellation property of the feedforward control speeds up the system
response, it increases overshoot and oscillation. However, it is found that, in contrast to
many  high-order compensators, systems with feedforward control incorporating
proportional and derivative (PD) feedback are not highly sensitive to plant parameter
variations. |

In the investigations carried out on the control of flexible manipulator systems the
only non-collocated sensor/actuator pairs that have successfully been employed include the
motor torque with either the manipulator strain or global/local end-point position.
However, practical realisation of both methods have associated short-term and long-term
drawbacks. If a state-space description of the closed-loop dynamics is available, it is
possible to use acceleration feedback to stabilise a rigid manipulator (Studenny and
Belanger, 1986). Investigations on the control of a flexible manipulator system using
acceleration feedback to design the compensator and the end-point position feedback using
a design based on a full-state feedback observer have shown that the controller using end-
point position feedback exhibits a relatively slow and rough response in comparison with
the acceleration feedback controller; the difference becoming more noticeable with
increasing slewing angle (Kotnik et al., 1988). Moreover, acceleration feedback produces
relatively higher overshoot. The use of acceleration feedback appears to have intuitive
appeal from an engineering design viewpoint, particularly due to the relative ease of
implementation and low cost. Moreover, in sensing acceleration for control
implementation, all sensing and actuation equipment is structure mounted. This implies
that issues such as camera positioning or field of view are not of major concern which are
important considerations, specifically, in large scale applications such as telerobotics.
Furthermore, applications to multi-link flexible manipulators could benefit from such
methods to a greater extent. Some researchers have also proposed adaptive control
methods to compensate for parameter variations (Chen and Menq, 1990; Feliu et al., 1990;
Yang et al., 1991). However, these approaches utilise optical methods of global/local end-
point sensing for obtaining the feedback signal.
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To tackle the various problems associated with the design approaches discussed
above, both open-loop and closed-loop control methods are developed and investigated in
this paper. In open-loop control, gaussian shaped input torque and filtered input torque are
used. As referred to above, the only non-collocated sensor/actuator pairs that have
successfully been employed include the motor torque with either the manipulator strain or
global/local end-point position. However, practical realisation of both methods have
associated short term and long term drawbacks. It is proposed here to devise a control
strategy that uses both the collocated (hub angle and hub velocity) and non-collocated
(end-point acceleration) feedback. Initially, a collocated controller is developed. This is
then extended to incorporate, additionally, non-collocated feedback.

The single-link flexible manipulator system shown schematically in Figure 1 is utilised
to verify the performance of the control strategies experimentally. This consists of an
aluminium type flexible manipulator of physical dimensions and characteristics given in
Table 1, driven by a high torque printed-circuit armature type motor. The measurement
sensors consist of an accelerometer at the end-point of the manipulator for measurement of
end-point acceleration, a shaft encoder and a tachometer, both at the hub of the
manipulator, for measurement of hub angle and hub velocity respectively and four strain
gauges located along the manipulator length. The outputs of these sensors as well as a
voltage proportional to the current applied to the motor are fed to an IBM-AT compatible
PC through a signal conditioning circuit and an anti-aliasing filter for analysis and

calculation of the control signal.

2  Open-loop control

The aim of this investigation is to develop methods to reduce motion induced vibration in
flexible manipulator systems during fast movements. The assumption is that the motion
itself is the main source of system vibration. Thus, torque profiles which do not contain

energy at system natural frequencies do not excite structural vibration and hence require
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no additional settling time. The procedure for determining shaped inputs that generate fast
motions with minimum residual vibration has previously been addressed (Meckl and
Seering, 1988; Bayo, 1988). The torque input needed to move the flexible manipulator
from one point to another without vibration must have several properties: (a) it should
have an acceleration and deceleration phase, (b) it should be able to be scaled for different
step motions, and (c) it should have as sharp a cutoff frequency as required. These three
properties of the required input torque will allow driving the manipulator system as quickly
as possible without exciting the resonances.

