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Decomposition of Generalised Frequency Response Functions for
Non-linear Systems Using Symbolic Computation

Abstract : A symbolic manipulation procedure, which both computes and automatically decomposes the
generalised frequency response functions of non-linear rational, polynomial and integro-differential
equation models into a set of closed-form n-th order transfer functions, is presented. The symbolic
representation exposes the explicit relationship between the model parameters and the non-linear transfer
Junctions in ri(:e jfrequermy domain and leads to important insights into the characterization of non-linear
systems. Examp!e} for each model type are included to demonsirate the symbolic transfer function

approach.

1.0 Introduction

The subject of non-linear systems has attracted a great deal of attention from mathematical
scientists in various disciplines ever since the pioneering work by Norbert Wiener in the
1940's. A variety of phenomena, in social and life sciences, the physical sciences, earth
sciences and engineering can be accurately described by non-linear equations which may
take the form of either algebraic, functional, differential or difference equations. These
various model representations play an important role in the common-sense understanding
of the physical world around us. Traditionally computational procedures based on these
models have almost exclusively involved numerical processing. These computations
provide an evaluation of the functions in terms of numerical values which can be plotted or
manipulated but the relationship to the original model is not transparent. It is therefore
becoming apparent that a new methodology which involves the integration of numerical
processing and symbolic reasoning will be very useful. The wide availability of symbolic
algebraic languages such as those provided by MACSYMA, Maple and Mathematica
provide the possibility of symbolic manipulation regardless of the complexity of the
mechanism. This means that problems which previously could only be tackled using
numerical simulation and analysis can now be solved analytically. All the necessary
algebraic manipulations, substitutions, changes of variables and other simplification steps
that would normally be carried out by an engineer can now be performed on the computer.
Symbolic computing techniques provide a powerful tool kit that can be used to explain the
behaviour captured by non-linear models.

The analysis and design of linear systems in the frequency domain is now an established
part of systems theory. When the system is non-linear these ideas can extended to higher
order or generalised frequency response function(FRF's) which can be estimated from
measured signals by extending the classical FFT, windowing and smoothing techniques to
many dimensions(Vinh et al, 1987, Kim and Powers,1988, Cho, Kim, Hixson and Powrs,"ff""f‘~a
1992). While these approaches have been succesfully applied they oftcn requt;c an ¢




polynomial and NIDE model into the frequency domain is described. Section 5
demonstrates how the generalised FRF's can be decomposed using symbolic manipulations.
Key theorems for the development of the new analysis procedures are provided by
decomposing the higher order transfer functions into a series combination of lower order
transfer functions. By using log plots in section 6, the multiplication/division of gain and
phase in the higher order transfer functions can be converted into addition/subtraction and
this makes the analysis and interpretation of the FRFs much easier. The phase
decompositjon of the generalised FRF's using phase unwrapping techniques is discussed in
section 6.1. Finally simulated examples are presented to illustrate the application of the-
new algorithms

2.0 Mathematical Foundation of Generalised FRF's

Traditionally, the input/output behaviour of a wide class of non-linear systems can be
represented by the Volterra series

OEDWAC! (1)
n=l
where y,(t), the n-th order output of the system, is given by
yn(r)=E‘Jj:hn(‘rl“'1u)n u(r-Tl)d‘rj ”>O (2)

i=l
and h () is known as the n-th order Volterra kemnel or generalised impulse response
function of order n. This reduces to the linear impulse response function h(t) for n=1. The
multidimensional Fourier transform can be applied directly to A, (e) to yield the n-th order
transfer function H,,( Jo,... jco“) or n-th order generalised or higher order FRF defined as

Hn(jml. "‘jmrl) = jj:‘”.f::h"(‘cl' 4 -c")e'j(“’!‘l+'“+“"1~)dr= Js drn (3)
The Fourier transform pair of eqn(3) can be expressed as
_ 1 - . ; flw,+.+w, )
h"(T"'"T")_(zn)”-[ ...[_H,,(jm,...,rm") % e’ dw,...dw, 4)

By substituting (4) into (2) and carrying out the multiple integration on 1,,...T, gives the n-

th order output of the system

1 — [+= [~ . " - . oy +ta, )t
= U ! ! " .
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where U(jo,) represents the input spectrum. When the system has a non-zero steady state

for zero input the behaviour of the non-linear system can be described by adding a degree-0
term y, into the Volterra series in eqn(l) (Peyton et al, 1992). This accommodates mean

levels in the measured signals of the process. The output can then be expressed as
N

YO =yo+ 2, 7,(0) (6)

n=l

Substituting (2) into (6) yields the following general expression



()= y°+zj*"j” tt )] T =), )

¢=l

The output y(¢) can be simplified by using the probing rncthod to expand the equation for
complex exponential inputs (Bedrosian and Rice, 1971)
R

u(e)=y e (8)
r=]
to yield
N e n R .
( ¥(£) =y, +zE.Lh,,(tl...tn)nZe"""d'c,-
n=] i=l r=l
N R o) G.'I +..+0_ I
SEDIDY [KL&( He ek m] )
. 2 """l. E +:.l., )
=H0+2 ZHn(jm,l,...,er_)e n e (9)

n=l n.r, =1
where H, is associated with the O order output y, which is independent of any input and
H,,(jcu,1 ,...,jm,') can be recognised as the non-linear transfer function. Note that in general

h(1,...1,) and the associated transform H"( JOY, s jm,') may not be symmetric functions

of their arguments. That is the order of arguments in A, (®) or H,(¢)cannot be interchanged.
Inspection of eqn(7) shows that the output y,(r) will be identical for any permutation of
the arguments. All kernels that differ only by the permutation of their arguments are
therefore equivalent representations of the system. Consequently we can arbitrarily replace
any kernel by 1/ n! times the sum of all the n! kernels resulting from all the permutations of
the arguments to yield symumetric kernels. The advantages of the symmetric form of the
Volterra kernels is that they are unique(the asymmetric form is non-unique) and the
convenience for manipulation because the order of the T's is unimportant. Because any
symmetric kernel can be symumetrized using the procedure described, there is no loss of
generality by considering only symmetry kernels. Thus the symmetrized n-th order
frequency response function is defined by

m 1 ; :
H"(jo,..jo,)=—= Y H, (.. jo,) (10)
* all permutations
of Wy .,

A wide class of non-linear systems can be characterized using the generalised FRF's
providing estimates of these are available. Estimation using FFT based techniques has been
widely studied and documented(Kim and Powers,1988, Cho, Kim, Hixson and Powers,
1992) but only the parametric estimation approach will be considered in the present study
because this provides the models which form the basis of the symbolic expansions.

3.0 Parametric Estimation of Generalised FRF's
3.1 The Non-linear Rational Model



Consider the non-linear dynamic discrete-time rational model which is a superset of the
polynomial model and which can be derived as a particular expansion of the NARMAX
model (Chen and Billings, 1989)
$() = aly(e=1),...y(t=k),u(t =1),...u(t = k).E(t = 1),...5(t = £))
b(y(e=1),...y(e= k) u(t=1),...u(t = k),5(t =1),...(t—k))
where y(t) and u(r) represent the output and input at time ¢(r=1,2,...) respectively, k is
maximum lag of the model, £(¢) is an unobservable independent and identically distributed
noise with zero mean and finite variance o7, and a(e) and b(e) are used to denote

+C(1) 11

polynomials in the nume?ator_ and denominator respectively. Algorithms for detecting the
model structure, estimating the parameters, and validating the models are available in the
literature(Chen and Billings, 1989, Zhu and Billings, 1991, Billings and Zhu, 1992). Once
the identification process is complete, the noise terms, which are included to ensure
unbiased estimation, are discarded to yield a deterministic 'NARX(Non-linear
AutoRegressive with eXogenous inputs) model containing input and output terms only.

The resulting rational non-linear rational NARX model with a constant term a,, can be

expressed in the general form as
Qoo+ Yu(“em)\“)
y(6)=
Y, (£:8,,5.u)
where Y‘,(r;B‘,,y,u) and Yb(r;eb,y,u) may be viewed as an expansion of polynomials in the

(12)

numerator and denominator respcctively defined as

p+q

reu,y,u Z{Z z - Hy t-k Hur k.) (13)

m=1| p=0£&, qu-l i=l i=p+]

and

(f Bb’yr” Z{ 2 qu( 1o p+q)Hy([- k H“ [=K, (14)

m=0| p=0k ko, i=l i=p+l

where M, and M, denote the maximum degrees of nonlinearities, &, nndkb are the

maximum lags in the input or output in the numerator and denominator respectively.
o(e) and B(e) are the parameters associated with the various terms in the two

polynomials(corresponding to the parameter set 8, and 6, respectively),p+¢ =m and
k k k

=33

b=l k=l k=l

Notice that, the standard polynomial NARX model is just a special case of eqn(12) given
by setting Y, (#:6,,y,u) =1.

For example a simple rational model of the form
(1) = 2.0+198y(r=1)+0.01y(r =Du(r=1)
y 0.9+1°(t-1)

(15)



can be described by eqn(12) with the following assignments
oy =2.0, a,,(1)=1.98, o, (1,1)=0.01, By, =0.9, By, (1,1)=1.0 (16)
k,=k,=1,M,=1andM, =2

3.2 Mapping the Non-linear Rational Model into the Frequency Domain
Generalised FRF's of any order can be obtained by mapping the non-linear rational model
into the frequency domain(Billings and Tsang, 1989a, Peyton-Jones and Billings, 1989).

-

¢ it
Consider the general representation of a non-linear time domain model
M(£:6,y,u)+ 0y, =0 - a7
where M (o) is a functional series in terms of the output y(r), input u(f), @, is a constant
term and 6 is the set of model parameters. In the discrete-time case, u and y contain both
the current and previous sampled values so that
u={u(e),u(r-1),...}
y={xe)y(e-1)...}
The generalised frequency response function H ,(e) can then be obtained by substituting the
Volterra series eqn(9) to replace y in M(e)to yield
M(t:8,H,0,)+a,, =0 (18)
where H={H,, H,, ..., H,} and o, implies {w,...0,}. Introducing the operator € (o)

@) +tw, )t

to denote the operation of extracting the coefficient of e’ (
expansion is obtained(Zhang, Billings and Zhu, 1993)

€. [M(1:6,H,0,)+0a,,]=0 (19)
This forms the basis of a recursive algorithm for determining the generalised FRF's from
rational models (Zhang, Billings and Zhu, 1993). The rational model is first probed using a

jmll

, the following harmonic

single complex exponential ¢”". This permits the determination of the linear transfer
function H,(jw,). The probing is then extended to the sum of two complex exponentials,
given by e*'+¢’, 10 yield H,(jo,, jo,). This procedures continues with one additional
complex exponential being added to the input at each step so that at step n the input
consists of the sum e’ +...4+¢’*"'. The non-linear transfer function of order » is constructed
from all of the previously determined lower order non-linear transfer functions. Clearly the
computation can rapidly become cumbersome as the order increases, even for mildly non-
linear systems. Hence an easier and more efficient approach needs to be formulated when
dealing with severe-nonlinearites. This can be achieved for the non-linear rational model by

using the algorithm derived by Zhang, Billings and Zhu, (1993).

Rewriting eqn(12) the rational model can be expressed as
M(e) =00+ Yu(r?e.w)”“) = Yh(r;ebv.\’-"))’(f) =0 (20)



The desired frequency response functions H (e) for this model, which includes the

polynomial NARMAX model as a special case, can then be found by applying the operator
€,(¢) to the model expression M(s) according to eqn(19).The final algoritim for

computing n -th order generalised FRF's takes the fonm (Billings et al, 1994)

(Boo Z Z PO( - )HP‘ XE =jlw+. +u.|')k'+

P=l ki k, =1 i=]
M, &k P
S 3B, o(kveesk, )HE x[Ze”"‘""“"‘"}*‘ +IDH;‘”’"( JOyyenes JO,) =
p=l t,.;"-l v i=]
O s Jp it
&y k=]
M, K, _
+Z Zap-ﬂ(kl’ ’kp)Dan( )
p=2 ki k=1
2 & ( Oy gark |+...+m,k,_q)n
K- ,zu?"fp sk e
-3 ZBO.,( gty ()
q=i *l
_z EBPO( 1y . )DHH?-:( )
p=l bk, =1
£ & g b
"2 2 2Bl T (0) @
q=1 p=l k k, =

The recursive relations °H, () are given by

PHE"(0) = Y HE " (jyuees j©,) PH, Ly oy (@i vees j@, Je /0N (22)
i=0

Note that the recursion ends with p =1, "H,l.l(jcu1 ..... j(on) is given as

)e—j[r.u,+...+u:,]k,

°H. (jo,....jo,)=H,(jo,..., jo (23)
and °H, ,(e)is a subset of °H, (e), defined by excluding all the terms of H (e)in the
.expansion of eqn(22). For example the expansion of f’H”(j(n,,Jr'(.ul)l.xsing eqns (22) and
(23) is given as

4
DHL.;(j(Dl,jmz) = HSHZ(jmlvJ.mg)ze-j(m'mz'*'

i=l
H2H,(jo,)H,(jo, )[e'j(“’“"*“’="’ s lokroiks) | ik sk,

e-i(“h":"'“':*l) +e‘f{°’tk:+”:*1) +e'i(‘”t*3"’“’:k:]]

and Dgz‘.x(jmi , jo,) is obtained by excluding all the terms of H,(s)
D-H-l‘*(jwl vfmz) = Hy H, (jml )H1Umz)[e—jmmw:kl} e mbaruts) o pmlakisagg)

e'f(‘“lk:*‘”:"l) +e‘J'(“’1“J*“’:"|) + e'ﬂ“h‘-';’*“’:*: )]

Setting the input to zero the initial condition H, can computed from the resultant steady
state equation



M, &,
BooHo =00 =, 2. 0,0(ki0nrk,, H*’+): ZB,,D veeenk o JHE =0 (24)

p=l k k=l p=l k&, =1

It seen that oy, is the only constant term in the above equation. Notice that there may be
more than one solution for H, which implies that the underlying system may exhibit
multiple steady state solutions. If &,,=0, that is if the numerator polynomial in eqn(12)
does not contain a constant term, H, will be zero. Finally it is worth noting that the

generalised FRF for the standard polynomial NARMAX model is just a special case of
eqn(21) given by setting all the coefficients B..,(*) =0 except B,, =1 or setting Y,(¢) =1 in

equation(12).

Inspection of equation (21), shows that the first few generalised FRF's with maximum
nonlinearity M, =5 and M, = 4 can be written as

Hlmm(jml) =(iao.1(k1)e-ﬂmm}+i iap.n(klv---’kp) D‘L—"l,p(’)"‘

p=lk k=l
4k i ky ;
2 Z a ( p+s{)e-1(m]k’-‘) DHD.p(.) ZB{},q(kl""kq)e_!(mlkl)Hﬂ
p=l bk =] £k g =
M, & P ) M, k&
[BM = Dok k, JHE X Y e 4 S N B (ke JHE
p=l ky k=1 i=] p=l ky k=1
‘—j(m.)t. +1)J
5
& flw by +w ks : - 7
Ho(jo,, jo, -( zao,(kl. kg )e R LN N o (kyenk,) PH,y, (0)
kka = p=2ky k=l

2 2 k,

2 Yo (b, Je oy (o)

qﬂl p=l k, Kpeg=l

—z Zﬁoq( 19 ) ot Hz-q(‘)

q:l kb=l

-z ZBPO( reeek,) PHE (o)

p=1 kb =l

Ea & =Awp ko tetwak
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processing which would quickly become overwhelming for the more complex radonal
models which are typically obtained from system identification, it becomes a necessity to
consider an alternative approach. Symbolic processing, which will be considered in section
5.0, provides the ideal solution because of the flexibility allowed and more importantly
because the analytic form of the expressions are provided and these significantly aid
interpretation.

4.0 The Non linear Integro-Differential Equation Model ~
It is also 1mportant to consider how continuous time non-linear models can be mapped into
the frequency domain. A polynomial structure for a broad class non- -linear integro
differential models may be represented as
M m L ld p+q
Y Y ool JITD YO [T DMult)+ €y =0 (28)
m=l p=04 .1, =~L i=l i=p+l

where p+g=m, cp‘q(:'l....,!m) denotes the parameter associated with the p-th order

nonlinearity in D'y(¢) and the g-th order nonlinearity in D"u(r), and the D operator is
defined by
d'x(r)

|
D'x(=1: -« dt (29)

I .. Jx(ﬁ)dﬁ---dfm [<0

Consider for example a specific instance of the NIDE model with a constant term

D*y(1)+(1=y(0)* ) Dy(D) + (1) +10=u(t) =0 (30)
This may be obtained from the general form eqn(28) by defining the coefficients as
€,(2)=1.0 c,,(1)=1.0 €,,(0,0,1)=-1.0
c,(0)=1.0 C,=10 ¢, (0)=-1.0 else ¢, (¢)=0;
(1)

4.1 Mapping the NIDE model into the Frequency Domain

Peyton-Jones and Billings, (1992) showed that the n-th order generalised FRF of the NIDE
in eqn(28) is given by

M L P
-(2 3 cp_o(zl,...zp)HnP"xZ(jwl+---+jw,.)"] H ="y, jo,) =

p=l I‘JFa—L i=|

icnﬁ([p...,ln)(jml)" ---(j(!)")r'

=-L

+22 3 alledpeg 0, ) ™ 0,V H, (00,

q=1 p-—l hpg=-L

+z ZC (1. ) 0 J©,)

p'l ‘| f ==L



Hm (e j0) = 3 Cashorle) 0 0
I a==L
S 4 L

3T S0, (el o) )™ Hi._, ,(j@ e jOsy)

q=l p=l 0, ==L
s L

I

+z Zcp.ﬂ(ll.""’lp)Cﬁs.p(jmp---vjms)
p=l h.1,==L
(s L P _
‘ —[2 2 cp.(}(ll""[p)Hop-l XZ(jCOl + jo, + jo, + jo, +J.ms)"} (36)
p=l i, ==L i=l

The asymmetric generalised FRF H"(jo,,..., jw,) can be converted into symmetrised

form using equation (26) and the properties mentioned in equation (27).

5.0 Symbolic Computation of the Generalised Frequency Response
Functions

Several researchers(Evans, Karam, Kevin and McCellan, 1993, Nethery and Spong, 1994)
have investigated symbolic signal processing procedures where the computer manipulates a
formula rather than a sequence of numbers. Maintaining the signal processing operators in
symbolic form enables machines to simplify, rearrange and rewrite the symbolic expressions
until they take a desired form.

The generalised FRF's are an important mechanism for investigating the behaviour of non-
linear dynamical systems(Chua and Ng, 1979a, 1979b, Billings and Tsang, 1989a, 1989b)
and symbolic expressions for these in terms of the time domain model parameters would
considerably aid their interpretation and understanding. Closed form expressions for the

generalised FRF's of any order for both discrete time and continuous time NIDE have been
given above. The derivation of the mathematical expressions for Hl(jm,), Hz(jwl,j(nz),

H,(jw,, jo,, jw,) etc for even very simple model forms is clearly very complex (Peyton-
Jones and Billings, 1989, Zhang, