The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Pseudo-Linear Systems, Lie Algebras and Stability.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79805/

Monograph:

Banks, S.P. and Al-Jurani, S.K. (1994) Pseudo-Linear Systems, Lie Algebras and Stability.
UNSPECIFIED. ACSE Research Report 529 . Department of Automatic Control and
Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

® 298 (9

Pseudo-Linear Systems, Lie Algebras and Stability

S. P. Banks! and S.K.Al-Jurani !

t Department of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street

SHEFFIELD S1 4DU

Research Report No 529

July 1994



Abstract

The stability of pseudo-linear systems is considered by using a diagonal dominance approach
coupled with the theory of semisimple Lie algebras and the Cartan decomposition.
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1 Introduction

The stability of systems is, of course, fundamental to the whole of control theory and perhaps
the most important result, at least for linear systems theory, is Lyapunov’s basic theorem

on the stability of linear equations. If we consider ‘pseudo-linear’ systems of the form

i = Alz)z (1.1)

then the spectrum of A(z), for each z, being in the (strict) left half-plane is no longer
necessary nor sufficient for stability. Control systems of a similar type have been considered
in [3]. However,the global stability of the resulting feedback system is not valid, as asserted
in the cited paper, without further assumptions. We therefore intend to give more precise
results of the stability of pseudo-linear systems here in cases where A(z) is analytic, just
continuous or even discontinuous. The Lyapunov approach to such systems has already been
presented ([1]) using the theory of Lie algebras. Here we shall use a diagonal dominance
approach based on a comparison result in [2]. The general structure of equation (1.1) will
again be reduced to a suitable form by an application of the Cartan decomposition of the
Lie algebra generated by the matrices {A(z) : £ € R"}, assuming this is semisimple. (For
the general theory of Lie algebras, see [4],[5].

In section 2 we show that it is natural to consider the symmetrized matrix 4 4+ AT for
linear systems and in section 3 this idea is extended to pseudo-linear systems. In particular,
we give conditions under which the spectrum of A(z) being in the open left half-plane is
sufficient for stability. It turns out, as one may expect, that the derivatives of A(z),84/0x
must be bounded at infinity in some way. In section4 we consider a diagonal dominance
approach and show that, even in the analytic case, the eigenvalues of A(z) need not be in C~

for asymptotic stability. The technique is extended in section 5 by the use of Lie algebras,



and finally in section 6 we consider briefly the case where A(z) may not even be continuous
(as in variable structure systems). Here the state space is partitioned into subsets where
A(z) is stable or unstable. The product of the order of stability and the passage time for

each region is then important.

2 Linear Systems

In this section we shall briefly review the stability of linear systems and reinterpret the

Lyapunov condition. Thus, let
z=Ar (2.1)

be a linear system of equations and recall Lyapunov’s theorem:
Lyapunov’s Theorem The system (2.1) is stable if and only if, given any positive definite

symmetric matrix @, there exists a positive definite symmetric matrix P such that
PA+ ATP=-Q.

m]
This is, of course, equivalent to the spectrum of A being in the open left half-plane.

However, in the case of the nonlinear system
2= A(z)z (2.2)

it is known that the spectrum of A(z) being in the open left half-plane for each 2 is not suf-
ficient for stability. Hence, in order to study the stability of (2.2) we reinterpret Lyapunov’s

theorem in the following way. Change coordinates in (2.1) to

Y = pl/2g,



Then
§= PY2Ap-1/2y
or
y= Ay (2.3)
where
A= PHAIPHA,

Then we have
Lemma 2.1 The system (2.3) is (asymptotically) stable if the spectrum of A + AT is in
the open left half-plane.

Proof If o(A+ AT)C C~ then

where

is the largest eigenvalue of 1(AT + A). D
Combining these results we have
Theorem 2.1 The system (2.3) is stable if and only if there is a change of coordinates

such that the similar matrix A in the new coordinates satisfies

c(AT+A)cc . 0



It is clear, therefore, that it is the spectrum of A+ AT for a linear system which is important,

rather than that of A, and we shall see that this is also true for nonlinear systems.

3 Nonlinear Systems and the Lyapunov Equation
We shall now consider the nonlinear system
= A(z)r . (3.1)

The first result is an elementary extension of lemma (2.1).

Lemma 3.1 Suppose that A(z) is continuous and let u(z) denote the largest eigenvalue
of Z(A(x)+ AT (z)). If p(z) < 0 for all z then (3.1) is asymptotically stable.