In this section two types of open-loop shaped input torque are developed on the basis
of extracting the energies around the natural frequencies so that the vibration in the flexible
manipulator system is reduced during and after the movement. In the first approach a
gaussian shaped input torque is developed and its various properties studied so that to
enable selection of a specific torque profile for a particular manipulator system. In the
second apﬁroach, the extraction of energy at the system resonances is based on filter
theory. The filters are used for pre-processing the input to the plant, so that no energy is

ever put into the system near its resonances.

2.1 Gaussian shaped torque input

A gaussian shaped input torque, i.e. the first derivative of the gaussian distribution function
is examined here. The application of this function has in the past been shown in the form of
an acceleration profile, utilised to develop input torque profile through inverse dynamics of
the system (Bayo, 1988). The method includes nonlinear terms and imposes heavy
computational load (Bayo and Moulin, 1989). Moreover, several problems are associated
with the techniques that invert the plant. First, a trajectory must be selected. If the
trajectory is impossible to follow, the plant inversion fails to give usable results. Often a
poor trajectory is selected to guarantee that the system can follow it, thus defeating the
purpose of the input (Bayo, 1988). Second, a detailed model of the system is required

which is not easy to obtain for machines. Third, the plant inversion is not robust to
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variations in the system parameters. The method presented in this paper does not require
these complicated processes. The behaviour of the function as an input torque profile for
the system is investigated by adopting a much simpler method of developing an input
torque profile for a flexible manipulator system. Variation of frequency distribution, duty
cycle and amplitude of the gaussian shaped input torque with various parameters are
studied. This enables to generate appropriate input trajectory to move the flexible
manipulator for a given position with negligible vibration.

The gaussian distribution function can be written as
e[—(:—u)’]
207
1)

where, 6 and P represent the standard deviation and the mean respectively and ¢ is an

P(t)=

270

independent variable. Considering the first derivative of P(¢) as a system torque input with
t representing time and | and © as constants for a given torque input, equation (1) yields
the torque 7(t) as

(- [

z(¢) =J—2—n-§e ' 2)

The gaussian shaped torque input thus obtained is shown in Figure 2.

To study the effects of i and 6 on various properties of the driving torque in
equation (2), these are varied and the corresponding torque obtained. Figure 3 shows the
cutoff frequencies of the gaussian input torque as a function of ¢ with 1 as a parameter.
The cutoff frequency is obtained from the autopower spectrum of the developed torque
profile, where at the cutoff frequency the power level of the gaussian torque input reduces
to two thirds of its peak value. It is noted that for a given value of p the cutoff frequency
increases with a decrease in the value of 6. For a given value of &, on the other hand, the
cutoff frequency increases with an increase in the value of |. Figure 4 shows the variation
of the duty cycle of the gaussian input torque as a function of ©; the duty cycle

corresponds to the time between points A and B in Figure 2. This is useful in the selection

10




of the value of ¢ for an allowed period of movement. Figure 5 shows the variation of the

amplitude of the gaussian input torque with the value of ¢. This is useful in allowing to
keep the maximum amplitude of the developed torque profile within a particular range so
that to avoid actuator saturation and structural damage. Note that the last two properties,
namely, the duty cycle and amplitude shown in Figures 4 and 5 are independent of . With
the set of information given in Figures 3, 4 and 5, it is possible to select suitable
parameters for the gaussian torque input and generate the torque profile accordingly prior
to exciting the manipulator.

To investigate the effectiveness of the gaussian shaped input torque on the
performance of the flexible manipulator system, the experimental set-up shown in Figure 6
was utilised. The first and second natural frequencies of the flexible manipulator under
considerétion, as found experimentally through frequency response measurements, are at
12.016 and 35.397 Hz respectively. A gaussian shaped input torque was thus developed
with a cutoff frequency at 10 Hz, 6=0.15 and p=10. The performance of the
manipulator was studied experimentally with this gaussian shaped input torque in
comparison to a bang-bang input torque for a similar angular displacement, keeping the
peak torque at a similar level for both cases.

