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Abstract

This paper presents theoretical and experimental investigations into modelling a single-link
flexible manipulator system. An analytical model of the manipulator, characterised by an
infinite number of modes, is developed, using the Lagrange's equation and modal
expansion method. This is used to develop equivalent ime-domain and frequency-domain
working models of the system in state-space and transfer function forms respectively. The
model parameters are then eSﬁmated experimentally using system's measured input/output
data. The model thus obtained is validated through experimentation and experimental

results including the effect of payload on system characteristics presented and discussed.

Key words: Flexible manipulator, Lagrange's equation, modal expansion, state-space

model, transfer function model.
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1 Introduction

Research in the area of flexible manipulator systems ranges from single-link manipulator
rotating about a fixed axis (Hastings and Book, 1987) to three-dimensional multi-link arms
(Nagathan and Soni, 1986). However, experimental work, in general, is almost exclusively
limited to single-link manipulators. This is due to the complexity of multi-link manipulator
systems, resulting from more degrees of freedom and the increased interactions between
gross and deformed motions. The use of dynamic models for flexible manipulator systems
are threefold: forward dynamics, inverse dynamics and controller design.

In practice, dynamic models are mostly formulated on the basis of considering forward
and inverse dynamics. In this manner, consideration is given to computational efficiency,
simplicity and accuracy of the model. Here, a means of predicting changes in the dynamics
of the manipulator resulting from changing configurations and loading is proposed, where
predictions of changes in mode shapes and frequencies can be made without the need to
solve the full determinantal equation of the system. It is important for control purposes to
recognise the flexible nature of the manipulator system and to build a suitable mathematical
framework for modelling of the system. The flexible manipulator under consideration is a
distributed parameter system with rigid body as well as flexible movements. There are two
physical limitations associated with the system: (a) the control torque can only be applied
at the joint (hub), (b) only a finite number of sensors of bounded bandwidth can be used
and at restricted locations along the length of the manipulator.

Owing to the principles used various types of models of flexible manipulator have

been developed (Kanoh et al., 1986). These can be classified as

® Lagrange's equation and modal expansion (Ritz-Kantrovitch) or assumed mode

method,
¢ Lagrange's equation and finite element method,
®  Euler Newton equation and modal expansion,

® Euler Newton equation and finite element,
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e  Singular perturbation and frequency domain techniques.

In the Lagrange's equation and modal expansion method, the deflection of the
manipulator is represented as a summation of modes. Each mode is assumed as a product
of two functions; one dependent on the distance along the length of the manipulator and
the other, a generalised co-ordinate, dependent on time. In principle, the summation
amounts to an infinite number of modes. However, for practical purposes, a small number
of modes is used. The Lagrange's equation and finite element method is conceptually
similar to the assumeci modes method. Here, the generalised coordinates are the
displacement and/or slope at specific points (nodes) along the manipulator (Usoro et al.,
1986). The Lagrange's formulation is preferable as its matrix structure readily allows the
dynamic model to be reformulated in state-space form. This form is particularly convenient
for control purposes.

The Euler-Newton's method is a more direct method of calculating system dynamics.
The rate of change of linear and angular momentum are derived explicitly, rather than via
Lagrange's equation. Newton's second law is used to balance these terms with the applied
forces (Raksha and Goldenberg, 1986). In simulation, or forward dynamics, the linear and
angular momentum of the manipulators are the unknowns while the actuator forces are
known. Expressing the former in terms of a set of assumed modes of finite elements leads
to a dynamic model relating the time dependency of the modes/elements to the external
forces. The basic approach in the Euler-Newton and assumed mode method is to divide
the manipulator into a number of elements and carry out a dynamic balance on each
element. For a large number of elements this is a very tedious process. On the other hand,
it is far easier to include non-linear effects without complicating the basic model.

In the singular perturbation technique the system's characteristic modes are separated
into two distinct groups: a set of low-frequency or slow modes and a set of high-frequency
or fast modes. In the case of flexible manipulators, the rigid-body modes are the slow
modes and the flexible modes are the fast modes. The dynamics of the system can then be

divided into two sub-systems. The slow sub-system is of the same order as that of the
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equivalent rigid manipulator. The slow variables are considered as constant parameters for
the fast sub-system.

An alternative to modelling the manipulator in the time-domain is to use a method
based on frequency-domain analysis (Book and Majette, 1983). This method develops a
concise transfer matrix model using the Euler-Bernoulli beam equation for a uniform beam.
The weakness of this method is that it makes no allowance for interaction between the
gross motion and the flexible dynamics of the manipulator, nor can these effects be easily
included in the model. As a result, the model can only be regarded as approximate.

In this paper an analytical model of a single-link flexible manipulator is first obtained.
This is characterised by a set of infinite number of natural modes. This is used to develop a
state-space and equivalent frequency-domain models of the system. Three transfer
functions are considered, torque to hub angle, torque to hub velocity and torque to end-
point acceleration of the manipulator to reflect upon typical sensor measurements available
in practical manipulator systems.

Experimental model identification involves estimating a system's transfer function or
some equivalent mathematical description of the system from measurements of the system
input and output. To ensure the acquisition of high-quality data, an experimental set-up
involving a single-link flexible manipulator test rig is designed so that the essential aspects
of the measurement process requiring particular attention are considered (Ewins, 1985).

These include

® Proper excitation of the structure,
® Choice and location of suitable transducers,
® Selection of conditioning amplifiers and filters,

® Method of signal processing suitable to the system under consideration.

The manipulator is excited and the corresponding input and output signals measured. The
input and output signals forming the measured experimental data are used to determine the

dynamic characteristics of the system. The characteristics thus obtained are then used to




S .o s o i i et L vy

. Tokhi and Azad

validate the system model by comparing these with the analytical results of the system

model. As the manipulator is very lightly damped, two independent methods are used to

n extract the natural frequencies. The model parameters include the natural frequencies,
i damping ratio, hub modal slope coefficient, modal gain of end-point accelerometer and the
transfer function of the system. Investigations are also carried out to study the effect of

payload on the characteristics of the manipulator. Experimental results thus obtained are

presented and discussed.

2  Dynamic equations of motion of the system

The flexible manipulator system under consideration is modelled as a pinned-free flexible

beam, with a mass at the hub, which can bend freely in the horizontal plane but is stiff in

vertical bending and torsion. The model development utilises the Lagrange's equation and
modal expansion method (Hastings and Book, 1987; Korolov and Chen, 1989). The length
of the manipulator is assumed to be constant. Moreover, shear deformation, rotary inertia
and effect of axial force are neglected.

A schematic representation of the system is shown in Figure 1 where a manipulator
with a moment of inertia /,, hub inertia /,, a linear mass density p and a length of I is
considered. The payload mass is M, and I, is the inertia associated with the payload. A
control torque () is applied at the hub of the manipulator by an actuator motor. The
angular displacement of the manipulator, in moving in the POQ —plane, is denoted by
B(¢). The height of the link is assumed to be much greater than its width, thus, allowing
the manipulator to vibrate (be flexible) dominantly in the horizontal direction. The shear
deformation and rotary inertia effects are also ignored.

b For an angular displacement 6 and an elastic deflection u the total (net) displacement

¥(x,t) of a point along the manipulator at a distance x from the hub can be described as a

function of both the rigid body motion 6(r) and elastic deflection u(x,t) measured from

the line OX;
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Y(x,t) = x8(t) +u(x,1) ©)

To obtain equations of motion of the manipulator, the associated energies are required to
o} be obtained. These include the kinetic, potential and dissipated energies.
The absolute velocity of a point along the manipulator, at a distance x from the hub,

can be written as
==t x— > (2)

Note that only small elastic deflection and small angular velocity are considered. As
mentioned before the contribution of the rotational moment of inertia to the kinetic energy
is neglected. Thus, the kinetic energy of the system can be written as
I 1
E, —5162+50v2pdx+ [ 2] M, (3)

Note in equation (3) that the first term on the right-hand-side is due to the hub inertia, the
second term is due to the rotation of the manipulator with respect to the origin and the
third term is due to the payload mass. Substituting for v from equation (2) into equation
(3) yields

1,0,1 ou ) (au -)2
E-219 j( +x0 pdx+2M = +x0 4)

x=]
Equation (4) gives the kinetic energy associated with the manipulator.
The potential energy is related to the bending of the manipulator. Since the height of
b the manipulator under consideration is assumed to be significantly larger that its thickness,
< the effects of the shear displacements can be neglected. In this manner, the potential

energy of the manipulator can be written as

1_ t[0% lz
E == —
» EI ‘! [ > | dx (5)
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where, E and I are the Young's modulus and the area moment (second moment) of inertia

of the manipulator respectively. Note that, in general, there will be motion of the

v manipulator in the vertical plane as well, in the form of permanent elastic deflections

u caused by gravitational forces. This effect, however, is ignored by minimising the flexibility
of the manipulator in the vertical direction.

In the formulation of the equations of the system, it is required to consider the

mechanisms by which energy is absorbed from the structure during its dynamic operation.

If the resistance to transverse velocity is represented by D(x), the corresponding damping

2
force is D(x)(%) . If the resistance to angular velocity at the hub is equal to D,, the
t

2 2
corresponding damping force is Do[ga‘g;) . If the resistance to strain velocity is
UOL J(x=0)

d’u
dx’ot

2
represented by D, , the resulting damping moment will be D,I[ ) . Therefore, the

energy dissipated by the damping moment and force can be written as

14 ou'} 1% u ¥ 1 % Y
P — | dx+—=|DI dx+=D 6
Er 2!‘%‘)[3:) +2£ ’ (axzar) T2 5 ), %)

It has been shown that the damping matrix satisfies the orthogonality conditions and thus

can be uncoupled in a similar manner as the inertia and stiffness matrices (Clough and

Renzien, 1975). To satisfy the mode superposition analysis it is assumed that D(x)=bypa,
D, =bE and D, =byl, with b, and b representing proportionality constants and a the
cross-sectional area of the manipulator.

s The non-conservative work for the input torque T can be written as

W =16 (7

To obtain the equations of motion of the manipulator, the Hamilton's extended principle

described by
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f:(BL + SW)df =0 (8)

subject to 86 =du=0 at ¢, to t,, where, ¢, and ¢, are two arbitrary times (¢, <t,) and
L=E,-E, is the system Lagrangian can be used (Meirovitch, 1970). In the above
equation, 8W represents the virtual work, 86 represents a virtual rotation and &u
represents a virtual elastic displacement. Using equations (4), (5) and (7) the integral in

equation (8) can be written as

SJ"‘ E,~E,+W)dt=
8_["{ 16°+ —I( +xé) pdx+2M (Z"+xé)r ——_[ EI( ) dx+16]d =0

The rotary inertia and shear deformation are more pronounced at the high frequencies and
more influential on the higher modes (Tse et al., 1987). Since investigations have shown
that the first two modes are sufficient in modelling the manipulator, thus, the rotary inertia
and shear deformation effects can be ignored. Manipulation of the above equation yields

the equation of motion of the manipulator as

El o%u(x,t) +p 0’u(x,1)

=—pxf 9
ax’ o " =
with the corresponding boundary conditions as
u(0,1)=0
o’u(0,t) . 9%u(0, f_
I - EI
h agza’fz ) F - (10)
u(l,t
-EI
Ty G, o "
u(l,t
EI =
L or’ox ox’ 4

and initial conditions as
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u(x,0)=0
ou(x,0) _ 0 (11)
ox

Note in Figure 1 that as line OP’ is tangent to the manipulator at the hub, point O, the

following can be written

ou(0,1)

=0
ox

Using the above condition and equation (1) the following can be obtained

M:Q(;) (12)
ox

Substituting for u(x,t) from equation (1) into equations (9), (10) and (11),

manipulating and simplifying yields the governing equation of motion of the manipulator in

terms of y(x,t) as

oy(x,1) | *y(x,
EI )55; L4 ’g;j’)=o (13)

with the corresponding boundary conditions as

#'y(0 )y(o’t)a? .
(0.0 _ . 9°(0,8) _
I;! agz?,ft, f) fIEI aa%;(t,r)_:z) (14)
Pasy%,z 1) e'rizy%f,3 1)
"o TH T
and initial conditions as
y(x,0)=0
20 _,

ox
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Equation (13) gives the fourth-order paftial differential equation (PDE) which represents
the dynamic equation describing the motion of the flexible manipulator. This equation
could also be directly obtained by using Newton's law (Breakwell, 1980). The Hamilton's
principle, however, is more convenient to use because it automatically generates the

appropriate boundary conditions.

