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Variable Neural Networks for Adaptive
Control of Nonlinear Systems

Guoping P. Liu,Member, IEEE Visakan KadirkamanathaMember, IEEE and Stephen A. Billings

Abstract— This paper is concerned with the adaptive control Most of the neural network-based control schemes view the
of continuous-time nonlinear dynamical systems using neural problem as deriving adaptation laws using a fixed structure
networks. A novel neural network architecture, referred t0 as o, a1 network. However, choosing this structure, such as the
a variable neural network, is proposed and shown to be useful in . . . L. . .
approximating the unknown nonlinearities of dynamical systems. numbe_r of basis functions (hidden units 'n_a_s'ng_le hidden
In the variable neural networks, the number of basis functions layer) in the neural network, must be doariori. This can
can be either increased or decreased with time according to often lead to either an overdetermined or an underdetermined
specified design strategies so that the network will not overfit or network structure. In the discrete-time formulation. some

underfit the data set. Based on the Gaussian radial basis function h h b d | d d . h b
(GRBF) variable neural network, an adaptive control scheme aPProaches have been developed to determine the number

is presented. The location of the centers and the determination Of hidden units (or basis functions) using decision theory [4]
of the widths of the GRBF's in the variable neural network and model comparison methods, suchmasimum description
are analyzed to makg a compromise between orthogpnallty and length [54] and Bayesian method§33]. The problem with
smoothness. The weight adaptive laws developed using the Lya-th thods is that th . Il ob f to b
punov synthesis approach guarantee the stability of the overall es_,e methods 1S tha ey re_quwe all o _Serva lons 1o be
control scheme, even in the presence of modeling error. The available and hence are not suitable for online control tasks,
tracking errors converge to the required accuracy through the especially adaptive control. In addition, the fixed structure

adaptive control algorithm derived by combining the variable neyral networks often need a large number of basis functions
neural network and Lyapunov synthesis techniques. The oper- even for simple problems.

ation of an adaptive control scheme using the variable neural
network is demonstrated using two simulated examples. Another type of neural network structure developed for

learning systems is to begin with a larger network and then
to prune this [32], [36], or to begin with a smaller network
and then to expand this [9], [42] until the optimal network
complexity is found. Among these dynamic structure models,
|. INTRODUCTION theresource allocating networfRAN) developed by Platt [42]
EURAL networks are capable of learning and recoris an online or sequential identification algorithm. The RAN is
structing complex nonlinear mappings and have beessentially a growing Gaussian radial basis function (GRBF)
widely studied by control researchers in the identificationetwork whose growth criteria and parameter adaptation laws
analysis and design of control systems. A large number lgéve been studied and extended further [20], [21], [31] and
control structures have been proposed, including supervisgshlied to time-series analysis [24] and pattern classification
control [55], direct inverse control [34], model reference corj23]. The RAN and its extensions addressed the identification
trol [39], internal model control [13], predictive control [14],0f only autoregressive systems with no external inputs and
[56], [29], gain scheduling [12], optimal decision control [10]hence stability was not an issue. Recently, the growing GRBF
adaptive linear control [7], reinforcement learning control [1feyral network has been applied to sequential identification
[3], variable structure control [30], indirect adaptive controng adaptive control of dynamical continuous nonlinear sys-
[39], and direct adaptive control [19], [45], [S0], [51]. Theyems with external inputs [8], [22], [27], [28]. Though the
principal types of neural networks used for control promer‘agrowing neural network is much better than the fixed neural
are the multilayer perceptron (MLP) neural networks Wity ork in reducing the number of basis functions, it is stil
sigmoidal units [34], [39], [48] and the radial basis function, qipie that this network will induce an overfitting problem.
(RBF) neural networks [41], [43], [47] There are two main reasons for this. It is difficult to know
how many basis functions are really needed for the problem,