Figure 7 shows the bang-bang and gaussian shaped input torques utilised, where the
negative sides of both the input torques are scaled down so that to offset friction. It is
noted that the gaussian shaped input torque has a smooth start and stopping behaviour.
This is an important characteristic for (vibrationless) movement of the system. The bang-
bang input torque does not have such a characteristic. The duty cycle for the gaussian
shaped input torque is found to be almost double that of the bang-bang input torque.
However, as noted in Figure 8 the angular displacement of the manipulator reaches a
steady-state level faster with the gaussian shaped input torque than with the bang-bang
input torque. Moreover, the movement is much smoother with the gaussian shaped input
torque. Due to the properties of the gaussian shaped input torque, high frequency
components are reduced in amplitude substantially. This enhances the process of

convergence, since the angular correction needs to be performed only once. It is important
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to mention here that due to system inertia and smooth rise of the gaussian shaped input
torque, it takes a few moments before starting the movement of the manipulator.

Figure 9 shows the end-point acceleration. It is noted that the end-point acceleration
is remarkably improved with the gaussian shaped input torque. The maximum end-point
acceleration is of the order of 10 times smaller with the gaussian shaped input torque as
compared to that with the bang-bang input torque. Figure 10 shows the effects of the input
torques on the vibration of the flexible manipulator. It is noted that a considerable amount
of reduction at vibrating modes is achieved with the gaussian shaped input torque as
compared to that with the bang-bang input torque.

It follows from the results presented above that application of a gaussian shaped input
torque results in a remarkable improvement in vibration reduction during and after a
movement of the manipulator as compared with a bang-bang input torque for similar
angular movement. A higher level of improvement is observed in the case of end-point
acceleration than the strain gauge response. This is significant as the positional accuracy of

the end-point is much more important as the payload is normally fastened to the end-point.

2.2 Filtered torque input

The gaussian shaped inputs developed above were aimed at providing faster motions and
minimising spectral energy for higher frequencies covering all the systems natural modes.
An alternative strategy would be to start with a single cycle of a square wave, which is
known to give optimal response, and filter out any spectral energy near the natural
frequencies. The filters thus designed are not intended for use with the system in a closed
loop.

The filters that will be used are for pre-processing the input to the plant so that no
energy is ever put into the system near its resonances. Note that real-time processing
requirement is imposed. The simplest method to remove energy at system natural
frequencies is to pass the square wave through a low-pass filter. This will attenuate all

frequencies above the filter cutoff frequency. The most important consideration is to

12
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achieve a steep roll-off rate at the cutoff frequency so that energy can be passed for
frequencies nearly up to the lowest natural frequency of the flexible manipulator. There are
various types of filter, namely, Butterworth, Elliptic and Chebyshev, which can be
employed. Here a Butterworth and an Elliptic filter are used. These filters have the desired
low-pass frequency response in magnitude, allow for any desired cutoff rate and are
physically realisable.

The magnitude of the frequency response of a Butterworth filter is given by (Jackson,
1989) |

1 _ 1
+(w/,)” 1+e(m/mp)2"

|H(jo) = 3)

where, n is a positive integer signifying the order of the filter, ®, is the filter cutoff

frequency (-3db frequency), ®, is the passband edge frequency and ]/ (1+€?) is the band
edge value of [H( jn))lz. Note that |H(jw)|’ is monatomic in both the passband and

stopband. The order of the filter required to meet an attenuation 6, at a specified

frequency o, (stopband edge frequency) is easily determined from equation (3) as

108[ 1/83)- ] log(8,/¢)
"~ 2log(o, jo,) log( o,/0, )

@

where, by definition, &, =1/1/1+8,2 . Thus, the Butterworth filter is completely

characterised by the parameters n, 8,, € and the ratio @,/®, .
Equation (4) can be employed with arbitrary 8,, 6,, @, and ®, to determine the
required filter order n, from which the filter design is readily obtained. The Butterworth

approximation results from the requirement that the magnitude response be maximally flat

in both the passband and the stopband. That is, the first (2n—1) derivatives of ]H ( ja))]2 are

specified to be equal to zero at ® =0 and at @ =eo.

The sharpest transition from passband to stopband for given §,, 8, and n is achieved

by an elliptic filter design. In fact, the elliptic design is optimum in this sense. The

13
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magnitude response of an elliptic filter is equi-ripple in both the passband and stopband.

