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--‘_ Abstract

This paper presents an investigation into the real-time simulation of a flexible manipulator
system. A single-link flexible manipulator incorporating hub inertia and payload mass
which can bend freely in the horizontal plane and is stiff in vertical bending and torsion is
considered. A fourth-order partial differential equation (PDE) model of the system
obtained through the utilisation of Lagrange equation and modal expansion method is
considered. A finite-dimensional simulation of the flexible manipulator system is developed
using a finite difference discretisation of the dynamic equation of motion of the
manipulator. The algorithm proposed allows the inclusion of distributed actuator and
sensor terms in the PDE and modification of boundary conditions. The real-time
processing requirements of the algorithm are investigated by implementing the algorithm
on several digital processing domains. Finally, simulation results verifying the performance
of the algorithm in characterising the behaviour of the manipulator under various loading

conditions are presented and discussed.
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1 Introduction

Flexible manipulator systems offer several advantages in contrast to the traditional rigid
ones. These include faster system response, lower energy consumption, requiring relatively
smaller actuators, reduced nonlinearity due to elimination of gearing, less overall mass and,
in general, less overall cost. However, due to the distributed nature of the governing
equations describing system dynamics, the control of flexible manipulators has traditionally
involved complex processes (Aubrun, 1980; Balas, 1978; Omatu and Seinfeld, 1986).
Moreover, to compensate for flexure effects and thus yield robust control the design
focuses primarily on noncolocated controllers (Cannon and Schmitz, 1984; Harishima and
Ueshiba, 1986). It is important initially to recognise the flexible nature of the manipulator
and construct a mathematical model for the system that accounts for the interactions with
actuators and payload. Such a model can be constructed using partial differential
equations. A commonly used approach for solving a partial differential equation (PDE)
representing the dynamics of a manipulator, sometimes referred to as the separation of
variables method, is to utilise a representation of the PDE, obtained through a
simplification process, by a finite set of ordinary differential equations. Such a model,
however, does not always represent the fine details of the system (Hughes, 1987). A
method ‘in which the flexible manipulator is modelled as a massless spring with a lumped
mass at one end and lumped rotary inertia at the other end has previously been proposed
(Oosting and Dickerson, 1988; Feliu et al., 1992). Unfortunately, the solution obtained
through this method is also not accurate and suffers from similar problems as in the case of
the separation of variables method. The finite element (FE) method has also been
previously utilised to describe the flexible behaviour of manipulators (Usoro et al., 1984;
Dado and Soni, 1986). The computational complexity and consequent software coding
involved in the FE method is a major disadvantage of this technique specially in real-time
applications. However, as the FE method allows irregularities in the structure and mixed
boundary conditions to be handled, the technique is found suitable in applications involving

irregular structures. In applications involving uniform structures, such as the manipulator
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system considered here, the finite difference (FD) method is found to be more appropriate.
Previous simulation studies of flexible beam systems have demonstrated the relative
simplicity of the FD method as compared to the FE method (Kourmoulis, 1990).
Moreover, the relatively reduced amount of computation involved in the FD method
makes the technique suitable in real-time applications. Real-time simulation is important
from a system design and evaluation viewpoint. It provides a characterisation of the system
in the real sense as well as allows on-line evaluation of comr_oller designs in real-time. An
investigation into the real-time simulation of a flexible manipulator system is thus
presented in this paper on the basis of FD methods.

The FD method is used to obtain an efficient numerical method of solving the PDE by
developing a finite-dimensional simulation of the flexible manipulator system through a
discretisétion, both, in time and space (distance) coordinates. The algorithm proposed here
allows the inclusion of distributed actuator and sensor terms in the PDE and modification
of boundary conditions. The algorithm thus developed is implemented digitally using
several processing domains. A comparison of the results of the implementations is made
and discussed on the basis of real-time performance of these processing domains. Finally,
simulation results verifying the performance of the algorithm in characterising the
behaviour of the system under various loading conditions are presented and discussed. The
simulated system is constructed to provide a suitable platform for subsequent

implementation and verification of various controller designs.

2 The flexible manipulator system

A schematic representation of a single link flexible manipulator system is shown in Figure
1, where, a manipulator of length !, linear mass density p, moment of inertia 7,, hub
inertia 1, carrying a payload of mass M, and inertia I, is considered. A control torque
©(r) is applied at the hub of the manipulator by an actuator motor. The angular

displacement of the link in the (fixed) POQ —coordinates is denoted by 6(t). u represents

the elastic deflection of the manipulator at a distance x from the hub, measured in the
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moving coordinates P' 0Q'. The height of the link is assumed to be much greater than its
width, thus, allowing the manipulator to vibrate (be flexible) dominantly in the horizontal
direction (POQ —plane) and be stiff in vertical bending and torsion.

The flexible manipulator system is modelled as a pinned-free flexible beam,
incorporating an inertia at the hub and payload mass at the end-point. The model is
developed through the utilisation of Lagrange equation and modal expansion method
(Hastings and Book, 1987; Korolov and _Chen, 1989). To avoid the difficulties arising due
to time-varying length, the length of the manipulator is assumed to be constant. Moreoﬂrer,
shear deformation, rotary inertia and effect of axial force are neglected.