. . . and secondly, the nonlinearity of a nonlinear function to be
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To overcome the above limitations, a new network structurehere
referred to as the variable neural network, is proposed in this 0 T,_;
paper. The basic principle of the variable neural network is A= [0 0 } (4)
that the number of basis functions in the network can be ) _ _ )
either increased or decreased over time according to a desty (0,0 -+ 1]¥, L—y is an(n—1) x (n—1) identity matrix,

strategy in an attempt to avoid overfitting or underfitting. 1RNdX = [z1,z2,...,=,]" is the state vector. _
order to model unknown nonlinearities, the variable neural Pu€ to some desirable features, such as local adjustment

network starts with a small number of initial hidden units an@f Weights and mathematical tractability, RBF networks have
then adds or removes units located in a variable grid. THgCently attracted considerable attention (see, for example, [2],
grid consists of a number of subgrids composed of differelil: [6]; and [26]). Their importance has also greatly benefited
sized hypercubes that depend on the novelty of the observatiggm the work of Moody and Darken [35] and Poggio and
Since the novelty of the observation is tested, it is idealfgiTosi [44], who explored the relationship between regular-
suited for online control problems. The objective behind tHéation theory and RBF networks. The good approximation
development is to gradually approach the appropriate netwdoperties of the R_BF’s in mterpolatl_on have been well stud_led
complexity that is sufficient to provide an approximation t§Y Powell and his group [47]. With the use of Gaussian
the system nonlinearities and consistent with the observatigidivation functions, each basis function in the RBF network
being received. By allocating GRBF units on a variablE2SPOnds only to inputs in the neighborhood determined by
grid, only the relevant state-space traversed by the dynamili center and width of the function. It is also known that, if
system is spanned, resulting in considerable savings on the variables of a nonlinear function are in compact sets, the
size of the network. continuous function can be approximated arbitrarily well by
The parameters of the variable neural network are adjusteffBF networks [43]. Here, the GRBF networks are used to
by adaptation laws developed using the Lyapunov synthe§i¢del the nonlinearity of the system. .
approach. Combining the variable neural network and Lya—'f z; IS not in a certain range, we introduce the following
punov synthesis techniques, the adaptive control algoritffi€-to-one (1-1) mapping [27]:
developed for continuous dynamical nonlinear systems guar- _— beizs fori — 1.9 " 5)
antees the stability of the whole control scheme and the " ]+ e Coomw
convergence of the tracking errors between the reference in%ﬁeream b

an_lqhthe outpu(tjs. ¢ th . ed foll the designer (e.ga.;, b.; are one). Thus, it is clear from (5)
e remainder of the paper is organized as follows. {n . i € [—bui, bui] for ; € (—o0,+20). The above one-

Section I, the modeling of nonlinear dynamical systems b&ﬁ-one mapping shows that, in thedimensional space, the

the GRBF network is discussed and a one_—to-one map_p'nge(ﬁftire area can be transferred intoradimensional hypercube
the state-space to form a compact network input space is |nt§%

. are positive constants, which can be chosen by

i ; . noted by the compact sat. Clearly, if x is already in the
duced. In Section lll, a variable neural network is develope esired area, we only need to Set- x.

based on a proposed variable grid. The selection of the GRB hus, the nonlinear pax(x)u — F(x) of the system can
for the variable neural network is discussed. The adaptipl% desc':ribed by the following GRBF network:

control scheme using the variable neural networks and the

Lyapunov synthesis techniques is developed in Section IVGF(x)u — F(x) = (g*(K)u — £*(K))" ®(%, K) + &(K) (6)
The stability of the overall control scheme and the convergenge .o

of the tracking errors are also analyzed. The operation of the

adaptive control scheme is demonstrated by two simulated ®(X, K) = [¢(X; c1,d1), ¢(X; €2, d2), . ., $(X; e, dic)]”
examples in Section V. @)

1
P(X;¢i,d;) = exp{—;”x— c7;||2}, fori=1,2,... K.

W

Il. NONLINEAR SYSTEM MODELING

Consider a class of continuous nonlinear dynamical systems 8
that can be expressed in the canonical form [18], [40], [53]f*(K) = [ff 5 fET and g (K) = [gF. g%, ..., g%]T
] . _ A SR
8y 4+ B0 o D) ot are the optimal weight vectorg, = [Z1,Z2,...,Z,]* is the
v+ (n(_yl) ®, (1)’y ), 4(®)) variable vectorg; is theith centerd; is theith width, e(K) is
=Gy By () y()u(?) (1) the modeling error, and&” is the number of the basis functions.