3  Mode shapes

Using the assumed mode method (Meirovitch, 1970; Meyer, 1971), a solution of the
dynamic equation of motion of the manipulator can be obtained as a linear combination of

the product of admissible functions ¢,(x) and time-dependent generalised co-ordinates

qi(t);

y(x,t)=2¢,-(x)q,-(t) for i=0,1,...,n (15)
i=0
where, the admissible function, ¢,, also called the mode shape, is purely a function of the

displacement along the length of the manipulator and g; is purely a function of time and

includes an arbitrary, multiplicative constant. The zeroth mode is the rigid-body mode of
the manipulator, characterising the so-called rigid manipulator as considered without
elastic deflection.

Substituting for y(x,t) from equation (15) into equation (13) and dividing by
0,(x)q,(z) yields

: d'o(x) 1 _pdgn 1 _
dx* ¢,(x) EI di* gq1)

(16)

Equation (16) is satisfied, for arbitrary x and ¢, only if each term on the left-hand-side is

equal to a constant;




.

. Tokhi and Azad

dox) 1 _ pdg® 1 _a
& o) El df g P, 4]

where B, is a constant. Thus, equation (17) yields two ordinary differential equations as

d'o,(x) _ ;
and
dzj'(t) + ; q,(t) 0
where,
El '
o) =—f; (19)
5 p

A =Bl
31
g=—t =4 20
MPE I, )
2
n=£&___3Mr’
M I

where, M is the mass of the manipulator (pl). Equation (18) is a fourth-order ordinary

differential equation with a solution of the form
o,(x) = Asinf,x + Bsinh B,x + CcosB,x + Dcoshf,x (21)

To find the natural frequencies and mode shapes of the system the values of A; satisfying

the boundary conditions of the undriven manipulator, T =0, are determined together with

the corresponding values of the coefficients A, B, C and D, in equation (21). The

boundary conditions in equation (14) are more conveniently expressed in matrix form:

10
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A 0
. B 0
StA. Y=
®) ¢ |
5 D. 0
where,
[ -\, 1 A, 1 i
LAY AN -X -K+XL/p X
5 5

2. A'll 2 )'sll : 2. A'il 2 Azl N
S(A,)=| Asinrl +—pﬂcosl,l AlcosA] -—plsml,.l —lismhl,H—pﬂcosh?Lfl —ljcoshliH-EEsmhl,.I

4 MM ‘M 4
~Roosh g+ Mo gung Rsind+ XM corg Acostn+ M egnnns Rsim g+ MM coma s
i S i i i
' p P P p !

@2)

For non-trivial solutions § must be singular, giving the characteristic equation
‘ IS|=0 (23)

Equation (23) can be solved for the values of A=A, and, hence, w, This requires

utilisation of the orthogonality properties of the mode shapes (Meirovitch, 1970). Using
equation (21) and the boundary conditions in equation (14) yields

I
[ 16,0, (x)dx + 1,6:(0)0(0) + M,0,(1)0, (1) + Lo(1)0 (1) = 1,3, 24)

where, 8, is the Kronecker delta and the normalisation constant I, is the total inertia

about the motor armature. Equation (24) uniquely defines the magnitude of the mode

¢;(x). From the properties of self-adjoint systems, the mode shapes must also satisfy the

orthogonality condition

1
[ E107t20)07(x)dx = L2, (25)

The analytical values of natural frequencies ; can thus be obtained using equations

(19) and (20). The € given in equation (20), as described by the ratio of the hub inertia to

11
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the manipulator's moment of inertia, determines the vibration frequencies of the
manipulator; a small € corresponds to the manipulator having lower vibration frequencies.
For a very large € the vibration frequencies correspond to those of a cantilever beam. The
effect of a payload mass, on the other hand, is significant on the vibration frequencies. By

considering the boundary conditions the mode shape function ¢,(x) of the manipulator in

equation (21) can be obtained.

4  State-space model

The motion of the flexible manipulator driven by a general torque input, 1(¢), can be

modelled using the results of the previous section together with Lagrange's equation. In

. the absence of an external torque equation (9) can be written as

. £ d“u(x,1) £ *u(x,t) =0

ox* or’ )

Equation (26) represents the behaviour of the manipulator in free transverse vibration,

where u(x,1) is the elastic deflection, in the horizontal plane, of a point x along the

manipulator at time ¢ . In a similar manner as before, the solution u(x,t) of this equation

can be expressed as

u{x,t)ziq,-(t)tb,.(x) for i=1,2,---,n 27

Replacing u in equations (4) and (5) by the summation in equation (27), and using the

orthogonality properties in equations (24) and (25), the kinetic energy E; and potential

. energy E, of the system, in terms of the natural modes, can be obtained as
Ex=18,1,3.q" (28)
i=1
— S Y . oy c 2.2
E, —%ZZ%%LEI%%‘& -%Sﬁlrémiqi (29)

i=l j=1

12
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Similarly, using equations (6) and (7) the dissipated energy E, and the work W can be

obtained as

: Ep =31, +1)2%alg? (0)

w=13 ¢(0)g, @31)

i=0

ho,

where E, = &-+— is the damping ratio.
2, 2

The dynamic equation of the system can now be formed using the kinetic energy,
potential energy and dissipated energy in the Lagrangian of the energy expression given as

(Tse et al., 1987)

d(aL) oL oE,
Shackh it PR ool Bk SR 1 2
d:[aq',J % 04 2

where, g; represents the time-dependent generalised co-ordinates and W, represents the
work done by the input torque at the joint in each co-ordinate.
Substituting for E,, E,, E;. and W from equations (28), (29) (30) and (31) into

equation (32) and using the orthogonality relations in equations (24) and (25), an infinite

set of decoupled ordinary differential equations are obtained as

.
49 1,

. . de.(0
G +2E,4,+ (Dle = Ml

& 1, (33)

p . d
g+ 2§2Q'2 + (quz B

13
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In this manner, due to the distributed nature of the system, there will be an infinite number
of modes of vibration of the flexible manipulator that can be represented. However, in
practice, it is observed that the contribution of higher modes to the overall movement is
negligible. Therefore, a reduced-order model incorporating the lower (dominant) modes is
preferred. Retaining, the first n+1 modes of interest, equation (33) can be written in a
state space form as

X AX+Br (34)
dt

where,

XT={‘10 % 9 4 - 4, qn}

01 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 1 0 0 0 0
0 0 -0 —2(w O 0 0 0
A=|0 0 0 0 0 1 0 0
00 0 0 - -2£0, 0 0
00 0 0 0 0 0 1
00 0 0 0 0 0} -2,

B’":l{o 10 49,0) 0 d¢,(0)}
I dx dx

T

Let the manipulator be facilitated with three sensors; end-point acceleration sensor, hub
velocity sensor, and hub angle sensor. The output vector Y of these sensors is related to

the state vector by

Y=CX (35)

14
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where,
] do} (1) doz (1) ]
]. 0 _dlx2— 0 s _'d_x'r 0
d¢,(0) d¢,(0)
C=|1 0 —=— 0 soe —Ao—t 0
dx dx ;
0 1 O d¢1(0) e 0 ¢n(0)
| dx dx |
2
with %’SQ representing the end-point acceleration sensor modal gain and dL"b(cgl the

actuator (motor) modal gain. It follows from the above that due to the distributed
parameter nature of the manipulator system a full-order model will require an infinite
number of ordinary differential equations incorporating an infinite number of modal
coordinates and mode shapes. Practically, a finite number of modes can be assumed
(Kanoh et al,, 1986; Cannon and Schmitz, 1984; Hughes, 1987). This assumption is
justified by the fact that the dynamics of the system are dominantly governed by a finite

number of lower modes.

5 Transfer function model

For frequency domain control design, input/output relationships are usually expressed in a
transfer function form. This allows the use of classical design methods, such as Bode plots,
Nyquist diagrams and root loci.

The open-loop transfer function of the system, G(s), is given by the ratio Y1, Using

the state-space equations, (34) and (35), this can be obtained as

G(s)=C(sI-A)"B

where, 1 is the identity matrix of the same dimension as A, and s is the Laplace

transform variable. Using an alternative method (Breakwell, 1980), the transfer function

15
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can be obtained directly using equation (13). Taking the Laplace transforms of this
equation yields the ordinary differential equation

d*y(x,s)

EI oy +ps’y(x,5) =0 (36)

where ¥ denotes the Laplace transform of y, with the transformed boundary conditions as

5(07 S) =0
1,5’5'(0,5) - EF"(0,5) = (s)
M,5"(l,5)- E"(l,s) =0
15°y'(l,s)+EL"(l,s)=0

Equation (36) has the general solution
¥(x,5) = AsinPx + Bcosfx + Csinh fx + D,coshfx

where, B* = ps?/EI . The constants A, B, C and D, must satisfy the boundary conditions

A 0
S6) ¢ =~z o €
D, 0

-

where, S (B) has the same form as S(A) in equation (22).
Once the constants A, B, C and D, and hence ¥(x,s) are known, it is possible to

derive the transfer function from input torque to a particular output when the latter is

expressed as a function of y. It is clear from equation (37) that all the transfer functions

. that can be derived in this manner share a common denominator, this being the determinant

of S(l). In practice, the resulting expressions are complex transcendental function of B.

For the single-link manipulator with an end-point mass and hub inertia, the system poles

are the roots of

16
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D(\)= |S(7L)| = 2(sinAcoshA —cosAsinA +2nAsinAsinhA) +

2eX°[1+ coshcosh + nA(sinAcosA — sinAcosh).)] B

The numerator function N (), on the other hand, depends on the particular output. From

equation (37) and the definition of 6 in equation (12), N(A) can be obtained as

N(A)= -——EZIE(I +cosA cosh A+nA(sinh A cosA —sin A cosh L)) (39)

If A is a real root of D(A), then so are —A, jA,—jA. The transfer function, expressed as
the ratio of the numerator and the denominator functions above, are exact. This form,
however, is not suitable for control design, as it requires explicit knowledge of the plant's
poles and zeros. A more suitable form is obtained by replacing the numerator and

denominator by their Maclaurin expansions, i.e.

o525

il”d”
“ nld\
As a consequence of the distribution of roots the Maclaurin expansions can be expressed

as a product of quartic factors;

where, P is a polynomial in A of degree 3 or less. Using the relationship A* = —ps’l*/EI,
the expression for the transfer function can be expressed in terms of the Laplace transform
variable s. The final transfer function from the input torque to hub angle can thus be

obtained as

17
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8(s) ~(1-?s’/mi;)
00) " 19 2 (1 9/a) 4o

Similarly, the transfer function from input torque to hub velocity 6 and end-point

acceleration 0. can be written respectively as

e(s) (1+s2/co ) -
s) Is% i1+s2/co )

and

a(s) _ 1 (1-5%/a2)

—_—= 42
1s) L5 (1+5%a?) o

where, w,;,,; and o.; are real constants corresponding to the system zeros.

6 Experimentation

A schematic diagram of the experimental set-up is shown in Figure 2. This consists of an
aluminium type flexible manipulator of physical dimensions and characteristics given in
Table 1, driven by a high torque printed-circuit armature type motor. The measurement
sensors consist of an accelerometer at the end-point of the manipulator for measurement of
end-point acceleration, a shaft encoder and a tachometer, both at the hub of the
manipulator, for measurement of hub angle and hub velocity respectively and four strain
gauges located along the manipulator length at about 50mum (location-1), 250mm
(location-2), 470mm (location-3) and 712mm (location-4) respectively from the hub. The
outputs of these sensors as well as a voltage proportional to the current applied to the
motor are fed to an IBM-AT compatible PC through a signal conditioning circuit and an
anti-aliasing filter for analysis. The cutoff frequency of the anti-aliasing filter is set

appropriately to satisfy the sampling requirements. In this process the measurement chain
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is adjusted so that to achieve a good signal-to-noise ratio; the amplitude of the noise is
kept within a level of 15mV with the signal level being within 10volts.

An RTI-815 multi-function analogue/digital board is used as an I/O hardware unit.
The board has a capacity of 8 differential analogue inputs, 2 analogue outputs, digital input
and output and time related digital /O functions. The analogue input channels each
incorporate a 12-bit A/D converter with a conversion speed of 25usec. The shaft encoder
output is connected directly to the digital input port of the RTI-815 board. The analogue
signals from the transducers, on the other hand, are connected to the analogue inputs of
the board through the signal conditioning circuit and the anti-aliasing filter. A sampling
period of 5ms is used which enables accommodating comfortably the first and second
modes of vibration of the manipulator within the measurements.

In the experimental investigations to follow, two approaches for obtaining the
required information are used: (a) the flexible manipulator system is excited by a random
signal from a noise generator. The responses at various points are measured and fed to the
computer through a set of amplifiers and filters. The collected data is then analysed to
obtain the overall frequency response function (FRF). (b) the manipulator system is excited
by a stepped sine wave from a Solartron 1170 spectrum analyser and the response around
the pole and zero frequencies obtained. Here measurement is made only around the pole
and zero frequencies with better resolution. The total FRF plot is obtained by combining

the two methods of measurement with considerable accuracy.

6.1 Natural frequencies

To obtain the natural frequencies of vibration of the flexible manipulator system, two
methods are introduced and their utilisation explored. The first method is based on the
measurement of the autopower spectral density of the response of the system. This is
referred to as the spectral density method. The seconc}' method is based on the
measurements of the FRF and coherency function of the system. This is referred to as the

FRF method.
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The autopower spectral density S_ (o) of a signal x is defined as
Sa(0) =5, (jw)s;(jo) (43)

where S, (@) is a real valued function containing the magnitude information only, S, (jw)
is the linear spectrum of x given by the Fourier transform of the time signal x(z). S.(jw)
is the complex conjugate of S, (jw).

The response of the system can alternatively be described by the frequency response
function. The equations relating the response of a system in random vibrations to the

excitation are given as (Cannon and Schmitz, 1984)

S, (0)=|H(jo)'s, (o)
S, (jo) = H(jo)S_ (o) (44)
S, (o) = H(jw)s,,(jo)

where, S, (@) and S, (o) are the autopower spectral densities of the excitation signal x
and the response signal y respectively. S, (jo) and S, (jo) are the cross-spectral
densities between these two signals and H(jo) is the FRF of the system. Let H,(jw) and

H,(jo) denote two estimates of the FRF obtained according to the relations in equation

(44) as
S, (jw) .\ _ S, (o)
H(jo)= 5 (o) and Hz(lw)—gym (45)

The error between the two functions is given by the coherency function defined as

(46)
In this manner, the coherency function gives a measure of the estimation error and

indicates the level of coherence between the input and the output. If ¥ is unity at some

frequency ® this means that the output is entirely due to the input at that frequency. A
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value of y? less then unity, however, means that either the output is due to the input as
well as other inputs or the output is corrupted with noise. When analysing the extracted
signal, it is not sufficient to compute the Fourier transform of the signal. Instead an
estimate for the spectral densities and correlation functions could be obtained, which are
used to characterise the extracted signal. Although, these are computed from the Fourier
transform, additional considerations are required concerning their accuracy and statistical
reliability. It is necessary to perform an averaging process, involving several samples of the
measurement, before a result is obtained. The two major factors which determine the
number of averages required are the statistical reliability of the results and the removal of
random noise from the signal (Newland, 1975; Bendal and Piersol, 1971). To overcome
the leakage problem a Hanning type window function is employed before processing each
block of data. MATLAB is used here to analyse the data and obtain the FRF, autopower
spectral density and the coherency function (Little and Shure, 1988). This incorporates the
use of an averaging method to remove the noise associated with the signal.

As the first few modes of the manipulator dominantly characterise the system
behaviour, the parameters associated with the first two modes are extracted only. The
flexible manipulator system is, thus, excited uniformly over a frequency range of 0-50 Hz,
which covers the first two resonance modes. Autopower spectrum and frequency response
function are obtained with a resolution of 0.488 Hz in the frequency range of 0 to 50 Hz.
Measurement of the response near the pole and zero frequencies, for such a lightly damped
flexible manipulator system, however, requires better resolution for spectral analysis. This,
in turn requires large amounts of data, higher system memory and longer computation
time. To cope with these issues, the response near the pole and zero frequencies is
measured using the Solartron 1170 spectrum analyser where the manipulator is excited by
a stepped sine wave, with a frequency resolution of 0.001 Hz.

The system was excited using a random signal as the input, and the time response of
the system was measured at various locations in the system. This included the angle and
velocity at the hub using a shaft encoder and a tachometer, at locations 1-4 along the

manipulator using four strain gauges and at the end-point of the manipulator using an
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accelerometer. The time history of the torque at the hub and the corresponding frequency
distribution are shown in Figure 3. The autopower spectral densities of the signals thus
measured were obtained using equation (43). These are shown in Figures 4 to 10
accordingly. The system was then excited using a random signal as the input, and the time-
response of the system was measured, as before, at the hub, at the four locations (1-4)
along the length of the manipulator and at the end-point. These were used to obtain the
FRFs and coherency functions between the input torque and the responses using equations
(45) and (46). These are shown in Figures 11 to 17. The poie and zero frequencies of the
flexible manipulator system for the first two modes as obtained by identifying the peaks
(maxima) and valleys (minima) in the autopower spectral density functions (Figures_ 4 to
10) and the FRFs (Figures 11 to 17) are shown in Tables 2 and 3 respectively with the
corresponding analytical values.

For better accuracy to be achieved near the pole and zero frequencies, the system was
excited with a stepped sinusoid from the spectrum analyser with a higher resolution. The
input and output measurements of the system were used in the spectrum analyser to obtain
the FRF around the pole/zero regions. The complete frequency response function is then
obtained by combining the response with random excitation and the stepped sinusoid
excitation. Table 4 shows the values of pole and zero frequencies as obtained using the
spectrum analyser with a higher level of accuracy. The difference between the values
obtained for pole and zeros using random excitation and stepped sinusoid excitation
demonstrate the need for higher resolution around the pole and zero frequencies during the
measurement of FRF. The pole and zero frequencies thus obtained using the spectrum
analyser will be used in subsequent calculations.

It follows from Figure 3 that the flexible manipulator system is uniformly excited in
the frequency range of interest (0-50 Hz). This is important in a system identification
process. Tables 2 and 3 show the extraction of pole and zero frequencies from autopower
spectrum and the FRF. As seen a reasonable level of accuracy is achieved in almost all

cases. However, with a frequency resolution of the order of 0.488 Hz used in the digital
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analysis program, further accuracy in obtaining the pole and zero frequencies is not
achievable.

For the measurement at strain gauge positions (Figures 13 to 16) the coherence is
almost perfect with small deviations. With the hub angle and hub velocity measurement,
however, the coherence shows some error around the pole frequencies (Figures 11 and
12). With the acceleration measurement at the end-point the coherence shows some error
at the lower frequency range (Figure 17). There are various reasons for the coherence not

to be unity. These include

(a) Existence of noise on one or other of the two signals which could degrade the

measured spectra near resonance. This is likely to influence the force signal so that

S_.(®) becomes vulnerable, while at zeros it is the response signal which will suffer,

making S, (). In the first of these cases, H, (o) will suffer the most and so H,(w)

might be better indicator near resonance while the reverse applies at zeros.

(b) Possible problems arise when more than one excitation is applied to the structure. In
this case, the response measured can not be directly attributed to the force which is
measured. Such a situation can arise when the coupling between the structure and the
excitation are not proper or there might be some form of constraint to the movement
of the structure.

(c) Low coherence arises when the structure is not completely linear. Here again, the
measured response can not be completely attributed to the measured excitation.

(d) A low coherence can arise in a measurement when the frequency resolution for
analysis is not high enough to describe adequately the very rapidly changing functions
such as are encountered near the poles and zeros on lightly damped structures. This is

known as bias error.

In the measurements above it was found that low coherence occurred around pole and
zero regions. It is more likely that this is mostly due to the lower frequency resolution of

the analysis program and partly due to the non-linearity of the structure. As the frequency
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response was measured near the pole a;_md zero regions with better accuracy using the
spectrum analyser, it is observed that there is a small variation in pole and zero frequencies
with the location of measurement. Note that the error in the pole frequencies decreases
with increasing the distance between the excitation of the structure and the response
measurement location. This is because the two corresponding vibration modes of the
structure become more pronounced in amplitude along the length of the manipulator with
distance from the hub. The error trend in the zero frequencies, on the other hand, is
variable with varying the distance between the excitation and measurement point.

It follows from the transfer functions in equations (40), (41) and (42) that the poles
and zeros of the manipulator are functions of the loading conditions. Equations (38) and
(39) accordingly indicate that the system poles, or natural frequencies, are functions of
both the hub inertia and payload whereas the system zeros are functions of payload mass.
To investigate this further, the effect of payload on the poles and zeros of the system was
studied at the hub. This was done by exciting the system with a random torque input and
measuring the response at the shaft encoder with various payloads at the end-point. The
response thus obtained is analysed, as outlined earlier, to obtain the FRF of the system and
thus the pole and zero frequencies. Figures 18 and 19 show the first two poles and zeros
of the flexible manipulator for varying values of the payload. As noted, the variation in
each case is predominant for small payloads. The pole frequencies are found to approach
to cantilever modes when the hub inertia increases. However, it is not always possible to
change hub inertia with an experimental structure. These observations are important for
flexible manipuldtors which undergo changes in payload while performing given tasks. This
demonstrates that as the mass increases there will be a noticeable change in the response of
the manipulator; increased inertia due to the additional load leads to a reduction in the
overall displacement of the manipulator in a fixed time period. It follows from equation
(39) that the hub angle zeros are functions of the payload mass but are independent of the
hub inertia; the zeros correspond to no motion at the hub. As the payload increases the
system zeros migrate from cantilever beam frequencies and converge to the corresponding

natural frequencies of a clamped beam where the latter represents the theoretical limit as
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the payload mass tends to infinity. These observations are important in the development of

suitable control strategies for flexible manipulator systems.

6.2 Damping ratio

There are several possible forms of damping within the system. These can be classified into
three groups, depending in the source: (a) The flexible manipulator itself has structural
damping due to dissipation of energy within the manipulator material, (b) Viscous damping
and Coulomb damping (stiction/friction) associated with the drive motor, (c) External
effects such as primarily air resistance as the manipulator rotates.

Due to the lightly damped nature of the structure it is very difficult to determine the
damping coefficients for the flexible modes. The Coulomb damping associated with the
motor is a constant retarding torque which always acts in the opposite direction to the
velocity of the manipulator. This is overcome by having a constant voltage bias in the input
torque to result in a torque equal and opposite to the frictional torque. The sign of the bias
voltage will vary according to the direction of motion of the hub. The damping due to air
resistance is not considered in the experiment, however, a comparison of the model with
the system reveals that this damping does not affect the total damping of the system
significantly.

As discussed earlier, the accuracy in measuring the damping ratio for the type of
lightly damped system under consideration is important. To achieve this, the Solartron
spectrum analyser was used to measure the response of the system near the resonance
region. A stepped sine input was used from the analyser itself to excite the system with a
frequency increment of 0.001 Hz and the frequency response of the system was measured.
The frequency response data was then used to draw a Nyquist plot from which the
damping ratio can be obtained. The method is based on the principle that in the vicinity of
a resonance, the behaviour of a system is dominantly determined by the corresponding
resonance mode being observed (Mergeay, 1981). The damping ratios thus obtained using

frequency-response measurements of the system from the torque input to hub angle, end-
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point acceleration and the four strain gauge locations along the manipulator are shown for
the first two modes in Table 5. In a similar manner as the natural frequencies, the damping
ratios also show small variations with the measurement location. It follows from Table 5
that the damping ratio decreases as the measurement location moves further away from the
hub of the manipulator, where excitation is applied. This also indicates the nonlinear

behaviour of the system.

6.3 Hub modal slope coefficient

To obtain the hub modal slope coefficient, a method based on the construction of the
system transfer function is utilised (Martin, 1978; Gevarter, 1970). The transfer function of
a linear elastic structure can be built up of a set of (alternative) poles and zeros, the values
of which can be obtained experimentally. Thus, the open-loop transfer function from

torque input (s) to the hub angle 6(s) of the flexible manipulator can be expressed as

[i+2§ -i+1] :
n | QF Q.
e(S) i 1 s H i i Jd (47)

=l
Us) hsta [—5-2-+2§,.i+1}
; .

where, &, is the damping ratio for mode i , €, is the frequency of the zero, and , is the
frequency of the pole corresponding to this mode with the zero frequency falling between
two consecutive pole frequencies. Using the state-space model of the system, equations
(34) and (35), the open-loop transfer function from the input torque to the hub angle can

be written as

o) 1,1 [0:0)T

= 48
(s) Is® Los*+2&0s+a’ (48)

As the values of §;, w, and Q, can be obtained using the procedure given in the previous

section, the value of ¢;(0) can be computed using equations (47) and (48). Note in

equation (48) that the first term on the right-hand-side corresponds to the rigid body
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motion and the second term corresponds to the flexible motion of the manipulator. The
hub modal slope coefficients for the first two modes of the system as obtained using the
parameters of the system given in Tables 1 and 4 and equations (47) and (48) are shown in

Table 6.

6.4 Modal gain of end-point accelerometer
To obtain the end-point acceleration sensor modal gain, consider the system open-loop
transfer function from input torque to end-point acceleration. This can be written as

1$_elol(0)s @)

o(s) 1
PR 2
wWs) Iy IS s"+28,05+0

where ¢/{1) is the acceleration sensor modal gain. The first and second terms on the right-

. hand-side of equation (49) correspond to the rigid and flexible motions of the manipulator

respectively. Evaluating the hub angle and end-point acceleration at a resonance frequency

; using equations (48) and (49) yields

6(jo,) = th( jo;) (50)

I, 28 jw?

and

_ 10O 0

a(jmi) = 7 2E j

(1)
Dividing equation (51) over equation (50) and solving for the end-point acceleration
modal gain yields

of j,)
8(jo,

I

()=

5 (52)

8 .

Thus, the steady state peak-to-peak ratio of end-point acceleration to hub angle can be

measured experimentally at each resonance frequency and used in equation (52) to obtain
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the end-point acceleration sensor modal gain. The sign of the modal gain ¢7(0) is
determined by observing whether the end-point acceleration signal is in phase or out of
phase with the shaft encoder signal. Using the estimated system parameters given in Table
6 and the measured frequency response data in equation (52) the corresponding end-point

acceleration modal gains can be obtained. These are shown in Table 7.

6.5 Model validation

To evaluate the model reliability the output of the model is compared in this section with
the response of the system using a bang-bang input torque. The system is first excited by
the input torque and the system response, consisting of the hub angle, hub velocity and
end-point acceleration, is measured. Figure 20 shows a comparison between the system
and model inputs. The torque inputs applied to each the model and the system are
principally the same. However, due to the amplifier behaviour and motor dynamics, the
shape of the torque input to the system is slightly changed. The corresponding hub angle is
shown in Figure 21. It is noted that the model response is slightly faster than the system
response. However, the eventual (steady-state) angular displacement of the manipulator
for the model and the actual system agree with one another very closely. The hub velocity
for the model and the actual system are shown in Figure 22. It is noted that the overall
behaviour is similar for both the model and the system. However, some abruptness in the
system behaviour at the half way and at the end of the movement is observed. As seen in
Figure 23, the system and model response for the end-point acceleration in general agree
with one another very closely, during the transient as well as steady-steady periods. A
number of factors contribute to the occasional slight disagreements in magnitudes of the
responses noticed at some points. The model, for instance, is a reduced-order one in which
only the first two modes are included. The torsion and vertical motion as well as higher
modes are not accounted for in the model. The effects of these, however, are present in the
response of the actual system. Moreover, friction losses and dynamics of the motor which

can considerably affect the system response, are not accounted for in the model. Note
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further that the input torque appearing at the hub of the flexible manipulator is not exactly
the same as the model input torque; a ringing effect and time delay during the change of
state of the system torque input is observed. However, the model response appears to

agree with the system response reasonably well and to within acceptable limits.

7  Conclusion

An investigafion into the development of a suitable model of a single-link flexible
manipulator system has been presented. The Lagrange's equation and modal expansion
method has been utilised in obtaining an analytical model of the system characterised by a
set of infinite number of modes. It has been shown that, for practical purposes, it is useful
to convert the infinite-dimensional model to a model based on a finite number of the
natural modes. This has lead to a matrix differential form for the model which can be
readily converted to state-space form. Careful choice of the truncation level based on the
physical attributes of the system has been shown to yield a very good approximation to the
behaviour of the full-order model over a limited frequency range.

Transfer function models of the system have also been obtained which are useful in
frequency-domain controller designs for the system. It has been shown and experimentally
demonstrated that these transfer functions vary with the payload conditions of the
manipulator. A small change in payload can result in a significant change in the
manipulator's natural frequencies which, in a control context, can lead to an excessive
deterioration in the performance of a highly tuned control system.

