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Variable Neural Networks for Adaptive
Control of Nonlinear Systems

Guoping P. Liu,Member, IEEE, Visakan Kadirkamanathan,Member, IEEE, and Stephen A. Billings

Abstract— This paper is concerned with the adaptive control
of continuous-time nonlinear dynamical systems using neural
networks. A novel neural network architecture, referred to as
a variable neural network, is proposed and shown to be useful in
approximating the unknown nonlinearities of dynamical systems.
In the variable neural networks, the number of basis functions
can be either increased or decreased with time according to
specified design strategies so that the network will not overfit or
underfit the data set. Based on the Gaussian radial basis function
(GRBF) variable neural network, an adaptive control scheme
is presented. The location of the centers and the determination
of the widths of the GRBF’s in the variable neural network
are analyzed to make a compromise between orthogonality and
smoothness. The weight adaptive laws developed using the Lya-
punov synthesis approach guarantee the stability of the overall
control scheme, even in the presence of modeling error. The
tracking errors converge to the required accuracy through the
adaptive control algorithm derived by combining the variable
neural network and Lyapunov synthesis techniques. The oper-
ation of an adaptive control scheme using the variable neural
network is demonstrated using two simulated examples.

Index Terms— Adaptive control, neural networks, nonlinear
systems, radial basis functions.

I. INTRODUCTION

NEURAL networks are capable of learning and recon-
structing complex nonlinear mappings and have been

widely studied by control researchers in the identification
analysis and design of control systems. A large number of
control structures have been proposed, including supervised
control [55], direct inverse control [34], model reference con-
trol [39], internal model control [13], predictive control [14],
[56], [29], gain scheduling [12], optimal decision control [10],
adaptive linear control [7], reinforcement learning control [1],
[3], variable structure control [30], indirect adaptive control
[39], and direct adaptive control [19], [45], [50], [51]. The
principal types of neural networks used for control problems
are the multilayer perceptron (MLP) neural networks with
sigmoidal units [34], [39], [48] and the radial basis function
(RBF) neural networks [41], [43], [47].
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Most of the neural network-based control schemes view the
problem as deriving adaptation laws using a fixed structure
neural network. However, choosing this structure, such as the
number of basis functions (hidden units in a single hidden
layer) in the neural network, must be donea priori. This can
often lead to either an overdetermined or an underdetermined
network structure. In the discrete-time formulation, some
approaches have been developed to determine the number
of hidden units (or basis functions) using decision theory [4]
and model comparison methods, such asminimum description
length [54] and Bayesian methods[33]. The problem with
these methods is that they require all observations to be
available and hence are not suitable for online control tasks,
especially adaptive control. In addition, the fixed structure
neural networks often need a large number of basis functions
even for simple problems.

Another type of neural network structure developed for
learning systems is to begin with a larger network and then
to prune this [32], [36], or to begin with a smaller network
and then to expand this [9], [42] until the optimal network
complexity is found. Among these dynamic structure models,
theresource allocating network(RAN) developed by Platt [42]
is an online or sequential identification algorithm. The RAN is
essentially a growing Gaussian radial basis function (GRBF)
network whose growth criteria and parameter adaptation laws
have been studied and extended further [20], [21], [31] and
applied to time-series analysis [24] and pattern classification
[23]. The RAN and its extensions addressed the identification
of only autoregressive systems with no external inputs and
hence stability was not an issue. Recently, the growing GRBF
neural network has been applied to sequential identification
and adaptive control of dynamical continuous nonlinear sys-
tems with external inputs [8], [22], [27], [28]. Though the
growing neural network is much better than the fixed neural
network in reducing the number of basis functions, it is still
possible that this network will induce an overfitting problem.
There are two main reasons for this. It is difficult to know
how many basis functions are really needed for the problem,
and secondly, the nonlinearity of a nonlinear function to be
modeled is different when its variables change their value
ranges. Normally, the number of basis functions in the growing
neural network may increase to the one that the system needs
to meet the requirement for dealing with the most complicated
nonlinearity (the worst case) of the nonlinear function. Thus,
it may lead to a network that has the same size as the fixed
neural networks.