It is known from approximation theory that the modeling
error can be reduced arbitrarily by increasing the number

andG( - ) are unknown nonlinear functions. The above systerzg’ i.e., the number of the linear independent basis functions

represents a class of continuous-time nonlinear systems, caﬁ’ég? ci,d;) in the network model. Thus, it is reasonable to

affine systems. The above equation can also be transformedg4M¢ that the modeling ere(ic) is bounded by a constant.
the state-space form ex, which represents the accuracy of the model, and this is

defined as
y=mn (3) teR+

wherey(t) is the outputu(t) is the control inputy( is the
ith derivative of the output with respect to time, afy - )
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Although e can be reduced arbitrarily by increasing the
number of the independent basis functions, generally, when
the number is greater than a small value, the modeling error
ek is improved very little by increasing the number further.
It also results in a large-sized network even for a simple
problem. In practice, this is not realistic. In most cases, the 1! subgrid 2™ subgrid 3 subgrid
required modeling error can be given by considering the
design requirements and specifications of the system. Thus, the
problem now is to find a suitable-sized network to achieve the
required modeling error. In other words, it is how to determine
the number, centers, widths, and weights of the GRBF’s in
the network.

I1l. VARIABLE NEURAL NETWORKS

. . Fig. 1. Variable grid with three subgrids.
Two main neural network structures that are widely used i’ ' gnd wi ubart

online identification and control are the fixed neural network . _ .

and the growing neural network. The fixed neural networff@n those of thei — 1)th-order subgrid. Hence, the higher
usually needs a large number of basis functions in most ca§éder subgrids have more nodes than the lower order ones. On
even for a simple problem. Though the growing network tbe other hand, to re_duce the den5|f[y of the gr|dn(_)des, alwgys
much better than the fixed network in reducing the number fMOVe some subgrids from the grid until a required density
the basis functions for a number of problems, it is still possiblé "eached. _

that this network will lead to an overfitting problem for some Let all elements of the set’ represent the possible centers
cases, and this is explained in Section I. To overcome tRE the network. So, the more subgrids, the more possible
above limitations of the fixed and growing neural networks, $Nters. Since the higher order subgrids probably have some
new network structure, called the variable neural network, 9des that are the same as the lower order subgrids, the set

proposed in this section. of the new possible centers provided by title order subgrid
is defined as
A. Variable Grid P,={c:ceN,andec g P, forj=1,2,...,i —1}
In GRBF networks, the very important parameter is the (12)

location of the centers of the GRBF’s over the compactiset . .
! v pacts where P, is an empty set. It shows that the possible center

Whlc.h is the approximation region. Usgally, andimension et’P; corresponding to théh subgrid does not include those
grid is used to locate all centers in the gridnodes [51]. Thus, thé . o
distance between the gridnodes affects the size of the networkast are given by the lower order subgrids, i.e.,
and the approximation accuracy. In other words, a large :
distance leads to a small network and a coarser approximation, ()P =0. (12)
while a small distance results in a large size network and a J=1

finer approximation. However, even if the required accura¢yor example, in the two-dimensional (2-D) case, let the edge
is given, it is very difficult to know how small the distancdength of rectangulars on thih subgrid be half of théi—1)th
should be since the underlying function is unknown. Also, theubgrid. The variable grid with three subgrids is shown in
nonlinearity of the system is not uniformly complex over th&ig. 1.

setX. So, here a variable grid is introduced for the location

of the centers of all GRBF's in the network. B. Variable Network
The variable grid consists of a number of different subgrids. ta variable neural network has the property that the num-

Each subgrid is composed of equally sizeeimensional pe of the hasis functions in the network can be either increased
hypercuboids. It implies that the number of the subgrids cal yocreased over time according to a design strategy.
increase or decrease with time in the grid according toadesigq:Or the problem of nonlinear modeling with neural net-

;trategy. Al SUbQ“dS are named, the initial grid ?S named tr\‘ﬁorks, the variable network is initialized with a small number
first-order subgrid, then the second-order subgrid, and so @f-basis function units. As observations are received, the

In each subgrid, thgre are a different number of nodes, whig,\ork grows by adding some new basis functions or is
are denoted by their positions. L&f denote the set of nOdespruned by removing some old ones.

in_ thez‘th-orde_r su_bgrid. Thus, the set of all nodes in the grid 14 a4d new basis functions to the network the following
with m subgrids is two conditions must be satisfied: 1) the modeling error must

m be greater than the required accuracy and 2) the period between
N = U Ni. (10)  the two adding operations must be greater than the minimum
i=1 response time to the adding operation.