The squared magnitude response of an elliptic filter is of the form (Zverev, 1967)

1
1+e’Uw/m,)

|H(jo) =

where U, () is a Jacobian elliptic function of order n and € is a parameter related to the

passband ripple. It is known that most efficient designs occur when the approximation
error is equally spread over the passband and stopband. Elliptic filters allow this objective
to be achieved easily, thus, being most efficient from the viewpoint of yielding the
smallest-order filter for a given set of specifications. Equivalently, for a given order and a
given set of specifications, an elliptic filter has the smallest transition bandwidth.

The filter order required for a passband ripple 6,, stopband ripple §,, and transition

ratio @, /@, is given as

Ko o)
K(E/SI)K( 1—(0)P/m,)z)

where K(x) is the complete elliptic integral of the first kind, defined as

= 4o

Kx)= ‘!Jl—xzsinze

8,=1/{/1+87? and §, = lﬂlogm(l +£2). Values of the above integral are given in tabulated

from in a number of text books (Dwight, 1957). The phase response of an elliptic filter is
more nonlinear in the passband than a comparable Butterworth filter, especially near the
band edge.

To study the system performance with filtered torque input a low-pass filtered bang-
bang input torque is used in the experimental set-up of Figure 6 and the system response is
measured in the form of hub angle and end-point acceleration. A plot of low-pass filtered

bang-bang input torque using a Butterworth filter is shown in Figure 11. It appears from

14
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Figure 11 that the spectral energy in the first resonance frequency of the system is reduced
significantly. The corresponding hub angle and end-point acceleration with this input
torque are shown in Figures 12 and 13 respectively. The spectral density of residual end-
point accelerometer signal is shown in Figure 14. It follows from this diagram that all the
higher modes are attenuated significantly. Moreover, comparing these with the response
using bang-bang torque (Figures 8, 9 and 10) shows significant improvement.

Figure 15 shows the filtered bang-bang input torque using an elliptic low-pass filter.
Comparing the spectral deﬂsity of the input torque in Figure 15 with that using a
Butterworth filter (Figure 11) reveals that the energy level in the stop band is much higher
for the elliptic filter. Figures 16 and 17 show the flexible manipulator's hub angle and end-
point acceleration respectively using the elliptic filtered input torque. The spectral density
of the corresponding residual fluctuations (vibrations) at the end-point of the flexible
manipulator is shown in Figure 18. It follows from these diagrams that the flexible modes
of the system are totally suppressed.

It follows from the performance of the system with the two types of low-pass filtered
input torque that better performance is achieved with the Butterworth filter. Comparing
the results using low-pass filtered and gaussian shaped input torques reveals that the
response time is not cost effective with the low-pass filtered input torque. As an alternative
to digital filters, analogue low-pass filters can be utilised. However, with analogue filters
the system will require considerably longer time to complete the move. The results above
demonstrate that filtered input torque will be favoured specially when the natural
frequency of the system is relatively high, permitting a reasonably wide bandwidth for the
filtered input. However, for systems with lower natural frequencies the filtered signal
bandwidth must be reduced considerably. This will lead to a further increase in the
response time. Nevertheless, it has been demonstrated above that satisfactory system
performance is achieved with the low-pass filtered input torque at the expense of higher
response time. The response time for a given angle can be significantly reduced if some
excitation energy is permitted in the input function above the lowest system natural

frequency. This can be done by introducing excitation energy above the lowest natural
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frequency by notching out only the frequencies in the square wave frequency spectrum that

correspond to system natural frequencies.

3  Closed-loop control

In this section, closed-loop control strategies that use both the collocated and non-
collocated feedback are proposed and developed. A collocated PD control, incorporating
hub angle and hub velocity feedback, is initially developed. This is then extended to,

additionally, incorporate end-point acceleration feedback through a PID configuration.