Proof Let z; be arbitrary and consider the ball B = {2 : ||z]| < ||zo||}. Since B is compact

and p(z) is continuous, it follows that y attains a maximumon B. Let
po = max p(z).
Then po < 0. Now,

tTe4+ 27z

d i i
el

2T (A(2) + A7 (2))=

IA

p()lll®
and so ||z||* decreases. Hence, if 2(0) = zo, then

d

L ell? < wollell?
and

llll? < e#*[loll®



so that [|z|| — 0, for any zq. o
Next we consider the case where A(z) has spectrum in C~ and see why this is not
sufficient for global stability. Suppose we try the Lyapunov function V = z7 P(z)z where
P(z) satisfies
P(z)A(z) + AT(2)P(z) = -Q(z) . (3.2)
Then
:  OP
V=2TPr+4 2" Pz 2T ( %(A(m)z);) z
i=1 Ot

where (y); denotes the i** element of y. Thus,

V =2T(ATP+ PA)z + 2T (g—ffix) T

where
A = Z ﬁ.:r:z
Hence,
V=—2TQ(z)z + 2T (%i:Az) e (3.3)
Now, from (3.2) we have
oP T@P 8A | 8AT | 8Q
it et P T T e (34)

where agam %x—l, for some matrix S(z), denotes the vector of matrices (%) . From
*£1<Li<n

(3.2) we have
P(z) = f AT (BNQ(z)eA) gy (3.5)
0

if each A(z) is stable and similarly, from (3.4),

0P 7 A7) 4.y 847 BQ)
B2 /{; et t(P(r)az(:c)-}— 2 (z)P(z)+ Y. (3.6)



Let M(z) > 0 and ¢(z) > 0 be chosen so that
A < M(a)eex.

Then, from (3.5),

IP@I < [ IM@IFIQE@)e
_ IME@IPIQ@)
2¢(z)
and from (3.6)
aP M@ (o1 oy | 24
'ax,- S %@ (2“P ( ”’ H )
M@ (IM@)]2Q)] 0Q
= i@ ( ) e *‘azi)
Thus,
L M@ (M@ 2T
8:0 S @) ( e(z) +‘32)
where
’6‘L AN
5; - i=1 51‘_;

for a matrix function L and ||0L/0z;|| is the standard matrix norm. Hence, from (3.3), we

have
- ' aIME@IE (IM@IPIQW) 6Q
O e M e e R
s o LI (WPa) 04 0
O i R e o o e D

if Q(z) = g(z)I, where g(z) > 0 for all . We can summarize the above calculation as
follows:

Theorem 3.1 Suppose that the eigenvalues of A(z) are in C~ for all z and that Q(z) =



¢(z)I can be chosen so that

(1M ()] (IlM(r)llgq(f) 94 9q
Q(z) > ilm” 26(1‘) (:'(2’.’) Oz + a_z,' H'AH
then the system (3.1) is globally asymptotically stable. O

Corollary 3.1 Under the assumptions of theorem (3.1), the system (3.1) is globally

asymptotically stable if

dA 2¢2(z)
— < , ¢#£0. 3.7
|5 < e - +# 4D
Proof Take ¢(z) =1 in theorem (3.1). O
As an application of corollary (3.1) we shall consider the general equation
i = f(a) (3.8)

where f is analytic and f(0) = 0. Then we can write f; in the form

fiz) = fij(x) - 2
j=1
where

oo f_(k:.---,kj—l,'--.kn) -
PACTED i A R
|k|=l

kj>1

(Here, k = (ky,- -+, kn).) Thus, we can write (3.8) in the form (3.1) where
(A(z))i; = fi; (2).
From corollary (3.1) we have
Corollary 3.2 The system (3.8) with f(0) = 0 is asymptotically stable if the matrix
(fij(z)) is stable for all r and

1/2 1/2
[Zgﬁ][gggﬁm)]<mwmmq

i



where

”eu.-,-(rnt |

< M(z)e™ ),

Proof This follows from the fact that, for any matrix M, we have

1/2
Il < (Z_Zm?,-) . (3.9)

If z; | f; (z) for all  and j then we can write (3.8) in the form (3.1) where

Lilz)  fule) .h(r!\
I Ta Ty
fa(z)  falz) . f2(z)
1 (:B) é 1 Ty Tag Tn
Afz) = = £ -
n 2 n
Inl(z In(z) In(z)
\ r; T2 Iy
We have
1.8 18 1 8
o=t AE - o L3k - L
18 1 8 1 8
o4 _ 1| 2G40 AfE-foe o LEE- G
B:rk - n
1 8fn n 1 8fn 5 1 8fn n
e~ SEledln o gopt = i
_1(18h_ Sy
~ n\x;0z; 23 2]
1,7

Lemma 3.2 The following statements hold:

and

a\ 1/2
1 n n n 1 aft fi
%= Eui—ied Eifipy .
n k=1i=135=1 5 82:]: 1‘;



Proof Use (3.9). D
Substituting these into (3.7) we get a similar result to corollary (3.2).