1094–6977/99$10.00 1999 IEEE
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To overcome the above limitations, a new network structure,
referred to as the variable neural network, is proposed in this
paper. The basic principle of the variable neural network is
that the number of basis functions in the network can be
either increased or decreased over time according to a design
strategy in an attempt to avoid overfitting or underfitting. In
order to model unknown nonlinearities, the variable neural
network starts with a small number of initial hidden units and
then adds or removes units located in a variable grid. This
grid consists of a number of subgrids composed of different
sized hypercubes that depend on the novelty of the observation.
Since the novelty of the observation is tested, it is ideally
suited for online control problems. The objective behind the
development is to gradually approach the appropriate network
complexity that is sufficient to provide an approximation to
the system nonlinearities and consistent with the observations
being received. By allocating GRBF units on a variable
grid, only the relevant state-space traversed by the dynamical
system is spanned, resulting in considerable savings on the
size of the network.

The parameters of the variable neural network are adjusted
by adaptation laws developed using the Lyapunov synthesis
approach. Combining the variable neural network and Lya-
punov synthesis techniques, the adaptive control algorithm
developed for continuous dynamical nonlinear systems guar-
antees the stability of the whole control scheme and the
convergence of the tracking errors between the reference inputs
and the outputs.

The remainder of the paper is organized as follows. In
Section II, the modeling of nonlinear dynamical systems by
the GRBF network is discussed and a one-to-one mapping of
the state-space to form a compact network input space is intro-
duced. In Section III, a variable neural network is developed,
based on a proposed variable grid. The selection of the GRBF’s
for the variable neural network is discussed. The adaptive
control scheme using the variable neural networks and the
Lyapunov synthesis techniques is developed in Section IV.
The stability of the overall control scheme and the convergence
of the tracking errors are also analyzed. The operation of the
adaptive control scheme is demonstrated by two simulated
examples in Section V.

II. NONLINEAR SYSTEM MODELING

Consider a class of continuous nonlinear dynamical systems
that can be expressed in the canonical form [18], [40], [53]

(1)

where is the output, is the control input, is the
th derivative of the output with respect to time, and

and are unknown nonlinear functions. The above system
represents a class of continuous-time nonlinear systems, called
affine systems. The above equation can also be transformed to
the state-space form

(2)

(3)

where

(4)

, is an identity matrix,
and is the state vector.

Due to some desirable features, such as local adjustment
of weights and mathematical tractability, RBF networks have
recently attracted considerable attention (see, for example, [2],
[5], [6], and [26]). Their importance has also greatly benefited
from the work of Moody and Darken [35] and Poggio and
Girosi [44], who explored the relationship between regular-
ization theory and RBF networks. The good approximation
properties of the RBF’s in interpolation have been well studied
by Powell and his group [47]. With the use of Gaussian
activation functions, each basis function in the RBF network
responds only to inputs in the neighborhood determined by
the center and width of the function. It is also known that, if
the variables of a nonlinear function are in compact sets, the
continuous function can be approximated arbitrarily well by
GRBF networks [43]. Here, the GRBF networks are used to
model the nonlinearity of the system.

If is not in a certain range, we introduce the following
one-to-one (1-1) mapping [27]:

for (5)

where are positive constants, which can be chosen by
the designer (e.g., are one). Thus, it is clear from (5)
that for . The above one-
to-one mapping shows that, in the-dimensional space, the
entire area can be transferred into an-dimensional hypercube
denoted by the compact set. Clearly, if is already in the
desired area, we only need to set .

Thus, the nonlinear part of the system can
be described by the following GRBF network:

(6)

where

(7)

for

(8)

and
are the optimal weight vectors, is the
variable vector, is the th center, is the th width, is
the modeling error, and is the number of the basis functions.

It is known from approximation theory that the modeling
error can be reduced arbitrarily by increasing the number

, i.e., the number of the linear independent basis functions
in the network model. Thus, it is reasonable to

assume that the modeling error is bounded by a constant
, which represents the accuracy of the model, and this is

defined as

(9)
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Although can be reduced arbitrarily by increasing the
number of the independent basis functions, generally, when
the number is greater than a small value, the modeling error

is improved very little by increasing the number further.
It also results in a large-sized network even for a simple
problem. In practice, this is not realistic. In most cases, the
required modeling error can be given by considering the
design requirements and specifications of the system. Thus, the
problem now is to find a suitable-sized network to achieve the
required modeling error. In other words, it is how to determine
the number, centers, widths, and weights of the GRBF’s in
the network.