3.1 Joint based collocated control
A common strategy in the control of manipulator systems involves the utilisation of PD

feedback of collocated sensor signals. Such a strategy is adopted at this stage of the

investigation here. A block diagram of the PD controller is shown in Figure 19, where K,

and K, are the proportional and derivative gains respectively, 8, 6 and o represent hub

angle, hub velocity and end-point acceleration respectively, R, is the reference hub angle
and A, is the gain of the motor amplifier. Here the motor/amplifier set is considered as a
linear gain A _, as the set is found to function linearly in the frequency range of interest. To
design the PD controller a linear state-space model of the flexible manipulator was
obtained by linearizing the system equations of motion of the system. The first two flexible

modes of the manipulator were assumed to be dominantly significant. The control signal

u(s) in Figure 19 can thus be written as
u(s) = A[K,(R,(s)-8(s)) - K9]

where, 5 is the Laplace variable. The closed-loop transfer function is, therefore, obtained

as
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0(s) _ K H(s)A,
R(s) 1+AK,(s+K,/K,)H(s)

where, H(s) is the open-loop transfer function from the input torque to hub angle, given

by

H(s)=C(s1-A)"'B )]

where, A, B énd C are the characteristic matrix, input ma&ix and output matrix of the
system respectively and I is the identity matrix. The closed-loop poles of the system are,

thus, given by the closed-loop characteristic equation as

1+K,(s+Z)H(s)A. =0

where, Z=K,,/Kv represents the compensator zero which determines the control

performance and characterises the shape of root-locus of the closed-loop system. It is well
known that theoretically any choice of the gains K, and K, assures the stability of the
system (Gravarter, 1970). However, in practice this does not hold. This is due to the
uncontrolled dynamics of the flexible manipulator, actuator and sensor as well as delays
caused by measuring and sampling of feedback signals. The root-locus plots of the closed-
loop system for Z=1, 2, 3, 4 and 5 are shown in Figures 20 - 24 for the derivative gain
K, varying from O to 1.2. In this process the value of K, will also vary, to keep Z
constant. It follows from these root-locus plots that Z=2 gives the resulting dominant
roots with maximum negative real parts.

To study the performance in closed-loop control, the response with the PD controller
is compared with the open-loop response using a bang-bang torque input. A step reference
input (hub angle) is provided to the system with PD feedback control. The open-loop
bang-bang input torque utilised and the corresponding torque input obtained for the
closed-loop system achieving the same steady-state angular displacement as the open-loop
system are shown in Figure 25. It is noted that the initial torque input with PD control is

higher but the total energy input for the specified movement is lower than the open-loop
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system. Figure 26 shows plots of the hub angle as function of time for the open-loop and
closed-loop systems. It is noted that the open-loop system reaches the desired angle in 0.8
seconds. However, oscillations persist even after 2 seconds. Moreover, the overall
movement is not smooth. With the PD control the motion is smooth and the desired angle
is reached within 1.8 seconds. The hub velocity corresponding to the open-loop and PD
controlled systems is shown in Figure 27. For the open-loop system, the hub velocity
appears to remain oscillatory throughout the movement to about 4 seconds. With the PD
control, however, apart from slight oscillations at the beginning of the motion, the hub
velocity settles smoothly at zero in 1.9 seconds. A comparison between the end-point
acceleration and the corresponding end-point elastic deflection for the open-loop and PD-
controlled systems are shown in Figures 28 and 29. It is noted that with the PD control,
oscillations disappear quickly and the system smoothly comes to rest at about 1.8 seconds,
whereas, for the open-loop system the response remains oscillatory to about 4 seconds.
The energy input to the system, as shown in Figure 30, appears to be much smoother for
the PD controlled system as compared to the open-loop system. This is important in such
an application. The results presented above demonstrate the significant improvement in
system performance with PD control, using hub angle and hub velocity feedback, as

compared to the open-loop system.

3.2 Hybrid collocated and non-collocated control

A block diagram of the control structure incorporating a combined collocated and non-
collocated controller is shown in Figure 31. The controller design utilises end-point
acceleration feedback through a PID control scheme. Moreover, the hub angle and hub
velocity feedback are also used in a PD configuration for control of the rigid body motion
of the manipulator. The control structure utilised thus comprises of two feedback loops:
one using the filtered end-point acceleration as input to a control law, and the other using
the filtered hub angle and hub velocity as input to a separate control law. These two loops

are then summed to give a command motor input voltage to produce a torque.
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Consider first the rigid body control loop in which the hub angle 6 and hub velocity §
are the output variables. The open-loop transfer function is obtained using equation (5).
To design the controller in this loop a low-pass filter is required for both 8 and € so that
the flexible modes are attenuated before reaching the controller input. The appropriate
proportional and derivative gains are determined from a root-locus analysis, producing
40dB gain margin and ample phase margin.