Example 3.1 Consider the case n = 2 with

B _| @ fu@) ) (3.10)

0 faa(z) z3

—

z

[

Then

fia(z)  fia(z)
0 faa(x)

Az) =

Now, if fao # f1; for all z and

1 fia(z)/(faa(z) = f11(z))

W) =
0 1
then
fr1(z) 0
A(z) = W(z) W™i(z)
0 faa(z)
where
» 1 fia(2)/(f11(z) = faa(z))
W= (z) =
0 1
Hence,
A = W(z)exp { ¢ fu 0 w=i(z)
0 fa
and
2| < iw @ w22 e

10



assuming

max{f11 (), f22(2)} < —w(z) (3.11)
where
w(z) > 0 for all z.
Hence,
|| = (o4 i)
= Me =N
where

_ |f12(2)]?
bl ror ey ey

Hence, by corollary (3.2) we see that the system (3.10) is globally asymptotically stable if

(3.11) holds and

a2

1/2
( E": (3f:'j)2) . 2w?(z)
Ozy - g
i,d,k=1 _ (23 + 3«”%)1/2 (2 + ]_f“?li%hf(z) 5) (ff + f122 + f3,)1/2

4 Dominance Theorems

In this section we shall consider pseudo-linear systems with a view to using some kind of
‘diagonal dominance’. The first result is fundamental to this idea.

Theorem 4.1 Assume that v;(1) (i € I) are nonnegative continuous functions defined on
[to,00), which satisfy the inequality

% < N(ui(t) + Y ak(t)v; (1) (4.1)

jel

11



where J;(t) is a nonpositive continuous function, aj(2) are nonnegative continuous functions

and I is a countable index set. If there exist A > 0,6 € (0,1) and d; > 0 such that

“At)>h>0, ~% ZdJ At(ti <bé<1, sup ”"Si_“) < (4.2)

for all t > tp and ¢ € I, then there exist constants w > 0 and m > 1 such that

vf) < mi?; Bito )exp(—w t—1p)) (4.3)
forallt >tgandiel.
Proof See [2] O
Now consider again the system
2(t) = A(z)r , z€R" (4.4)

where A : R® — R™ is a matrix-valued analytic function. In particular, we consider the

case where A(z) is a diagonal matrix

M0 o)
i By - i

z= .r (4.5)
0 0 ... ,\n)

where J; : R" — R, 1 < i < n are analytic functions. We assume that the origin is the

only equilibrium point (i.e. A;(z) # 0 if z # 0). We can write the system in the form

z; =Ti(x)z; + Zaj-(:r)wj (4.6)
j=1
(1 < i< n) and we assume that T;(z) < 0 for z; # 0.

Theorem 4.2 The zero solution of (4.6) is globally (exponentially) stable if A;(z) # 0 if

z # 0 and there exist constants h > 0, § > 0 and d; > 0 such that

Li(z) < —h <0, Z du', s (47)

12



fori=1,---,n, z; # 0 and for all ¢ > ;.

Proof From (4.6) it follows that

) = aito)exp [ Tu(a(r)ar) +Z; [ dte@pasoen ([ rienar) a
el a8
i) < leatto)lexp ( [ Tuta(rar) + 3 [ laieo] leso)lexp [ Tute(ryar) ds
o (f reseomar) + 32 [ (/] mtetomer)
w(t) < ulta)exp ] ry(a(r))dr) +,,Zl ] (e (e [ Li(e(r))ir) ds.
and 50

(1) < Ti(a(O)(a(t)) + 2 @ (= (0)] 550

By theorem 4.1, there exist w > 0 and m > 1 such that

(1 (1
vilt) < msup vi(to) exp(—w(t —1g))
d; jer dj
and so
eI = [[z(@®)]] £ M exp(—w(t —t0)) ,
for some M.
Example 4.1
(1) = —z340.52%2,
#a(t) = —(1+zd)zo4 2925,