III. V ARIABLE NEURAL NETWORKS

Two main neural network structures that are widely used in
online identification and control are the fixed neural network
and the growing neural network. The fixed neural network
usually needs a large number of basis functions in most cases
even for a simple problem. Though the growing network is
much better than the fixed network in reducing the number of
the basis functions for a number of problems, it is still possible
that this network will lead to an overfitting problem for some
cases, and this is explained in Section I. To overcome the
above limitations of the fixed and growing neural networks, a
new network structure, called the variable neural network, is
proposed in this section.

A. Variable Grid

In GRBF networks, the very important parameter is the
location of the centers of the GRBF’s over the compact set,
which is the approximation region. Usually, an-dimension
grid is used to locate all centers in the gridnodes [51]. Thus, the
distance between the gridnodes affects the size of the networks
and the approximation accuracy. In other words, a large
distance leads to a small network and a coarser approximation,
while a small distance results in a large size network and a
finer approximation. However, even if the required accuracy
is given, it is very difficult to know how small the distance
should be since the underlying function is unknown. Also, the
nonlinearity of the system is not uniformly complex over the
set . So, here a variable grid is introduced for the location
of the centers of all GRBF’s in the network.

The variable grid consists of a number of different subgrids.
Each subgrid is composed of equally sized-dimensional
hypercuboids. It implies that the number of the subgrids can
increase or decrease with time in the grid according to a design
strategy. All subgrids are named, the initial grid is named the
first-order subgrid, then the second-order subgrid, and so on.
In each subgrid, there are a different number of nodes, which
are denoted by their positions. Let denote the set of nodes
in the th-order subgrid. Thus, the set of all nodes in the grid
with subgrids is

(10)

To increase the density of the gridnodes, the edge lengths
of the hypercubes of theth-order subgrid will always be less

Fig. 1. Variable grid with three subgrids.

than those of the th-order subgrid. Hence, the higher
order subgrids have more nodes than the lower order ones. On
the other hand, to reduce the density of the gridnodes, always
remove some subgrids from the grid until a required density
is reached.

Let all elements of the set represent the possible centers
of the network. So, the more subgrids, the more possible
centers. Since the higher order subgrids probably have some
nodes that are the same as the lower order subgrids, the set
of the new possible centers provided by theth order subgrid
is defined as

and for

(11)

where is an empty set. It shows that the possible center
set corresponding to theth subgrid does not include those
that are given by the lower order subgrids, i.e.,

(12)

For example, in the two-dimensional (2-D) case, let the edge
length of rectangulars on theth subgrid be half of the th
subgrid. The variable grid with three subgrids is shown in
Fig. 1.

B. Variable Network

The variable neural network has the property that the num-
ber of the basis functions in the network can be either increased
or decreased over time according to a design strategy.

For the problem of nonlinear modeling with neural net-
works, the variable network is initialized with a small number
of basis function units. As observations are received, the
network grows by adding some new basis functions or is
pruned by removing some old ones.

To add new basis functions to the network the following
two conditions must be satisfied: 1) the modeling error must
be greater than the required accuracy and 2) the period between
the two adding operations must be greater than the minimum
response time to the adding operation.

To remove some old basis functions from the network, the
following two conditions must be satisfied: 1) the modeling
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error must be less than the required accuracy and 2) the period
between the two removing operations must be greater than the
minimum response time of the removing operation.

It is known that if the grid consists of the same size
-dimension hypercubes with the edge length vector

, the accuracy of approximating a function is
in direct proportion to the norm of the edge length vector of
the grid [46], i.e.,

(13)

Therefore, based on the variable grid, the structure of a
variable neural network is proposed here. The network selects
the centers from the node set of the variable grid. When the
network needs some new basis functions, a new higher order
subgrid (say, th subgrid) is appended to the grid. The
network chooses the new centers from the possible center set

provided by the newly created subgrid. Similarly, if the
network needs to be reduced, the highest order subgrid (say,

th subgrid) is deleted from the grid. Meanwhile, the network
removes the centers associated with the deleted subgrid. In this
way, the network is kept to a suitable size. How to locate the
centers and determine the widths of the GRBF’s is discussed
in the next section.