The flexible motion of the mampulalor is controlled using the end-point acceleration
feedback through a PID controller. The transfer function of the flexible manipulator w1th
end-point acceleration as output is obtained using equation (5). The end-point acceleration
is fed back through a low-pass filter with a cutoff frequency of 40Hz. The values of
proportional, derivative and integral gains are adjusted using the Ziegler-Nichols
procedure (Warwick, 1989).

Figure 32 shows the hub angle of the manipulator using the hybrid collocated and
non-collocated controller. It is noted that this reaches a steady-state value within 0.5
seconds, i.e. in one thirds of the time with the PD controlled system (Figure 26). The hub
velocity with the hybrid controller is shown in Figure 33, where it is noted that the
magnitude of the velocity is higher than that with the PD controlled system (Figure 27) but
reaches a steady-state in a shorter period of time. In a similar manner as the hub velocity,
the magnitude of end-point acceleration is higher with the hybrid controller (Figure 34)
and reaches a steady level earlier than the PD controlled system (Figure 28). Comparing
Figures 35 and 29 reveals that, similar to the end-point acceleration, the elastic deflection
settles down much quicker in the case of the hybrid controller. However, the magnitude of
the elastic deflection is relatively higher in this case. As shown in Figures 36 and 25, the
control effort, i.e. the torque at the system input, is much higher in the case of the hybrid
controller. This can be justified by its quick settling time. Similar to the control effort, the
peak energy input to the system, as shown in Figure 37, is also higher with the hybrid
controller as compared to the PD controlled system (Figure 30), but settles down quickly.

The use of acceleration feedback for rigid or flexible manipulator control has intuitive

appeal from an engineering design viewpoint. Primary advantages include the fact that
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sensing for control implementations is done with structure mounted devices so that, e.g.
camera position or field of view are not issues of concern, as attempted by other
researchers, and from a practical implementation viewpoint it is easy and of low cost.
Moreover, applications to multi-link flexible manipulators will probably demand use of
these advantages to a greater extent. A problem associated with the hybrid collocated and
non-collocated controller designed for flexible manipulator systems, however, as noted in
Figure 36 is that the control effort at the manipulator input produces a spike at the
beginning of the move. This may cause damage to the actuator and/or to the flexible
manipulator system itself. This behaviour, therefore, must be taken into account during the
implementation of the controller.

The control strategies developed above have been demonstrated to perform well and
to a satisfactory level under situations where the characteristics of the system do not
change. In a time-varying environment, for example when a manipulator is handling
varying payloads, the characteristics of the controller will be required to be updated
according to the changes in system characteristics. Such a strategy can be adopted by
devising an adaptive control mechanism within the system using the fixed control strategies
developed above to incorporate on-line estimation of the system model, controller design

and implementation.

4 Conclusion

The development of open-loop and closed-loop control strategies for flexible manipulator
systems has been presented and verified within a single-link flexible manipulator system.
Open-loop control methods involve the development of the control input by considering
the physical and vibrational properties of the flexible manipulator system. The control
input is minimise the energy input at system resonances so that system vibrations are
reduced. Gaussian shaped and lowpass filtered input torque functions have been developed

and investigated in an open-loop control configuration. Remarkable improvement in
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system response with these control functions has been achieved as compared to a bang-
bang input torque. It has also been revealed that, as far as the total response time is
concerned, the low-pass filtered input torque technique is not cost effective as compared
to the gaussian shaped input torque method.

Two controller design strategies in closed-loop configuration have been presented. A
hub angle and hub velocity based collocated controller has been developed and its
performance has been assessed in comparison to a bang-bang input torque for similar scale
of manipulator movement. The results show that considerable improvement in system
performance is achieved with the PD controlled system. A hybrid collocated and non-
collocated control strategy based on hub angle and hub velocity feedback for rigid body
motion control and the end-point acceleration feedback for flexible motion control has also
been developed. Results of such a strategy demonstrate that the system performance
improves significantly. The use of acceleration feedback offers several advantages, namely,
ease of implementation, raggedness, relatively low cost, and advantages of structure
mounted sensing. This latter point is extremely important for extensions of this work to

multi-link systems where the use of, for example, cameras may be impractical.
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Table 1: Physical dimensions and characteristics of the flexible
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manipulator.
Length 960mm
Thickness 3.2004mm
Width 19.008 mm
Mass density per volume 2710kg/m’

Young's Modulus 7.11x10° N/ m?
Area moment of inertia 5.1924 10" m*
Hub inertia 5.86 x10™ kgm?