To increase the density of the gridnodes, the edge lengthdlo remove some old basis functions from the network, the
of the hypercubes of th&h-order subgrid will always be lessfollowing two conditions must be satisfied: 1) the modeling
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error must be less than the required accuracy and 2) the perodresponding to thgth element of the vectok in the ith
between the two removing operations must be greater than subgrid. Without lose of generality, let = 6,1 = 6,2 =
minimum response time of the removing operation. v = bip.

It is known that if the grid consists of the same size Define m hyperspheres corresponding to the subgrids,
n-dimension hypercubes with the edge length vegioe= respectively

[p1, p2,---,pn], the accuracy of approximating a function is
in direct proportion to the norm of the edge length vector of 4 R 2 )
the grid [46], i.e., Hi(&,00) = 4%y (v — )" <o (15)
j=1
e X . 13
i< o[l (13) for ¢ = 1,2,...,m, where ¢; is the radius of the:th

Therefore, based on the variable grid, the structure of hgpersphere. In order to get a suitable-sized variable network,
variable neural network is proposed here. The network selectmose the centers of the basis functions from the nodes
the centers from the node skt of the variable grid. When the contained in the different hypersphefis(x;", o;), which are
network needs some new basis functions, a new higher ordentered in the nearest node$ to x in the different subgrids
subgrid (say{m + 1)th subgrid) is appended to the grid. Thewith radiuss;, for: = 1,2, ..., m. For the sake of simplicity,
network chooses the new centers from the possible centerisé assumed that the basis function candidates whose centers
Pm+1 provided by the newly created subgrid. Similarly, if theare in the seP; have the same width; andd; < d;—;. Thus,
network needs to be reduced, the highest order subgrid (sfy,the higher order subgrids, use the smaller radius, i.e.,

mth subgrid) is deleted from the grid. Meanwhile, the network

removes the centers associated with the deleted subgrid. In this Om < Om—1 < - <01 (16)

way, the network is kept to a suitable size. How to locate ﬂE?
centers and determine the widths of the GRBF's is discussed

in the next section. 0i = Y101 ann

ually, choose

C. Selection of Basis Functions where~; is a constant and less than one. Thus, the chosen

It is also known that the GRBF has a localization propertff/snterS from the seP; are given by the set

that the influence area of thigh basis function is governed Ci={c:ceP andc e H;(x},0,)}. (18)
by the center; and widthdy. In other words, once the center ‘
c; and the widthd,, are fixed, the influence area of the GRBFn order that the basis function candidates in the Bethat
#(X; ¢, dy) is limited in the state-space to the neighborhoogre less than an activation threshold to the nearest grid node
of cp. % in thedth subgrid are outside the skt (x;", o;), it can be

On the basis of the possible center $€t produced by deduced from (8) and (15) that tle must be chosen to be
the variable grid, there are large number of basis function
candidates, denoted by the &tDuring the system operation, o > ,/10g(5n—l}n)di (19)
the state vectok will gradually scan a subset of the state-
space sett. Since the basis functions in the GRBF networkor ¢ = 1,2,...,m, where é,;, € (0,1) represents the
have a localized receptive field, if the neighborhood of a basistivation threshold.
function ¢ € B is located “far away” from the current state Thus, the center set of the network is given by the union of
x(t), its influence to the approximation is very small anthe center set€;, for i = 1,2,...,m, that is
could be ignored by the network. On the other hand, if the m
neighborhood of a basis functioh € 3 is near to or covers C = U Ci. (20)
the current stat&(¢), it will play a very important role in the P
approximation. Thus, it should be kept if it is already in the

network or added into the network if it is not in. For example, in the 2-D case, the radii are chosen to be the
Given any point %, the nearest nodex; = Same asthe edge lengths of the squares in the subgrids, that is
—+ —+ 1T 10 it i ; : :
[F1.%5,....%]" toitin thesth subgrid can be calculated by o= 8. fori=1.2.. .m. 21)
f/.
Efj = rOUﬂd((S—f)&ij (14) The chosen centers in the variable grid with four subgrids are
” as shown in Fig. 2.
for j = 1,2,...,n, where roun¢t) is an operator for Now, consider how to choose the wid#h of the kth basis

rounding the numbe(-) to the nearest integer; for examplefunction. The angle between the two GRBI#&x; ¢;,d;) and
round2.51) = 3, andé;; is the edge length of the hypercubep(x;c;,d;) is defined as in (22), shown at the bottom of the