C. Selection of Basis Functions

It is also known that the GRBF has a localization property
that the influence area of theth basis function is governed
by the center and width . In other words, once the center

and the width are fixed, the influence area of the GRBF
is limited in the state-space to the neighborhood

of .
On the basis of the possible center set produced by

the variable grid, there are large number of basis function
candidates, denoted by the set. During the system operation,
the state vector will gradually scan a subset of the state-
space set . Since the basis functions in the GRBF network
have a localized receptive field, if the neighborhood of a basis
function is located “far away” from the current state

, its influence to the approximation is very small and
could be ignored by the network. On the other hand, if the
neighborhood of a basis function is near to or covers
the current state , it will play a very important role in the
approximation. Thus, it should be kept if it is already in the
network or added into the network if it is not in.

Given any point , the nearest node
to it in the th subgrid can be calculated by

round (14)

for , where round is an operator for
rounding the number to the nearest integer; for example,
round , and is the edge length of the hypercube

corresponding to theth element of the vector in the th
subgrid. Without lose of generality, let

.
Define hyperspheres corresponding to the subgrids,

respectively

(15)

for , where is the radius of the th
hypersphere. In order to get a suitable-sized variable network,
choose the centers of the basis functions from the nodes
contained in the different hyperspheres , which are
centered in the nearest nodes to in the different subgrids
with radius , for . For the sake of simplicity,
it is assumed that the basis function candidates whose centers
are in the set have the same width and . Thus,
for the higher order subgrids, use the smaller radius, i.e.,

(16)

Usually, choose

(17)

where is a constant and less than one. Thus, the chosen
centers from the set are given by the set

and (18)

In order that the basis function candidates in the setthat
are less than an activation threshold to the nearest grid node

in the th subgrid are outside the set , it can be
deduced from (8) and (15) that the must be chosen to be

(19)

for , where represents the
activation threshold.

Thus, the center set of the network is given by the union of
the center sets , for , that is

(20)

For example, in the 2-D case, the radii are chosen to be the
same as the edge lengths of the squares in the subgrids, that is

for (21)

The chosen centers in the variable grid with four subgrids are
as shown in Fig. 2.

Now, consider how to choose the width of the th basis
function. The angle between the two GRBF’s and

is defined as in (22), shown at the bottom of the

(22)
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Fig. 2. Location of centers in the variable grid with four subgrids. The
numberi (i = 1; 2; 3; 4) denotes the centers chosen from theith subgrid.

previous page, where is the inner product in the space of
square-integrable functions, which is defined as

(23)

The angle can be given by [20]

(24)

where . It shows from the above that the
depends on three factors: the dimension, the width ratio ,
and the output of a basis function at the center of the other
basis function .

If the centers of the two basis functions are chosen from the
same subgrid, i.e., , it is clear from (24) that

(25)

On the other hand, if the centers of the two basis functions
are from different subgrids, it is possible that their centers are
very close. The worst case will be when is near
to one. In this case, the angle between the two basis functions
can be written as

(26)

Given the center , in order to assign a new basis function
that is nearly orthogonal to all existing basis

functions, the angle between the GRBF’s should be as large as
possible. The width should therefore be reduced. However,
reducing increases the curvature of that in
turn gives a less smooth function and can lead tooverfitting
problems. Thus, to make a tradeoff between the orthogonality
and the smoothness, it can be deduced from (25) and (26) that

the width , which ensures the angles between GRBF units
are not less than the required minimum angle should
satisfy

(27)

or

(28)

and

(29)

For example, assume that the satisfies (27). If the width
of the basis functions whose centers are located in the set

, which corresponds to theth subgrid with ,
is chosen to be and the width of the basis
functions associated to the initial grid satisfies

(30)

then the smallest angle between all basis functions are not less
than the required minimum angle .

Therefore, based on a variable grid with subgrids, the
nonlinear function approximated by the GRBF network in (6)
can also be expressed by

(31)
where

(32)

is the th element of the set , is the number of its
elements, and and are the optimal weights. So, the
next step is how to obtain the estimates of the weights.