Manipulator moment of inertia 0.0495kgm?
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Figure 1: Schematic diagram of the single-link manipulator system.
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Figure 5: Amplitude of the gaussian shaped input torque as a function of G.
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Figure 6: Experimental set-up for open-loop system excitation with shaped input.
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Figure 7: Input torque profiles.

(a) Bang-bang.
(b) Gaussian shaped.
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Figure 8: Hub angular displacement of the flexible manipulator.
(a) With the bang-bang input torque.
(b) With the gaussian shaped input torque.
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End-point acceleration of the flexible manipulator.
(a) With the bang-bang input torque.
(b) With the gaussian shaped input torque.
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Autopower spectrum of the residual acceleration output.
(a) With the bang-bang input torque.
(b) With the gaussian shaped input torque.
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Figure 11: Butterworth low-pass filtered input torque;
(a) Time-domain.
(b) Spectral density.
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Figure 13: End-point acceleration with Butterworth filtered input torque.
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Figure 14: Spectral density of the residual end-point acceleration signal.
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Figure 15:  Elliptic low-pass filtered input torque;
(a) Time-domain.
(b) Spectral density.
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Figure 16: Hub angle with Elliptic filtered input torque.
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Figure 17: End-point acceleration with Elliptic filtered input torque.

45




Tokhi and Azad

5
S
Q
=
= PO U VA ' 0 A1 Y YA A A 1 A YV O A i O 11 N | WAL T T TP AP AT
=
=]
=
10-1:'.ZZZZZZZZ;ZZ.ZZ'.ZZI;ZZIZZ Eeia i e el G e S Sl s Rl e e o
16 , i . L i | ; ;
0 5 10 15 20 25 30 35 40 45 50

Frequency (Hz)

Figure 18: Spectral of the residual end-point acceleration signal.
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Figure 20: Closed-loop root locus with Z=1.
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Figure 22: Closed-loop root locus with Z=3.
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Figure 23: Closed-loop root locus with Z=4,
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Figure 24: Closed-loop root locus with Z=5.
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Figure 25: Torque input at the hub of the flexible manipulator;

(a) Open-loop bang-bang.
(b) PD controlled.
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Figure 26: Hub angle of the flexible manipulator;

(a) Open-loop bang-bang.
(b) PD controlled.




Hub velocity (Rad/sec)

Hub velocity (rad/sec)

Tokhi and Azad

_1 5 1 1 1 1 l 1 1 |l 1
"o 05 1 1.5 2 25 3 3.5 4 45 5
Time (sec)

2 T 1 1 T ¥ I I I T L]
s et s PR e s P S e sarae tnn sy aidere s )
1 ] i 1

1 1 L 1 1 1 1
.013.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (sec)

(b)

Figure 27: Hub velocity of the flexible manipulator;
(a) Open-loop bang-bang.
(b) PD controlled.
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Figure 28: End-point acceleration of the flexible manipulator;

(a) Open-loop bang-bang.
(b) PD controlled.
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(b)

End-point elastic movement of the flexible manipulator;
(a) Open-loop bang-bang.
(b) PD controlled.
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Figure 30: Input energy to the flexible manipulator;
(a) Open-loop bang-bang.
(b) PD controlled.
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Figure 31: Block diagram of the hybrid collocated and non-collocated controller.
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Figure 32: Hub angle of the flexible manipulator with the hybrid controller.
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Figure 33: Hub velocity of the flexible manipulator with the hybrid controller.
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Figure 34: End-point acceleration of the flexible manipulator with the hybrid controller.
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End-point elastic movement of the flexible manipulator with
the hybrid controller.
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Figure 37: Input energy to the flexible manipulator system with the hybri& controller.. ..
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