An experimental procedure of identification of model of a flexible manipulator system
has been presented and verified. This involves obtaining the FRF with various input-output
positions through a measurement of the pole and zero frequencies, which are then used to
extract the model parameters, such as hub modal slope coefficient and modal gain of end-
point accelerometer and damping ratios. A reasonable degree of coherence is obtained for
the measured FRFs. A linear model that approximates the flexible manipulator open-loop

dynamics has been identified, which includes one rigid body mode and two flexible modes.
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Good agreement between the model and system output has been shown, with small
deviations due to the model order truncation and dynamic behaviour of the driving

actuator.
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Table 1: Physical dimensions and characteristics of the flexible

manipulator.
Length, [ 960mm
. Thickness w __,; ' 3.2004mm
Width S 19.008mm
Mass density per volume, p/a 2710kg/m’
Young's Modulus, E 7.11x10° N / m?
Area moment of inertia, / 5.1924 %107 m*
Hub inertia, /, 5.86x10%kgm*
Manipulator moment of inertia, /, 0.0495kgm’
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Table 2: Comparison of the pole frequencies obtained analytically and experimentally.
Pole 1 Pole 2
Experimental Location (12.499 Hz) (36.36 Hz)
Method Measured | Error | Measured | Error
(Hz) (%) (Hz) (%)
Autopower Spectra | Shaft encoder 11.719 6.24 37.109 2.06
Tachometer 12.207 2.34 36.133 0.76
Location-1 11.719 6.24 35.156 3.31
Location-2 12.207 2.34 35.645 1.97
Location-3 12.207 2.34 36.133 0.76
Location-4 12.207 2.34 36.133 0.76
Accelerometer 12.207 2.34 35.645 1.97
Average 12.068 3.35 35.993 1.01
Transfer function Shaft encoder 12.207 2.34 36.133 0.76
Tachometer 12.207 2.34 36.133 0.76
Location-1 11.719 6.24 36.133 0.76
Location-2 12.207 234 36.133 0.76
Location-3 12.207 2.34 35.645 1.97
Location-4 12.207 2.34 36.612 0.69
Accelerometer 12.207 2.34 36.133 0.76
Average 12.137 29 36.132 0.63
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Table 3: Comparison of the zero frequencies obtained analytically and experimentally.
Zero 1 Zero 2
Experimental Location (2.871 Hz) (17.994 Hz)
Method Measured | Error | Measured | Error.
(Hz) (%) (Hz) (%)
Autopower Spectra | Shaft encoder 2.93 2.06 17.08 5.08
Tachometer 2.93 2.06 17.568 231
Location-1 3.418 19.05 13.184 26.73
Location-2 3.906 36.05 20.508 13.97
Location-3 - - 20.461 13.71
Location-4 - - 20.461 13.71
Accelerometer 3.418 19.05 20.019 11.25
Average 3.027 5.43 18.754 422
Transfer function Shaft encoder 293 2.06 17.09 5.02
Tachometer 293 2.06 18.066 0.40
Location-1 3.418 19.05 13.184 26.73
Location-2 3.906 36.05 20.508 13.97
Location-3 293 2.06 21.973 22.11
Location-4 293 2.06 21.973 22.11
Accelerometer 3.418 19.05 20.02 11.26
Average 3.209 11.77 18.973 5.44




Tokhi and Azad

Table 4: Pole and zero frequencies obtained using the spectrum analyser.

Zero 1 Zero 2 Pole 1 Pole 2

Location (2.871 Hz) (17.994 Hz) (12.499 Hz) (36.36 Hz)
M'sured | Error | M'sured | Error | M'sured | Error | M'sured | Error
(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)
Shaft Encoder 2.90 1.01 17.92 0.41 12.00 3.99 35.18 3.25
Tachometer 2.91 1.36 | 17919 | 0.42 12.00 3.99 35.19 3.22
Location-1 2.91 1.36 17.923 | 0.39 12.00 3.99 35.19 322
Location-2 2.924 1.85 17.925 | 0.38 12.00 3.99 35.20 3.19
Location-3 2.931 2.09 17.928 | 0.37 12.025 3.79 3542 2.59
Location-4 2.935 2.23 17.930 | 0.36 12.037 3.7 35.60 2.09
Accelerometer 2.96 3.1 17.942 | 0.39 12.05 3.59 36.00 0.99
Average 2924 1.85 17.927 | 0.37 12.016 | 3.86 35.397 2.65

Table 5: Damping ratios obtained from responses at different locations.

Damping ratios (&,)

Response location Mode 1 Mode 2
Shaft encoder 0.029 0.170
Tachometer 0.027 0.168
location-1 0.027 0.162
location-2 0.026 0.162
location-3 0.020 0.159
location-4 0.018 0.1317
Accelerometer 0.018 0.084
Average 0.024 0.148
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Table 6: Parameters of model of the flexible manipulator system.

Parameter Mode 1 Mode 2

Zero, Q, 2.924H; 17.927Hz

Pole, o, 12.016Hz 35.397Hz
Hub modal gain, ¢/(0) 4.03 2.36
Damping ratio, &, 0.024 0.148

Table 7.  Parameters of model of the flexible manipulator system.

Parameter Mode 1 Mode 2

Zero, Q. 2.924H; 17.927Hz

Pole, , 12.016Hz 35.397H;
Acceleration modal gain, ¢/{/) -2.19 3.47
Damping ratio, &; 0.024 0.148
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Figure 1: Schematic representation of the flexible manipulator system.
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Figure 2: Experimental set-up for model parameter identification.
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Figure 4: Autopower spectrum of the hub angle signal.
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Figure 5: Autopower spectrum of the hub velocity.
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Figure 6: Autopower spectrum of strain gauge signal at location-1.
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Figure 7: Autopower spectrum of strain gauge signal at location-2.
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Figure 8: Autopower spectrum of strain gauge signal at location-3.
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Figure 9: Autopower spectrum of gauge signal at location-4.
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Figure 10: Autopower spectrum of the end-point accelerometer signal.
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Figure 11: Frequency response function from torque input to shaft encoder output.
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Figure 12: Frequency response function from torque input to tachometer output.
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Figure 13: Frequency response function from torque input to strain at location-1.
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Figure 14: Frequency response function from torque input to strain at location-2.
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Figure 15: Frequency response function from torque input to strain at location-3.
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Figure 16: Frequency response function from torque input to strain at location-4.
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Figure 17: Frequency response function from torque to end-point acceleration signal.
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Figure 18: Variation of system poles with payload.
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Figure 19: Variation of system zeros with payload.
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Figure 20: Torque input to the model (broken-line) and the system (solid-line).
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Figure 21: Hub angle for the model (broken-line) and the system (solid-line).
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Figure 22: Hub velocity for the model (broken-line) and the system (solid-line).
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Figure 23: End-point acceleration for the model (broken-line) and the system (sohdhne) G
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