IV. A DAPTIVE CONTROL

The stability of the overall control scheme is an important
issue in the design of the system. The overall stability depends
not only on the particular control approach that is chosen but
also on the control laws that are used. In practice, one of
the design objectives for a system is that the tracking error
between inputs and outputs should converge to the required
accuracy. Those problems are solved here by developing
a stable adaptive control law based on Lyapunov stability
techniques [25] and the variable GRBF network discussed in
Section III.
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A. Adaptation Laws

We assume that the basis functions for
are given. Section IV-B will discuss how

the basis functions of the network model are chosen.
The control objective is to force the plant state

vector to follow a specified desired trajectory
. The tracking error vector

and the weight error vectors, respectively, are defined as

(33)

(34)

(35)

where and are the estimated weight vectors. From
(1), it can be shown that

(36)

Hence, from (33)–(36), the dynamical expression of the track-
ing error is

(37)

One approach to this problem is to take the control input
satisfying

(38)

where the vector makes the following
matrix stable:

...
...

...
...

...
(39)

i.e., all eigenvalues are in the open left plane. The control input
consists of a linear combination of the tracking errors , the
adaptive part that will attempt to estimate, and
cancel, the unknown function , and is a feedforward
of the th derivative of the desired trajectory.

Consider the following Lyapunov function:

(40)

where is chosen to be a positive definite matrix so that the
matrix is also a positive definite matrix
and and are positive constants that will appear in the
sequential adaptation laws, also referred to as the learning or

adaptation rates. Using (37), the derivative of the Lyapunov
function with respect to time is given by

(41)

where the vector is the th row of the matrix , i.e.,
.

Since is a constant vector, we have that ,
similarly, . If there is no modeling error,
i.e., , the weight vectors and can simply
be generated according to the following standard adaptation
laws: and .
In the presence of a modeling error , to ensure the
stability of the system, a lot of algorithms, e.g., the fixed or
switching -modification [16], [17], -modification [37], and
the dead-zone methods [38], [52], can be applied to modify
the above standard adaptation laws.

Define the following sets:

or and

(42)

and (43)

or

and (44)

and (45)

where and are positive constants.
Here, in order to avoid parameter drift in the presence of

modeling error, the application of the projection algorithm
[11], [15], [45] gives the following adaptive laws for the
parameter estimates and , as in (46) and (47), shown at
the bottom of the page. It is clear that, if the initial weights
are chosen such that and ,
the weight vectors and are confined to the sets
and , respectively. With use of the adaptive laws (46)
and (47), (41) becomes

(48)

For the sake of simplicity, the positive definite matrixis
assumed to be diagonal, i.e., , where

, for . Also define

(49)

where is a positive variable, i.e., .

if
if

(46)

if
if

(47)
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If there is no modeling error (i.e., ), (48) can be
written as

(50)

The above clearly shows that is negative semidefinite.
Hence, the stability of the overall identification scheme is
guaranteed and

(51)

On the other hand, in the presence of modeling error, (48)
can be expressed as

(52)

It is easy to show from the above that, if ,
is still negative and the tracking errors will converge to the
set . But, if , it is possible that ,
which implies that the weight vectors and may
drift to infinity over time. The adaptive laws (46) and (47)
avoid this drift by limiting the upper bounds of the weights.
Thus, the tracking error always converges to the set
and the overall control scheme will remain stable in the case
of modeling error.

B. Adaptive Control Algorithm

From the set that gives a relationship between the
tracking and modeling errors, it can be shown that the tracking
error depends on the modeling error. If the modeling error

is known, the set to which the tracking error will
converge is also known. However, in most cases, the upper
bound is unknown.

In practice, control systems are usually required to keep the
tracking errors within prescribed bounds, that is

for (53)

where is the required accuracy. At the beginning, it is very
difficult to know how many neural network units are needed
to achieve the above control requirements. In order to find a
suitable-sized network for this control problem, first set lower
and upper bounds for the tracking errors, which are functions
of time , and then try to find a variable network such that

for (54)

where are monodecreasing functions of time,
respectively. Those bounds are usually defined as

(55)

(56)

where are constants and less than one,
are the initial values. It is clear that decrease
with time . As approach zero. Thus,
in this way, the tracking errors reach the required accuracies
given in (53).