This system can be put in the form

% —J‘.‘% + 0.5z;29 0 Ty

Zo 0 —(1+Ig)+21 i)

13



Note that the origin is the only equilibrium point. The equations can also be written in the

form
21(t) = (=z¥)z; 4+ 0.5(z?)z0
= T1(2)z; + ai(z)zs
."JQ(f) = —(1+2}§)22+£112 5
= Ty(x)zs 4+ ai(2)z,
We have
Ti(z) = -z2<0 ,2,#0,
Ta(z) = —(1423)<0 ,22#0,
and
|a3(2)| |0.52]
= =05<1
IT1()| | - =i
|a3(z)| 0.525|
= =05<1
[T2(z) | = (1+23)]

Hence the conditions of theorem are satisfied if we take d; = ds = 1. From this example we
can see that for a nonlinear system to be asymptotically stable, it is not necessary that the

eigenvalues be negative definite.

Example 4.2
£1(1) = (=221 + 25)z?
2o(t) = —(1+22—2)+2323)2,
23(t) = —(1+z3+2i+z1)s.

14



This system has the form

1'21 (—2431 + -’L‘Q)I] 0 0 I
zg | = 0 —(1+ 2% -z, + z323) 0 To
I3 0 0 -(l+1’§+32%+.‘131) T3

Again, the origin is the only equilibrium point. Note that the equations have the form

z1(t1) = Ti(z)z;+ al(x)zs

ig(t) = Ty(z)za+ af(;r):r:l
z1(t) = Ta(z)zs+ad(z)z;
where
Ti(z) = -222<0 ,z;#0
To(z) = —(1+23+2323)<0 ,22#0
Ts(z) = —(1+23+23)<0 ,23#0
Hence,
)l ke
Ty (2)] | = 2z3]
@@ _ sl
T2 ()] | = (1+ 23 + z323)]
@@ l-ml
IT1(2)] | = (1+ 23 + 23]

and it follows that the zero solution is globally asymptotically stable.

Of course, we can also consider the general nonlinear analytic system

(1) = f(=(1))

where f(0) = 0. Then we can write the system in the form

.’if;(t) = a“(m)z; - Z aj; (x)a:j (4.8)

FEX

15



which is not necessarily diagonal. However, we still have a result similar to theorem 4.2:
Theorem 4.3 The zero solution of (4.8) is globally asymptotically stable if 0 is the unique
equilibrium point of the system and there exist constants h < 0,6 € (0,1) and d; > 0 for

i=1,---,nsuch that

ai;(l‘) < h<0, z#0
|a=,1
7 Z Iau(m)l < é<1.
_ﬁt-
Example 4.3 Consider the system

—(2+4 23)z; + 2

L]
iy
—_

[
ot

I

&
w
Y e
o~
~—
1]

—(1+ exp(z1))z2 + 0.5z;.

Then this system has the above form with

I

aii(z) —(2+23) , ap(z)=12

aze(z) = —(l4exp(z1))za , an(z)=0.5
The conditions of theorem are clearly satisfied and so the system is globally asymptotically

stable.

Example 4.4 Similarly, it is easy to check that the system

21(t) = —(1+423)z; + 2323

#2(t) = —(zf+ 23+ 23)z

) iz o’z ,
3(t) = 22 4 12 2 (2+ .1:3 +z2)z3

is also globally asymptotically stable.
In the final part of this section, we shall consider the application of the theory of semisim-

ple Lie algebras to the theory of stability. The use of such techniques in Lyapunov stability

16



has already been demonstrated (see [1]). The idea here is to obtain a ‘near diagonal’ sys-
tem given by the Cartan subalgebra of the Lie algebra generated by {A(z)}, assuming it is
semisimple, and the corresponding roots.