For an angular displacement 6 and an elastic deflection u the total displacement

y(x,t) of a point along the manipulator at a distance x from the pinned end can be

described as a function of both the rigid body motion 8(r) and elastic deflection u(x,1);

y(x,t) = x0(t) + u(x,t)

Thus, the net deflection at x is the sum of a rigid body deflection and an elastic deflection.
Note that the elastic deflections of the manipulator are assumed to be confined to the
horizontal plane only. This is achieved by allowing the manipulator to be dominantly
flexible to horizontal deflection. In general, the motion of a manipulator will include elastic
deflections in both the vertical and horizontal planes. Motion in the vertical plane due to
gravity forces, for example, can cause permanent elastic deflections. This effect is
neglected here as the manipulator is assumed to be dominantly flexible in the horizontal
plane. This can be ensured by physical construction of the manipulator and by keeping the
payload within a certain range.

The dynamic equations of motion of the manipulator can be obtained using the
Hamilton's extended principle (Meirovitch, 1967) with the associated kinetic, potential and
dissipated energies of the system. This yields the dynamic equation of motion of the
manipulator as (Tokhi et al., 1994)
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*y(x,1) o'y(x,t
P 3;; +EI )E;E; )-T.(x,t) )

where, E is Young's modulus, 7 is the second (area) moment of inertia and t(x,7) is the
applied torque. The product EI represents the flexural rigidity of the manipulator. The

associated boundary conditions at the hub of the manipulator are given by

y(0!3)=0

2

9 9y(0,1) _ ., 8*y(0,1)
i~ T ar

=1(1)

Similarly, the associated boundary conditions at the end-point of the manipulator are given

by

2 3
y O¥L) o 9y(Le) -0

P 9s? ox>
) ) 3
0” 9y(l,1) 9°y(l,1)

i El =

Vo e T ga 0

The fourth order PDE in equation (1) with the associated boundary conditions in equations

(2) and (3) describe the dynamic equations of motion of the flexible manipulator system.

3  The finite difference method

The PDE in equation (1) describing the dynamics of the flexible manipulator system is of a
hyperbolic type and can be classified as a boundary value problem. This can be solved
using an FD method as outlined here briefly. Figure 2 describes the discretisation of the FD
method along distance x and time ¢ in the (x,?) co-ordinate system, where a manipulator

of length I, located along x from a’ to &', is considered within a time interval ¢ of

(¢’,d’). The initial conditions along the ¢ axis are described by
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#(x,0)=0 and @:o @)

Partitioning the interval (a’,b’) in Figure 2 into n sections, each of length Ax
(Ax=(b"—-a’)/n) and the interval (c’,d’) into m sections, each of length At
(Ar= (d’-c’)/m) results the grid of vertical and horizontal lines through points with co-

ordinates x.,t., where

irbjs

x;=iAx; i=0,1,---,n

tJ,:jAt; j=0’l"",m

The lines x =x; and r={; are called grid lines and their intersections are called the mesh
points of the grid or grid-points. For each mesh point in the interior of the grid (x;,t;)
(i=0,1,---,n and j=0,1,---,m) a Taylor series expansion is used to generate the central
difference formulae for the partial derivative terms of the response y(x,f) of the
manipulator at points x =iAx, r= jAr (Lapidus, 1982; Burden and Faires, 1989). This

gives

Bzy(x,t) = Jijn _2}’:',;' + ¥, i

5

or’ A ®

a2y(X,f) = yf-+1,j —2y|'»j +yf-—],j (6)
ox? Ax®

0*y(x,1) _ s~ AYiss,j+ 63, =AY+, =t @)
ox* Ax*

9’y(x,1) _ Y2y = 2¥in1 =2V Yoy (8)
ox® 2Ax°

Bgy(x, ) - Yn-1,js1 ~ 2yn-l;.r' FYntjr = Ynjm 2)’,.,; —Inj1 ©

or’ox 2 AxAt?

where, y, ; represents the response y(x,¢) at x =iAx and r = JAt or y(x,-,tj). Note that, a

time-space discretisation is adopted in the evaluation of the response of the manipulator. A
solution of the PDE in equation (1) can now be obtained using equations (5) to (9). This is

described in the next section.
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4  Algorithm development

To solve the PDE in equation (1), a set of equivalent difference equations defined by the
central FD quotients to replace the PDE are obtained. The manipulator is divided into a
suitable number of sections of equal lengths and a difference equation, corresponding to
each point of the grid is developed. The known boundary conditions are utilised to

eliminate the displacements of the fictitious points outside the defined interval.
2 4
Substituting for %ZZ and g—% from equations (5) and (7) into equation (1) and
t b

simplifying yields the displacement y, ;,, as

2
Yiga = "c[)’f-z,j + yi+2.j] +b [y:'—l,j ¥ yi+1-f] tay; =Yg+ Apt_ (i, j) (10)

6ACEl |, _4APEl _ APEI

Y = nAy® " c= DAY and ‘c(i,j):r(x,.,tj). Equation (10) gives

where, a=2—

the displacement of section i of the manipulator at time step j+1. It follows from this

equation that, to obtain the displacements Yijs1> Ya-1je1 @nd y, ..y, the displacements of the

fictitious points y_, ., Yns1, @nd y,, ; are required. The evaluation of these displacements is

based on the boundary conditions related to the dynamic equation of the flexible
manipulator,