6;; = cos™

1 <¢(X7 Ci, dz)7 ¢(X7 Cj, d])>
<<¢(X7 Ci, dz)7 (/)(X7 Ci, dz)>1/2<¢(x7 Cj, dj)7 (/)(X, Cj, dj)>l/2> (22)
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1 the width dg, which ensures the angles between GRBF units
are not less than the required minimum anglg, should
satisfy
14+ 1= 05" (o) \
+ — cos®/m min
, > 27
&2 < cos*/™ (O min) ) 27)
or
3
1 1 8/7 (6 in) ’
- — €os™/ " (O
< min 28
&< < cos* ™ (Omin) ) (28)
3 \
dy, < \/log™* cos(Bmin)br- (29)
Fig. 2. Location of centers in the variable grid with four subgrids. The FOr €xample, assume that thg satisfies (27). If the width

number: (z = 1,2, 3,4) denotes the centers chosen from ttiesubgrid. of the basis functions whose centers are located in the set
C;, which corresponds to thé&h subgrid withd;, = £p6;_1,

previous page, wherg, -) is the inner product in the space ofS chosen to bel; = &od;—1 and the widthd, of the basis
square-integrable functions, which is defined as functions associated to the initial grid satisfies

p0x; e, di), (x5 05, dy)) = di < \/log_4 cos(Bmin )61 (30)

/ / / d(x;¢q,d)P(x;¢5,d;) dey dzg - - - day,.
then the smallest angle between all basis functions are not less
(23) than the required minimum angl,,;,.
The angle can be given by [20] Therefore, based on a variable grid with subgrids, the
nonlinear function approximated by the GRBF network in (6)

;) = cos™! <<§2£> ¢(cj;ci,di)25+2> (24) €N also be expressed by

and

N
y

(-
Nl
7

3

where¢ = d?/d2. It shows from the above that thes(f;;) G(x)u—F(x) = > > (ffy;+ 05 (X, ity di) +£(K)
depends on three factors: the dimensigrthe width ratio&, i=1j=1

and the output of a basis function at the center of the other (31)
basis functiong(c;; c;, d;). where

If the centers of the two basis functions are chosen from the m
same subgrid, i.e§ = 1, it is clear from (24) that K = Zmi' (32)

cos(Bi;) = d(c;i i, d;) 7. (25) =

On the other hand, if the centers of the two basis functioss:; is the jth element of the set;, m; is the number of its
are from different subgrids, it is possible that their centers agéements, and’’, ; andg;, ; are the optimal weights. So, the
very close. The worst case will be wheiic,; c;,d;) is near next step is how to obtain the estimates of the weights.
to one. In this case, the angle between the two basis functions

can be written as
2/E\ T . o
cos(6;;) < <£+—1) (26) The stability of the overall control scheme is an important
issue in the design of the system. The overall stability depends
Given the centeey, in order to assign a new basis functiomot only on the particular control approach that is chosen but
¢(x;ex,dy) that is nearly orthogonal to all existing basislso on the control laws that are used. In practice, one of
functions, the angle between the GRBF’s should be as largetlas design objectives for a system is that the tracking error
possible. The width/; should therefore be reduced. Howevehetween inputs and outputs should converge to the required
reducing d;, increases the curvature @f(x;cy,dy) that in accuracy. Those problems are solved here by developing
turn gives a less smooth function and can leasverfitting a stable adaptive control law based on Lyapunov stability
problems. Thus, to make a tradeoff between the orthogonaligchniques [25] and the variable GRBF network discussed in
and the smoothness, it can be deduced from (25) and (26) tBattion IlI.

IV. ADAPTIVE CONTROL
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A. Adaptation Laws adaptation rates. Using (37), the derivative of the Lyapunov
We assume that the basis functiongx;cy,dy) for function V" with respect to time is given by
k=1,2,...,K are given. Section IV-B will discuss howV(
the basis functions of the network model are chosen.
The control objective is to force the plant state

e f, g)
—e" Qe + 2PTe((g (K )u — £ (K))®(x. K) + (K)

vector x to follow a specified desired trajectory +2a—1fT(K)§(K)+2/3—1gT(K)§(K) (41)
yd_[ud,ufi),...,ufi" 1)]T The tracking error vector

and the weight error vectors, respectively, are defined as where the vecto®,, is the nth row of the matrixP, i.e.,
n — [pnlvpn% 7pnn]

_ e=X-—yd (33)  since f* is a constant vector, we have théit= —f,
f(K)=1"(K)-f(K) (34) similarly, g = —g. If there is no modeling error,
g(K) = g"(K) — g(K) (35) i.e.,e(K)=0, the weight vectorsf and g can simply

be generated according to the following standard adaptation
wheref(K) andg(K) are the estimated weight vectors. Froniaws: f(K) = —aPe®(%; K) andg(K) = fPLeud(X; K).

(1), it can be shown that In the presence of a modeling errefK), to ensure the
stability of the system, a lot of algorithms, e.g., the fixed or
x = Ax +b(g" (K)u — f7(K))®(x, K) switching o-modification [16], [17],e-modification [37], and

+b(gT(K)u— ET(K))<1>(5< K)+be(K). (36) the dead-zone methods [38], [52], can be applied to modify
the above standard adaptation laws.
Hence, from (33)—(36), the dynamical expression of the track-Define the following sets:

ing error is = {f:||f|| < M or (||f|]| = My andP[ef" @(x) > 0)}
e=Ae— by +b(g” (K)u—T(K))®(%,K) (42)
+b(g" (K)u—fT(K))®(x,K) + be(K). (37) Fy={f:|f|| = M, andPZefTd(x) < 0} (43)

One approach to this problem is to take the control inpu('[;]L - {g: Il < Mz or .
satisfying (llgll = M and P eug” ®(x) < 0) } (44)

=18: = M, andPXeug?®(x) > 0 45
g7 (F)®(x, K)u = i + 17 (K)®(x, K) +a’e  (38) {g: llgll = M2 g : (45)

where M, and M, are positive constants.

where the vector = [a1,az,...,a,]" makes the following  Here, in order to avoid parameter drift in the presence of
matrix stable: modeling error, the application of the projection algorithm
0 1 0 --- 0 [11], [15], [45] gives the following adaptive laws for the
0 0 1 - parameter estimate® and g, as in (46) and (47), shown at
A, = . ; ; : : (39) the bottom of the page. It is clear that, if the initial weights

are chosen such th&tx, 0) € F,UF, andg(K,0) € G1UG,,
the weight vectord andg are confined to the set&; U 7>
i.e., all eigenvalues are in the open left plane. The control inpad G, U G2, respectively. With use of the adaptive laws (46)
consists of a linear combination of the tracking ermfs, the and (47), (41) becomes

adaptive parf? (K)®(x, K) that will attempt to estimate, and

—a1 —G2 —az -+ —an

cancel, the unknown functiof'(-), andy((i") is a feedforward Vie,f,g) < —eTQe+ 22 |pnilleilek - (48)
of the nth derivative of the desired trajectory. i=1

Consider the following Lyapunov function: For the sake of simplicity, the positive definite mat€is

: 1 ~ 1 assumed to be diagonal, i.€), = diag[qi, g2, - . ., g,], Where
Vie,f,g) =e"Pe+ —f" (K)I(K)+ — 9 iaglgi, g2, - - - gl
(0%

~T ~
/3g (K)g(K) (40) g > 0, fort=1,2,... n. Also define
whereP is chosen to be a positive definite matrix so that the |pm pm
matrix @ = —PA, — AP is also a positive definite matrix { ZQZ <|CZ p < Z (49)

and « and 3 are positive constants that will appear in the
sequential adaptation laws, also referred to as the learningwdrere ¢ is a positive variable, i.e{ > 0.

. [—aPTed(x; K), if £(K) € F
f(K) = {_apg@( K) + aMPPTefT ()b (x: K)E(K), if £(K) € 7y (46)
o (pPTeud(x; K), if g(K)eg
(&) = {/JPZeZd)( K) — BMPTeugT (K)b(%: K)a(K), if alk) € On “7)
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If there is no modeling error (i.egx = 0), (48) can be  According to the relationship between the modeling error

written as and the tracking error, it is easy to know that given the lower
n and upper bounda? (¢), AL(t) + ¢,0 of the tracking errors
Vie,f,g) < Z @cl. (50) the modeling error corresponding to the above should be
= exc(t) € [er(t), eu()- (57)

The above clearly shows thdt is negative semidefinite.
Hence, the stability of the overall identification scheme
guaranteed and

It is easy to know that the area that the 88t) covers is a
Iﬁyperellipsoid with the center

~ DPnl Dn2 DPnn
e—0, f—0 g—0. (51) <|q—1|<%<|q—n|<> (58)
On the other hand, in the presence of modeling error, (48hus, it can be deduced from the $&tex(t)) given by (49)
can be expressed as that the upper bound, (¢) and the lower bound (t) are
n 2 n s g given by
Vief,g) < — Zq7<|e7| - |pm|5;(> + Z Pni€r (52) 0.5\ —0-3
i1 7 = |Pni "~ Di; I
er(t) = _max | Z —= AZ(t)
It is easy to show from the above that, df ¢ O(eg), V S W =1 O
is still negative and the tracking errors will converge to the (59)
setO(ek). But, if e € O(ek), it is possible thatV > 0, o5\ —0.5
which implies that the weight vectoff K') and g(K) may _ |Pni " P2
drift to infinity over time. The adaptive laws (46) and (47) eu(t) = P v + Z —J
avoid this drift by limiting the upper bounds of the weights. o e =1
Thus, the tracking error always converges to the_@@etK) % (AiU(t) 1 Eio)' (60)
and the overall control scheme will remain stable in the case
of modeling error. Hence, if the tracking erroe ¢ ©(e(t)), the network needs
more basis functions. Add then + 1)th order subgrid to the
B. Adaptive Control Algorithm grid. The parameters associated with the GRBF units are then
From the se®(ex ) that gives a relationship between thechanged as follows:
tracking and modeling errors, it can be shown that the tracking Omt1 = V10m (61)
error depends on the modeling error. If the modeling error gt = V20m (62)
ek is known, the seB(ex) to which the tracking error will J —d 63
converge is also known. However, in most cases, the upper m+l = 130m (63)
bounde is unknown. P "Gl P (64)
In practice, control systems are usually required to keep the T ¢
tracking errors within prescribed bounds, that is 7::1
le;| < &0, fori=1,2,....n (53) C= U Ci (65)
=1
wheree; is the required accuracy. At the beginning, it is very mtl
difficult to know how many neural network units are needed K= Z my (66)
to achieve the above control requirements. In order to find a =1

suitable-sized network for this control problem, first set lowavhere~;, for ¢ = 1,2,3, is a constant and less than one.
and upper bounds for the tracking errors, which are functionsBut, if the tracking erroe € ©(e,(t)), the network needs to
of time ¢, and then try to find a variable network such that remove some basis functions. Just remove the units associated
I U ) with the mth subgrid. The parameters associated with the
leil € [A7 (1), A7 (t) + &), fori=1,2,....n (54) GRBF units are then changed as follows:

where AL (), AY (¢) are monodecreasing functions of time m-l
respectively. Those bounds are usually defined as P= U Pi (67)

=1

A7 () = BrA7(0) (55) m—1
Ak () = BAL(0) (56) c=Ue (68)

=1

wherefy, 31, are constants and less than ong; (0), AY(0) m—l
are the initial values. It is clear thak¥ (), AL(t) decrease K=7Y m. (69)

with time ¢. As t — oo, AY(t), Al(t) approach zero. Thus, =1

in this way, the tracking errors reach the required accuraciesboth above cases, the adaptive laws of the weights are still
given in (53). given in the form of (46) and (47), based on the above changed
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The output and reference input

___ the system output ——- the reference input
. . L

\ .
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time t (sec)
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Fig. 3. Two-dimensional convergence area. %,2_
% ____ the system output derivative =~ ——— the reference input derivative
. - % 5 10 15 20 25 30
parameters. For the 2-D case, the convergence area is shown in fime t(se0)

Fig. 3. At the beginning, the convergence area of the trackipg. 4. Reference inpuly(t), outputy(t), reference input derivativé,(t),
area isky. Finally, it approaches to the expected convergeneed output derivativej(t) of the system.
areaF., that is,|e;| < g;9, for i = 1,2.