Therefore, consider again the pseudo-linear system

z(t) = A(z)z (4.9)
where A(z) : R — R", z € R".
If the Lie algebra generated by A(z) is semisimple, then the nonlinear system (4.9) can

be written in the form

#(t) = H(z)z + Z e, (z)F.

acld

where H(z) is the Cartan subalgebra and F, are the roots. H(z) can be diagonalized

simultaneously by a linear transformation, say P:

=AW+ Y ea(y)Eay

aEA

where y = P~12, A(y) = P~1H(Py)Py, ex = ¢,,(Py) and E, = P~'F,P. In general, by
this transformation, the original system is transformed to a simpler one. Finally, writing

the system in the form
i .
U= BiWm + Y diy; (4.10)
F=q

by splitting the coefficient of y; in this equation into a negative definite part (5;(y)) and
putting the rest into the aj- functions we can generalize the previous results in the obvious
way:
Theorem 4.4 The zero solution of (4.10) is globally asymptotically stable if z = 0 is the

only equilibrium point and there exist constants h > 0, é§ > 0 and d; > 0 such that

S

Bi(z) < -h <0, dZdM <é<1

17



forj=1,---,n, £ #0 and for all ¢ > {,.

Proof As in theorem 4.2. o
Example 4.5 Consider the semisimple Lie algebra A, (other types of semisimple Lie

algebras Bp,Dy,--- can be applied in a similar way), and consider the two-dimensional

nonlinear system

£} filz)  frz(2) )
Iy fa(z) —fi(z) z3

where

filz) = -zi+23
flg(I) = —2.’[:122
faa(z) = =2z32,4 0.5::';

The functions fi(z), fi2(z) and fo;(z) are functionally independent. The Lie algebra gen-

erated by A(z) is semisimple of type As and is spanned by the matrices

1 0 0 1 0 0
hy = y Big= y Bap = ;

0 -1 00 10
where h; spans the Cartan subalgebra and Ej,, E; span the root spaces of the algebra. By
splitting the coefficient of z; in the equation for z;(t) into a negative definite part (call it

Bi(z)) and the rest into the functions aj-, the system can be written in the form
&1 = Bi(x)zy + aj(x)z1 + ap(x)za,
where a} =0,j=1,2 and fi(z) = —(z1 + z3), and

g = fa(z)22 + af(:z;)a:l + a%(z)wg,

18



where f3(z) = —(2] + £3), a}(2) = 0.5z] and a3 = 0. The origin is an isolated equilibrium

point and we let d; = d; = 1. From the above equations we have

Pi(z) = —(zi+23)<0
0

ma) < 0!

Ba(z) = —(zi+22)<0
la2(z)] _ 0.5z}

Bl = i <tst

It follows that the zero solution of the system is globally asymptotically stable.

Example 4.6 Consider the system

3 fu(z) = fa(z) + fai(z) ais(z) a13() 1

3 fa1(2) + fai(x) az(z) a23(2) 3

3 fa1(z) far(z) + far(z)  fao(z) — 3f31(2) — faz(z) z3
where

aja(z) = 2f11(z) + fa2(z) + fr12(z) — far(z) + 2f31(x) + 2f32(2)

a13(z) —4f11(2) + fao(z) = fr2(z) + 3fa1(2) + fra(z) = 6f31(2) — 2f32(z) — fas(z)

az(z) = —fi(z) = foaz) + for(z) + far(z) + faz(z)
azs(z) = fi1(z)+ 2f2a(z) — 3fa1(z) — 3fa1(z) — faz(z) + faa(z).

We assume that the maps f;;(z) are functionally independent. Then the Lie algebra gener-

ated by A(z) is semisimple with the following matrices as its basis:

1 2 -4 0 1 1 01 -1
hy = 0 -1 1 yha=10 -1 2|, F2=] 00 0
0 0 0 0 0 1 00 0

19



Fy = 1 1 =3 | Fia=]000],Fau=
\ 0 0 0 0 00
( 0 2 -2 00 -1
Fa2 = [ 01 =1 | .Fa=] 90 0 1
\ 01 -1 00 0
where hy and hj span the Cartan subalgebra, and the matrix
1 -1 2
P=1lo0 11
0 0 1
diagonalizes this subalgebra. Let
fui = —(1- (22— 23)*)
fao = —(1423)
fiz = —3(z1+ 22 = 323)(22 — 23)
e
faa = =z}
fis = =0.5(142(z2 — z3)%)
faa = —z3(z2— za)
fea = —z3(za—1z3).