Using matrix notation, equation (10) can be written in a compact form as

Y,

iy j+l

=AY,;-Y,, ,+BF (1n

i, j~1

where, Y,

1 represents the displacement of grid points i =1,2,---,n of the manipulator at
time step j+1, ¥; and ¥, ;_, represent the corresponding displacements at time steps j
and j-—1 respectively, A is a constant n Xn matrix entries of which depend on the flexible
manipulator specification and the number of sections the manipulator is divided into, F is

an nx1 matrix known as the forcing matrix and B is a scalar constant related to the time

step Az and mass per unit length, p, of the flexible manipulator,
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Y1j+1 Yi,j Yj=1
Y2541 Ya.j Y2,j-1
Y= j o Y=l Y=
yn,j-i-l yn,j yn,j
[(m my my 0 -0 0 0]
b a b - 0 0 0
-c b b -—c 0 0
A=| : s . . E ] , : k
0 0 « —- b a b -c
0 0 0 my my mz my
[0 0 - 0 my my my my
2
oA
P

F'=[t(L7), ©(2.)), - (nj)]

The element values m, m,, m,, m,,...,m, in matrix A depend on the boundary
conditions of the manipulator. Equation (11) gives, as a general solution of the PDE, the
displacement of section i of the manipulator at time step j+1. Note in equation (11) that
the displacement of the hub-end of the manipulator (i =0) has not been included, as this is
already known from the boundary conditions in equation (2). In the following sections,
equivalent relations for special cases of the system with or without the hub inertia and

payload mass are developed.

4.1 The system without hub inertia and payload mass
In this section a solution of the PDE is presented assuming no hub inertia and end-point

payload. That is, the flexible manipulator is considered simply as pinned at the motor end




Tokhi and Azad

and carrying no payload. Thus, assuming /, = 1,=0 and Mp =0 in equations (2) and (3)

yield the boundary conditions for this situation as

2
y(0,1) , EIa—’a’(%ﬁH(o,t):o
x
(12)
a*y(1,t) a’y(L,1)
= i —=0
ox’ . ox’®

Discretising the system in time and space (length) and using the boundary conditions in

equation (12) and the central FD formulae in equations (5) to (9) expressions for the
displacements ¥ ;, ¥ j» Yay; 20d ¥, ; can be obtained.

It follows from equations (6) and (12) that,

y(0,/)=0 for j=0,1--,m
(13)

. 32Y(0,j) _ Ny '2)’0.;' i DU P Y
g Y Ax? T A

2 .
Substituting for iga(—(i’-‘l-)- from equation (13) into equation (12) (with ¢ = j), simplifying
X

and rearranging yields

_A71(0.))

Y1) El Yj (14)

Using equation (10) and noting that (i, j) =0 for i 21 as the torque is applied at the hub

of the flexible manipulator, the displacement y, ;,, can be written as

Viga = "C[Y3.j + y—!.j] + b[}’z.j i3 )’0,;]"" ay,i = N.ja (15)

Substituting for y_,; from equation (14) into equation (15), using equation (13) and

simplifying yields

Ax*7(0, j)

El (16)

Yiju =—CYs, by, ; +(2-5¢c)y,;—¢
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To obtain the displacements y,_, ;,, and y, .., the boundary conditions in equation (12)

can be used. Using equation (10) and noting that T(n—1,j) =0, the displacement Yon1jat

can be written as
Yn-1,j41 =€ [)’m-:. i+ Vs, j] + b[)’n, it Yn-2, j]+ AYn-1,j = Yn-1,j-1 17

Substituting for 0%y(x,)/ox* from equation (12) for x =1 (i=n) into equation (6) and

simplifying yields
Ynrtj = 2Ynj = Yanrj (18)
Substituting for y,,, ; from equation (18) into equation (17) and simplifying yields
Yn-tjst = ~Cne,j F BYpg; (2= 5€)y, 0, 426, =Yooy 4 (19)

Using equation (10) and noting that (n,j+1)=0, the displacement y, .., can be

written as
Ynjn = -c[yn+2.j + yn—2,j] + b[yn+l.j * yﬂ—l,j] s = ¥esa (20)

Substituting for 9°y(x,t)/dx® from equation (12) for x =1 (i=n) into equation (8),

simplifying and using equation (18) yields
Y42 = Va2, = AYnerj F 4 (21)
Substituting for y,,,. and y,,,; from equations (18) and (21) into equation (20) and
simplifying yields
Ynjt1 = —2CY, 5, 3t 4cy,.,. ;t 2 Zc)yn. i~ Ynj-1 (22)

Equations (16), (19) and (22) give the displacements at grid points (1,j+1),

(n=1,j+1) and (n, j+1) of the manipulator in the absence of hub inertia and payload. The
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element values m, to m, and m,, to m,, of the matrix A in equation (11), as obtained from

these three equations are thus given by

m =2-5¢, my=b, m=-—c,
my ==c, my=b, my=2-5¢, my,=2c
my =0, my =2¢, my =4, my, =2-2c.