0.5 T T T T
V. SIMULATION RESULTS

This section considers two examples. The first is concerned o4}
with adaptive control of a time-invariant nonlinear system. The
second considers adaptive control of a time-variant nonlinear
system.

Example 1: The dynamical system used in the simulation
example is given in [51]

- 4<Smgy)> <Sin7£;ry) ) (24 sin(3my — Lsm)u 04
(70)

0.3

0.2

The tracking error

which is a second-order time-invariant nonlinear system.

The parameter values used in this example are as follows: _; : . . . ‘
5 10 15 20 25 30

the reference inputyy = sin(¢); the initial value of the ° time t (sac)

output y(0) = 0.5; the initial value of the output derivative Fia 5. Track 3 fth

7(0) = 0; the required accuracy of the tracking errof 9 5 Tracking erron(f) = ya(#) of the system.

vector 19, £20] = [0.05,0.1]; the constant®;; = 3, = 0.96;

the initial values AY(0) = 0.005,AL(0) = 0.05, for is also shown in Fig. 5. As it can be seen from Fig. 6, the

i = 1,2; the required minimum angle between the GRBF’gumber of GRBF units in the neural network also converges
cos(fmin) = 0.951; the edge length of the rectangles in the firdp @ period of time.
subgrid isé; = 0.5; the radius of center selection in the first Example 2: Consider a time-variant nonlinear dynamical
subgrido; = 0.99; the width of the GRBF units correspondingsystem given by
to the first sub_g_ri_oldjL = 1.11; the a_ctivation threshold ) oot sin(4ry) sin(rg) 2
8.min = 0.45; the initial number of the variable networks is 45; i —4(2e7"7 — 1)< ) < . )
the vectora = [1, 1]; the matrix P = [[0.75,0.5]%,[0.5, 1]77; P A i
and the adaptation rates= 1.5 and3 = 3. = (24 cos(0.1t) sin(3wy — 1.57) )u. (72)
The parameters associated with the variable network areThis plant is different from that in Example 1. The functions
8, = 0.6185;_1, 0i=0.6180, 1, di =0618d_, (71) F a_ndG in Example 1 are time-invaria_nt nonlir_1ear functions.
While, here the functiong” and G are time variant.
for i = 2,3,...,m. The maximum ofm (the number of the All parameter values, the structure of variable networks, the
subgrids) is limited to be 11. weight learning laws, and the adaptive control laws used in this
The weights are adaptively adjusted by the laws in (46) amedample are exactly the same as Example 1. The tracking error
(47). The adaptive control law is given by (38). The results dfetween the reference input and the output of the system is
the simulation are shown in Figs. 4—6. Though the differenshown in Fig. 7. Although the plant to be controlled is time
between the system output and the desired output is very laxvggiant, the convergence of the tracking error in this example is
at the beginning, the system is still stable and the trackisgll similar to that in Example 1. This shows that the scheme
error asymptotically converges to the expected range, whidaveloped in this paper for adaptive control using variable
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The number of GRBF units

Fig. 6. NumberK of GRBF units in the variable neural network.

The tracking error

Fig. 7. Tracking errory(t) — yq(t) of the system.
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neural networks also works well for time-variant nonlmea[r I

systems.

VI.

CONCLUSION

[21]

[22]

A variable neural network structure has been proposed, in
which the number of the basis functions in the network can
be either increased or decreased over time according to sda# V. Kadirkamanathan and M. Niranjan, “Application of an architec-
design strategy to avoid either overfitting or underfitting. In
order to model unknown nonlinearities of nonlinear systemgg)
the variable neural network starts with a small number of initial
hidden units, then adds or removes units on a variable gl[?dr’]
consisting of a variable number of subgrids with different sizeds)
hypercubes, based on the novelty of observation. The adaptive

control algorithm, developed by combining the variable GRBE7
network and Lyapunov synthesis techniques, guarantees the

stability of the control system and the convergence of the
tracking errors. The number of GRBF units in the neur £
network also converges by introducing the monodecreasing
upper and lower bounds of the tracking errors. The results 8f]
the simulation examples illustrate the operation of the varia%]
neural network for adaptive nonlinear system control.
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