Then the above system can be put in the form:

z = A(z)z

B-
Il

fi1(z)hy + faa(z)ha + fia(z)Fio + fia(z)Fia

20



+fa1(2) Fay + faz()Faz2 + fas(z) Faa
zr = Py

§ = Pli=(P'H(z)P+) fa(z)P ' FaP)y

ie.
7= (AW + Y faEa)y
a
or
y = f'11(y)h'11+f’zz(y)hfzz-“ffm(y)Elz+ft21(y)E21+
f13(W)Er1a+ f'31(¥) Ear + [/ 32(y) B2 + £ 23(y) Eas
where
1 0 0 0 0 0
hi=10 -1 0 v ha=1 0 -1 0
0 0 0 0 0 1

and E;; for i # j is a matrix with 1 in the ij'® place and 0 elsewhere. Also, the f’ are given

by

faly) = -(1-9)

flaaly) = =(1+443)

fay) = =3uyp

flaly) = _-(2+2y§+y$)y2
Y1

faly) = v

flia(y) = =0.5(1+243)

flaaly) = —v3u:

flaaly) = —ysuz .

21



Now we can test for the stability of this system using the previous theorem. First, z = 0 is

an isolated equilibrium, and we take d; = dy = d3 = 1. Then we write

o= By + e + a3(v)ys
Y2 = Ba(yv)ve
v = Ba(y)vs + (W
where
Aly) = —(1+431) , aiw)=v3 . a3(y) = —0.5(1+2y3) ,
Baly) = —(ui +v3+283)
Baly) = —(L+uv3+9393) , ally) =4

The conditions for stability are now easy to check and so the system is globally asymptoti-

cally stable.

5 Discontinuous Systems

Not only is it not sufficient for the eigenvalues of the nonlinear system (1.1) to belong to
C~ to be asymptotically stable, it is also not necessary, as we have seen above. In fact, if
A(z) is not analytic it is possible for the eigenvalues to be arbitrarily large in some regions

near the origin. For example, consider the discontinuous system on R?:

{

ap b 3 )
ifzy >0,z>00rz; <0,2,<0
- o z3
&=
as b'_) Iy
ifzy >0,z9<0o0rz; <0,2z0>0
=bs a zo

22



the order a; of exponential stability must be greater in magnitude than that for the unstable
region. This result can be generalized:

Theorem 5.1 Consider the pseudo-linear system
z=A(z)z , 2(0)=2z, € R"

where A : R” — R™’ may not be continuous, and suppose that unique (Fillipov) solutions
exist for all zp € R™. Assume that R" can be partitioned into disjoint regions §2;, 1 < i<k

(where k may be oo) such that the solution z(t) satisfies

A

lz(t;z0)|| < Miem®Y|zol| ,ai > 0,if z0,2(t)€Q;, i€ S

llz(t;z0)|]| < Mie®||zo|| ,a: > 0,if zo,2(1) €, i €U

where S and U form a partition of {1,---,k}. If 7; is the maximum (minimum) time spent

in each region ©;,1 € U (i € S) and
n<oo forielU
then the system is asymptotically stable if

{minai} X {min'r.-} > {maxa,} X {ma,xrz}. (5.1)
ie§ i€S i€l iel
Proof This follows from the fact that if the solution passes through regions iy, iz, -1,
it is given by

z(t) = Pl Ry  MIPERRES z'3(my, 2" (15 20)) -+ )
where z'7 is the solution of the system in ;; and 7 is the time spent in region ;. Thus,

M;, eXairt||afr=(roy; e 2% (1, 27 (115 20)) - )|

=@

IA

M;, - Mile(ia"&a""T"lmia"n)||330||
r
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where the + (=) sign is taken for an unstable (stable) region. The result now follows from
(5.1). O
Remark 5.1 The condition (5.1) is very conservative. If we know the sequence of
regions through which a solution passes, then the condition can clearly be weakened.
Remark 5.2 If A(z) is continuous, then there is clearly no partition of R" with the
required property. In this case we could assume that each unstable region €;, i € U is
extended to include a set K; on which the solution is not necessarily exponentially stable,
i.e. replace @, i € U by Q; UK;, ¢ € U. We then partition R™\ U;er (€ U K;) into
exponentially stable subsets. Then if condition (5.1) holds with each §;, i € U replaced
by Q; U K; and solutions which enter Q;, i € U leave K; without reentering Q;, then the

conclusion of theorem (5.1) still holds.

6 Conclusions

The stability of pseudo-linear systems has been considered. These systems are, in fact, very
general since any nonlinear system with an equilibrium point at the origin can be written
in this form. After generalizing Lyapunov’s theorem for linear systems we have applied
a diagonal dominance approach based on a comparison result for countable systems and
the theory of semisimple Lie algebras. Finally, the case of discontinuous systems has been
discussed briefly. The last case should prove useful in the study of piecewise-linear systems

and we shall consider this in more detail in a future paper.
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