Therefore, incorporating the expressions for hub and end-point displacements, as obtained
above, into equation (11) and using the initial conditions in equation (4) yields a simulation

algorithm for the manipulator in the absence of hub inertia and payload.

4.2 The system with hub inertia and payload mass

In the previous section, a solution for the PDE was developed on the basis of assuming no
lumped inertia at the hub and no additional mass at the end-point of the manipulator. In
practice there will be some hub inertia due to clamping of the manipulator with the motor
shaft and inertia of the rotating part of the motor, tachometer and shaft encoder.
Moreover, the flexible manipulator will be carrying some payload from one point to

another. Therefore, it is required that the inclusion of the hub inertia and payload are

accounted for within the simulation algorithm. With a payload mass of M/, at the end-point

of the manipulator, inertia /, around the mass M, and hub inertia 7,, equations (2) and (3)

yield the boundary conditions for this situation as

0°y(0,1) .. 9%y(0,7)
¥(0,0)=0 , I, a);zax —El ;xz =1(0,1)
) (23)
9%y(1,1) 9%y(1,1) 9% oy(L,1) 0%y(1,1)
M LW 2L R . gl Lt L
P o > P2 E T

A discretisation of the boundary conditions is obtained by substituting for the partial
derivative terms from equations (5) to (9) into equation (23) accordingly and simplifying

to yield

10
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Yo, =0 (24)
EIA? + AxAL?
Yiga = ‘Ax_lh[)’u + y—l.j] +2y,; = N, + 0, 1) 2 (25)
EIAf?
[}’n-z it 2Yn-2,j F 2¥n41,j = Yns2, j]+ 2Yp,j = Yn,j-1 (26)

T

2EIA?

Ynj+1 = “}'—Ax—[)’n-l, i 2Ynjt Ynul, j] =2Yp1,jt 2y, i~ Ynj-1F Yn-1,j-1F Yp-1jn1 27)
P

Equations (24) to (27) can further be manipulated to yield the displacements at grid points
(1,j+1), (n=1,j+1) and (n, j+1) of the manipulator.

It follows from equation (24) that
y(0,j)=0 for j=0,1,---,m (28)
Using equations (10) and (28) and noting that (1, /) =0, y, j+1 €an be expressed as
Yo = _C[J’-L T j] +by,;+ay,; =y (29)

Solving equation (25) for y_, ; , substituting into equation (29) and simplifying yields y, 41

as
Yjun =001+ Doy ; + Qoys i = ja + Q4[T(O,J)] (30)
where,
0 = 2pAx* +21,Ax - 5APEl 0 = 4AF°E]
1 Ax(pAc® +1,) © T Ax(pA+T)

Ar*El

. 3 Ar?
G = Ax(pAx® +1,) ’ Q"—Axipr3+I,,i

Equations (28) and (30) give the displacements at the hub of the manipulator.

11
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Using equation (10) and noting that T(n—1,/) =0, y,_, ., can be expressed as

Yocriu & "C[)’n—s, 7 ¥ yu+1,j] 2 b[)’n, i T Ya-2, j] +aY, ;= Vo151 (31)

Substituting for y,_, ;,, from equation (31) into equation (27) and simplifying yields y,,, ;

as

1
Yoo == e[ Dness = Wy H (B +2=0)3,00+ (2= b=2F)y, 4 Yy s+ Y] B2)
1

where, F =[2EIAP/1,Ax].

Using equation (10) and noting that t(n, j) =0, y, ;,; can be expressed as
Vnjor == Yo s+ Vs |+ B Vmss + Yot |+ @y = Vn e (33)
Substituting for y, ;,, from equation (33) into equation (26) and simplifying yields
Yanj(0=2E)+ Y, ¢+ B) =y, (B =)+, (b-2E)+y, (a=2)  (34)

where, K =[EIAt2/ 2Mpr3]. Similarly, substituting for y,,,j,dl from equation (33) into

equation (32) and simplifying yields

yn+1,j C+F; yn+2.j c+ F;

1
c+h

35)

[Ynes) +Vnaj (b =)+ 3o (F+2-a+b)+y, (a-b-2-2F)]

Thus, solving equations (34) and (35) simultaneously for the fictitious displacements y,,, ;
and y,,, ; yields
Yni2,j = P1)’n—3.j +BYy,, it I';yn-l,j +Fy,. j (36)

and
Yas,j = TIyH—S,j & T;}’n-z,;‘ + T?:yn-l.j + 73;}’,,,,- (37)

12
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where,

po__ ~b=2F
' E(E+b-1)+Fc

o (b+c+E)(-b-2F) [b(31~3+b2)+c(35 —c)- F(c- )]
2" (b+c+E)(c+E)+c(-b-2F) (b+c+E)(-b-2E)

(b+c+E)(-b-2E) b*—9bc—2E(b+11c+2FE)
(b+c+F)(c+F)+c( b-2E)| (b+c+E)-b-2E)

P4=ﬁ(a—2+2b+4P;)+(a—2)(b+c)+10c(b+2F2)[ (b+c+E)(-b-2F) jl

(b+c+FE)(-b-2E) (b+c+F)(c+E)+c(-b-2F)

and

E(b-c)+F(c+F)+c’

T=-
c+F

E(b—c)+F(c+E)+c’
clc+ 1‘5;)2

T, = [c(b+c)+(c+E)(c-E)]

] G c)(:(é;‘r +e [F(c—b)+2E(c+E)+c(10c-b)]

F(b c)+F(c+F +c?
- (c+F)

[2-a)+(F,+c)—c(2F, +10c)]

Substituting for y,,; from equation (37) into equation (10), for i=n-1, and
simplifying yields

Va-rjw1 = M Yp3;t My, ,;+ My, ;+ MY, ;= Yp1jm (38)

where,
M =-c-cT, , M,=b-cT,

M,=a-cT, , M,=b-cT,

13
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Similarly, substituting for y,,,; and y,,,; from equations (37) and (36) into equation (10),

for i =n, and simplifying yields

Yojst = NiYusj ¥ N2 Yoo j ¥ NsYoyj + NoY, i = Yt (39)

where,
N, =bT, —ch, y N,=bT,—cP,-c
N,=bT,—cP,+b , N,=bT,—cP,+a

Equations (30), (38) and (39), thus, give the displacements at grid points (1,j+1),
(n—1,j+1) and (n,j+1) of the manipulator in the presence of hub inertia and payload

mass. From these three equations the values of the elements m, to m; and m, to m,, of

the matrix A in equation (11) corresponding to this situation can be obtained as

m=0, m=0, m=0,
my =M, m,=M,, m;=M,, m,=M,
my =Ny, my=N,, my=N;, my=N,

Therefore, importing the equations for hub and end-point displacements, as obtained
above, into equation (11) and utilising the initial conditions in equation (4) yields a

simulation algorithm for the manipulator system in the presence of hub inertia and payload.

5  Algorithm stability

The stability of the algorithm can be examined by ensuring that the iterative scheme
described in equation (10) converges to a solution. Discretising equation (1), using
equations (5) and (7), yields

[ EIA?

'EE;TiI()’m, i 4y, 5% 6y; i 4y, ¥y j) ==Yt 2)’:’, i (40)

14
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Since y,; can be expressed as y,; = ¢(z)e™, where o represents spatial frequency and

vy=+~1, equation (40) can be written as
dp(t)[em(nux) _4e-ru(x+ea) + 6™ _4810(:—&) + e'ru(x-zm)] — em[—¢(t+ At)-l' 2¢(!)—¢(I—AI)]

Simplifying the above, using the Euler's identity; e™* = cos(a:Ax) + ysin (atAx), yields

o(t+ A1) +0(z - Ar)
o(2)

[2-4c(cos?(oax) +1-2cos(aAx))] = (41)

In, general, all multiples of the spatial frequency o will be present in y(xy1) = 0(2)e™.
Even if these are not present in the initial conditions, or not brought in by the boundary

conditions, they are likely to be introduced by round off errors. This means that

unbounded amplification of ¢(r) must be guard against for all o. The original error

component will not grow in time, provided that

|e’”| <1

This is the well known Von Neumann stability condition (Mitchel an Griffiths, 1980; Press
et al., 1988; Vemuri and Karplus, 1981). Thus, denoting ¢(r)=¢", the right-hand-side of

equation (41) can be simplified as

t+A)+0(1—Af) ") 4 10 -
( )+ ¢( ) - =e™ +¢™ =2cosAt

(z) g

Since |2 cos(At)| can only take a maximum value of 2, the above yields

Oz +An(r—Ar) _ 5
o(r) B

Using the above in equation (41) and simplifying yields

Il —2¢(cos(aAx) - I)2l <1
The maximum value [c:os(oan)—l]2 can have is 4. Therefore, the above equation can be

written as
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or

0<ce<d (42)

Equation (42) is the necessary and sufficient condition for stability of the simulation

algorithm.

6  Algorithm implementation

In the simulation results presented here, an aluminium type flexible manipulator system
characterised by the parameters given in Table 1 is considered. The first and second modes
of vibration of the manipulator are, thus, theoretically at 12.034 and 36.43 Hz.

For implementation of the simulation algorithm using the FD method, the manipulator
is divided into nineteen equal sections, with the spacing between successive grid points
being 0.051 mm. The value of c, see equation (42), is chosen as 0.2 which satisfies the
stability requirement of the algorithm. This value of ¢ yields the required sampling time
interval of 21 sec, which is sufficient enough to cover the high frequency behaviour of the
flexible manipulator. The displacement at each grid point is calculated for an applied
torque at the hub of the flexible manipulator. Figure 3 shows a bang-bang torque with an
amplitude of 0.1 Nm and a duration of 0.6 sec used as an input throughout the simulation
exercises. With this torque the manipulator initially accelerates when the input torque is
positive and decelerates when the torque is negative, thus, causing it to stop at a certain
position.

As it was shown through the development of the simulation algorithm, the fictitious
displacement values y_, ;, ¥,,,; and y,,,; are calculated in terms of y,;, y,.,; and y,_,
using the initial and boundary conditions, which in turn modify the constant matrix A in
equation (11). Thus, any change in a boundary or an initial condition will affect the

element values of matrix A . Therefore, the development of relations to account for such
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variations and subsequent calculation of element values of matrix A will be tedious and
cumbersome.

Proper initialisation of the algorithm is important to avoid any instabilities. This
requires discretisation of the initial conditions in the form of y,, =y, ; and y,; = y,, +1Ty,,-
Moreover, during the calculation process, it is important to provide a means of checking
the boundary conditions at each time step so that the matrix A be updated, upon detecting
any change. In some cases all the calculations for y_, y,,, and y,,, are included within the
calculation loop during each iteration. This increases the computational burden on the
processor. To overcome this problem, two assumptions are made: (a) once the system is in
operation there will be no change in the boundary conditions at the hub of the manipulator;
(b) during operation a change in matrix A will occur only when there is a change in the

payload. This implies that a change will affect only eight elements of the matrix A.
Therefore, a checking facility for payload M, is incorporated within the program, so that

upon detection of a change in M, a recalculation of the required elements of A is carried

out.

The simulation program thus developed is divided into two parts. The first part
involves the calculation of initial values based on the system parameters and boundary
conditions and the second part involves the iterative procedure for calculation of
displacement of the flexible manipulator at successive time steps. In the case of a multi-link
manipulator system, the program can be extended by modifying the equations
characterising the system so that to include the nonlinear terms accounting for the
interactions between the links. This includes modification of the boundary conditions to
involve each link and the effect of mass and dynamics of each link on one another. The

general philosophy thus is the same as far as the program structure is concerned.

6.1 Hardware and software facilities
Three processing domains, namely the SUN4 ELC workstation, a 486DX based IBM

compatible PC and an integrated DSP-transputer system are utilised for the
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implementation of the algorithm. The SUN4 ELC workstation under consideration uses
the SPARC processor, operating at a speed of 33 MHz. The 486DX based PC
implementation utilises a Viglen PC compatible with the IBM PC(AT). This incorporates a
32-bit 80486 processor and a 40487 co-processor with a 50 MHz clock speed.

The integrated DSP-transputer system utilised in this investigation incorporates the
Intel's i860 64-bit microprocessor and a 32 bit T805 transputer node. The i860 is designed
for numerically and vector intensive applications. It can deliver a peak arithmetic
performance of 80 MFLOPS (single precision) and 60 MFLOPS (double precision) and is
capable of executing up to three operations each clock cycle (25 ns at 40 MHz). The T805
transputer is a high performance microprocessor used to facilitate interprocess and
interprocessor communication and is targeted at the efficient exploitation of VLSI
technology. The most important feature of the transputer is its external links which enable
it to be used as a building block in the construction of low cost, high performance
multiprocessing systems (INMOS Ltd, 1988). The integrated DSP-transputer system is
aimed at utilising and exploiting the extensive signal processing power of the DSP with the
high communication facility including processing capability of the transputer.

The C programming language is utilised for the algorithm implementation on the three
processors. This is usually considered as a medium level language. Various types of C
compilers suitable to the three domains are used. The UNIX-C which is very similar to
ANSI C is used for the SPARC processor. The Borland C** is used for implementations in
the 80486 based PC. Programs for the i860 are compiled using the C compilers from the
Portland Group in addition with the i860 Transtech toolset (Portland Group Inc., 1992).

The Transtech toolset provides a development and runtime environment. It supports
the execution of standard programs on the i860 and provides the full range of standard I/O
facilities including code optimisation, linking and vectorisation. The 3L Parallel C compiler
is used for implementations in the T805 transputer. This compiler is intended to program a
transputer system, whether writing a conventional sequential program or using a full
support for concurrency which the transputer processor has to offer (3L Ltd, 1989). The

MATLAB package is also used, independently, for the implementation of the simulation
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algorithm within the SPARC processor. MATLARB is an interactive software package for
scientific and engineering numeric computation, signal processing and graphics. It provides
an environment where problems and solutions are expressed as they would be written
mathematically (The Mathworks Inc., 1991). The package is widely used in control, signal

processing and other engineering applications.

6.2 Real-time processing requirements

In this section a comparative investigation into the processing times in implementing the
algorithm on the three types of processing domains is presented. Table 2 shows the
simulation times using the SUN4 ELC workstation with C programming language and
MATLAB, the 486 PC, a single T805 transputer and a single i860 processor, where
actual simulation time is the time duration for which the manipulator is allowed to move,
representing the real processing time required, and network processing time represents the
time taken by a processor to simulate the manipulator movement. As shown, for an
average actual simulation time of 3.33 sec the i860 takes 1.598 sec, the shortest processing
time, while the SUN4 ELC workstation with MATLAB requires the longest time of
370.626 sec. It appears from Table 2 that on average MATLAB takes about 30 times
longer processing time than the UNIX-C both operating under the same SPARC
processor. However, MATLAB is widely used for matrix operations and numeric
calculation and is not recommended for calculating large iteration loops. It follows from
Table 2 that among the processors used, only the i860 performs within the real-time
requirements of the simulation algorithm.