According to the relationship between the modeling error
and the tracking error, it is easy to know that given the lower
and upper bounds of the tracking errors
the modeling error corresponding to the above should be

(57)

It is easy to know that the area that the set covers is a
hyperellipsoid with the center

(58)

Thus, it can be deduced from the set given by (49)
that the upper bound and the lower bound are
given by

(59)

(60)

Hence, if the tracking error , the network needs
more basis functions. Add the th order subgrid to the
grid. The parameters associated with the GRBF units are then
changed as follows:

(61)

(62)

(63)

(64)

(65)

(66)

where , for , is a constant and less than one.
But, if the tracking error , the network needs to

remove some basis functions. Just remove the units associated
with the th subgrid. The parameters associated with the
GRBF units are then changed as follows:

(67)

(68)

(69)

In both above cases, the adaptive laws of the weights are still
given in the form of (46) and (47), based on the above changed
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Fig. 3. Two-dimensional convergence area.

parameters. For the 2-D case, the convergence area is shown in
Fig. 3. At the beginning, the convergence area of the tracking
area is . Finally, it approaches to the expected convergence
area , that is, , for .

V. SIMULATION RESULTS

This section considers two examples. The first is concerned
with adaptive control of a time-invariant nonlinear system. The
second considers adaptive control of a time-variant nonlinear
system.

Example 1: The dynamical system used in the simulation
example is given in [51]

(70)

which is a second-order time-invariant nonlinear system.
The parameter values used in this example are as follows:

the reference input ; the initial value of the
output ; the initial value of the output derivative

; the required accuracy of the tracking error
vector ; the constants ;
the initial values , for

; the required minimum angle between the GRBF’s
; the edge length of the rectangles in the first

subgrid is ; the radius of center selection in the first
subgrid ; the width of the GRBF units corresponding
to the first subgrid ; the activation threshold

; the initial number of the variable networks is 45;
the vector ; the matrix ;
and the adaptation rates and .

The parameters associated with the variable network are

(71)

for . The maximum of (the number of the
subgrids) is limited to be 11.

The weights are adaptively adjusted by the laws in (46) and
(47). The adaptive control law is given by (38). The results of
the simulation are shown in Figs. 4–6. Though the difference
between the system output and the desired output is very large
at the beginning, the system is still stable and the tracking
error asymptotically converges to the expected range, which

Fig. 4. Reference inputyd(t), outputy(t), reference input derivative_yd(t),
and output derivative_y(t) of the system.

Fig. 5. Tracking errory(t) � yd(t) of the system.

is also shown in Fig. 5. As it can be seen from Fig. 6, the
number of GRBF units in the neural network also converges
in a period of time.

Example 2: Consider a time-variant nonlinear dynamical
system given by

(72)

This plant is different from that in Example 1. The functions
and in Example 1 are time-invariant nonlinear functions.

While, here the functions and are time variant.
All parameter values, the structure of variable networks, the

weight learning laws, and the adaptive control laws used in this
example are exactly the same as Example 1. The tracking error
between the reference input and the output of the system is
shown in Fig. 7. Although the plant to be controlled is time
variant, the convergence of the tracking error in this example is
still similar to that in Example 1. This shows that the scheme
developed in this paper for adaptive control using variable
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Fig. 6. NumberK of GRBF units in the variable neural network.

Fig. 7. Tracking errory(t) � yd(t) of the system.

neural networks also works well for time-variant nonlinear
systems.

VI. CONCLUSION

A variable neural network structure has been proposed, in
which the number of the basis functions in the network can
be either increased or decreased over time according to some
design strategy to avoid either overfitting or underfitting. In
order to model unknown nonlinearities of nonlinear systems,
the variable neural network starts with a small number of initial
hidden units, then adds or removes units on a variable grid
consisting of a variable number of subgrids with different sized
hypercubes, based on the novelty of observation. The adaptive
control algorithm, developed by combining the variable GRBF
network and Lyapunov synthesis techniques, guarantees the
stability of the control system and the convergence of the
tracking errors. The number of GRBF units in the neural
network also converges by introducing the monodecreasing
upper and lower bounds of the tracking errors. The results of
the simulation examples illustrate the operation of the variable
neural network for adaptive nonlinear system control.
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