A graphical representation of the timing performances of these processors using C
programming language is shown in Figure 4. It is noted that the transputer performs
marginally faster than the SPARC processor for short simulation times. However, as the
simulation time increases the transputer performs relatively slower than the SPARC
processor. The processing time using the 486 based processor is lower than both the

transputer and the SPARC processor.
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The relative timing performances of the various types of processor under
consideration in relation to the i860 processor is given in Table 3. It is noted that the i860
is performing at the order of about 9 times faster than the T805 transputer, 8 times faster
than the SPARC processor and 6 times faster than the 486 based PC. The performance of
these processors within each domain can be enhanced by utilising several of these within
suitable parallel architectures. It has been reported that several transputer nodes operating
in a parallel structure will perform faster than a single node. Although, in principle
increasing the number of processors will decrease the net pro;:essing time for a given task.
However, there is an optimum limit to the number of processors to which a reduction in
the net processing time could be achieved by increasing the number of processors. Beyond
this limit, due to the algorithm structure and interprocessor communication overheads an
increase in the number of processors will not decrease the net processing time considerably
(Chalmers and Gregory, 1993). An algorithm similar to the one described here has been
considered for parallel implementation of cantilever beam simulation using T800
transputers ( Kourmoulis, 1990). Results of this study show that employing more than
three processors in a parallel structure will actually increase the total processing time, thus
limiting the timing performance obtainable using a network comprising of only transputer
nodes. Further investigations into the real-time control of the cantilever beam have also
been carried out involving up to five transputer nodes in a parallel structure, although
timing requirements have not been mentioned (Virk, 1992). It has been reported, in
another study, that although increased number of processing elements in a single
instruction multiple data (SIMD) stream computer leads to a speedup in the execution of
the program, but due to the communication overheads this architecture is not suitable for
simulation of flexible manipulators (Tzes, et al., 1989).

Previous investigations have demonstrated the limitations of finer-grain DSP devices
in applications involving irregular tasks. Similar investigations at utilising transputers have
revealed the limitations of such processors in carrying out regular signal processing tasks.
The results presented here demonstrate that the i860 DSP device meets the real-time

processing requirements of the developed simulation algorithm. It has been reported,
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however, that to achieve real-time performance in applications involving complex
algorithms with extensive processing, suitable alternative solutions with enhanced
capabilities could be obtained by devising parallel architectures incorporating DSP devices
and transputer nodes (Tokhi and Hossain, 1993; Tokhi, et al., 1992).

The stability of the simulation algorithm is an important consideration in such a study.
It is noted that the stability of the algorithm is dependent on the non-negative parameter c ;
for the algorithm to be stable the value of ¢ must be less then 0.25. The sampling time Az
for the displacement calculation is also determined by the value of ¢ . The sampling time in
turn determines the upper frequency limit that can be captured within the flexible modes of
vibration of the manipulator. For a set of the higher modes of vibration of the manipulator
to be included, the value of Ar must be sufficiently small. It has been demonstrated that,
for a given value of c, the sampling time At is affected by the number of grid points along
the length of the manipulator used in the FD discretisation method. An increase in the
number of grid points leads to a decrease in the value of Az. Increasing the number of grid
points will also lead to obtaining finer details of the manipulator movement. However, an
increase in the number of grid points increases the computation burden on the processor.
Therefore, for a given value of c, the choice of number of grid points should be a trade off
between the required details of manipulator deflection and the processing time. This is an

important consideration, specially, in real-time applications.

7  Simulation results

The set of results to follow describe the response of the manipulator to the excitation in
Figure 3 under various conditions over a duration of 1.2 seconds. In developing the
simulation algorithm two sets of relations were obtained. The first set of relations given by
equations (16), (19) and (22) are obtained on the basis of ignoring hub inertia and payload,
whereas, the second set given by equations (30), (38) and (39) are obtained by cpnsidering

the hub inertia and a payload at the end-point of the manipulator.
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To study the performance of the simulation program in characterising the behaviour of
the manipulator, the system was excited once without the effect of hub inertia and then
with the effect of the hub inertia. Figure 5(a) shows the end-point angular displacement
(movement) of the manipulator with the hub inertia ignored, while Figure 5(b) shows the
corresponding end-point angular displacement of the manipulator when the effect of hub
inertia is taken into account. No payload mass is included in either case. It is noted that the
overall displacement is relatively larger when the hub inertia is ignored as compared to the
situation when the effect of the hub inertia is included. Morcbver, a steady state situation is
reached in each case within similar timescales (0.6 sec) with inherent residual fluctuation
(vibration) throughout the movement. The time history of movement of the flexible
manipulator for all grid points with the effect of the hub inertia included is shown in Figure
6. This shows the manipulator behaviour during its movement from one position to
another.

Figure 7(a) shows the flexible modes of vibration of the manipulator as extracted from
the end-point movement. This is done by using a highpass filter to separate the flexible
modes from the rigid body motion. The second and higher modes of vibration as separated
from the rigid body motion, in a similar manner, are shown in Figure 7(b). The first and
second flexible modes of vibration of the manipulator, as filtered out from the others using
suitable band-pass filters, are shown in Figures 8(a) and 8(b) respectively. It follows from
Figures 7 and 8 that the first two modes are the dominant ones, characterising the flexible
behaviour of the manipulator. These are measured, from the simulation results in Figures 7
and 8, as 12.016 and 35.397 Hz which are reasonably close to the corresponding
theoretical values, thus validating the accuracy of the simulation program.

To study the effect of payload on the overall movement of the flexible manipulator,
the response of the system was monitored with two different payloads at the end-point.
Figures 9(a) and 9(b) show the end-point displacement of the flexible manipulator with
payloads of 10 grams and 20 grams respectively. It is noted that the overall angular
displacement decreases with increasing payloads at the expense of increased levels of

vibration (amplitude of elastic deflection). This is further evidenced in Figures 10 and 11
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which show the overall time histories of movement of the flexible manipulator for all grid

points with payloads of 10 grams and 20 grams respectively.

8 Conclusion

A numerical method of solution of the governing PDE describing the characteristic
behaviour of a flexible manipulator system incorporating the effects of hub inertia and
payload has been presented and discussed. A simulation algorithm characterising the
behaviour of the system has initially been developed without the hub inertia and payload.
This has then been extended to include the effect of the hub inertia and payload.
Simulation results with and without the effects of the hub inertia show that the overall
angular displacement of the flexible manipulator when hub inertia is ignored is about three
times more than that when the effect of the hub inertia is accounted for. The effect of the
payload is such that the angular displacement decreases at the expense of increased levels
of vibration for increased payloads.

The hub inertia has been considered to remain fixed throughout an assumed
movement of the manipulator. Such an assumption is valid in practice. The payload mass
on the other hand, could change at any stage of the movement cycle. As a result of this
variation a payload checking facility for each iteration of displacement calculation has been
incorporated into the algorithm so that the system matrix A is updated in case of a
payload change. With such a provision the repetition of unnecessary calculations for the
same payload is avoided which in turn makes the processing time relatively shorter.

Noticeable levels of vibration are evident in the simulated response of the manipulator
throughout its movement in the presence of hub inertia and/or payload. An investigation
into studying the end-point vibration of the flexible manipulator for a given input torque is
carried out through an analysis process to extract the various flexible modes of vibration.
It is shown through such an investigation that the frequency of the first two flexible modes

correspond to the theoretically obtained frequencies. The overall elastic fluctuations of the
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manipulator with various payloads reveal that an increase in the payload leads to an
increase in the level of vibrations (elastic movements).

The real-time processing requirements of the developed simulation algorithm has been
assessed by implementing the process on various types of processor. It has been
demonstrated that high speed processing capability is required in the real-time simulation

of flexible manipulator systems.
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Table 1: Prameters of the flexible manipulator.

Parameter value

Length 960mm
Thickness 3.2004mm
Width 19.230mm

Area of cross section 6.1544 10~ m?
Mass density per volume 2710kg/m’
Young's Modulus 7.11x10"

Area moment of inertia 5.1924 x 107"
Hub inertia 5.86 10 kgm®
Manipulator inertia 0.0495kgm*
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Table 2: Processing times using different types of processor.

Actual time of | Network processing time (sec)
simulation (sec)
SUN4-ELC SUN4-ELC | 486DX T805 1860
MATLAB Unix-c
0.8 20.399 3.378 2.152 3.092 0.381
1.2 38.738 4.846 3.227 4.679 0.571
1.6 63.954 6.315 4.303 6.209 0.752
2.0 ‘ 97.074 7.784 5.360 8.214 0.942
24 133.529 9.253 6.456 10.772 1.132
3.0 198.162 11.455 8.069 12.451 1.413
4.0 343.762 15.127 10.759 16.779 1.934
5.0 520.314 18.798 13.448 21.187 2.415
10.0 1919.70 37.156 26.896 43.833 [4.84
Average: 3.33 370.626 12.679 8.963 14.135 1.598

Table 3: Processing times relative to the i860 processor.

T805 SUN4-ELC Unix-c | 486DX

Tz 8.845 17.934 5.61

*T, is the time taken by a processor under consideration.

*T, is the time taken by the i860 processor.

28




Tokhi and Azad

Figure 1: Schematic representation of the flexible manipulator system.
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Figure 2: Discretisation of time and space variable for FD method.
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Figure 3: Input torque applied at the hub of the manipulator.
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Figure 5: End-point movement of the flexible manipulator;

(a) Without hub inertia and payload.
(b) With hub inertia and no payload.
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Figure 6: Movement of flexible manipulator including hub inertia.
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Figure 7:  Flexible motion of the manipulator;
(a) All modes of vibration.
(b) Second and higher modes of vibration.
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Figure 8:  Flexible motion of the manipulator;
(a) First mode of vibration.
(b) Second mode of vibration.
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Figure 9:  End-point movement of the manipulator;
(a) With hub inertia and a payload of 10 grams.
(b) With hub inertia and a payload of 20 grams.
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Figure 10: Movement of flexible manipulator with hub inertia and a payload of 10 grams.
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Figure 11: Movement of flexible manipulator with hub inertia and a payload of 20 grams
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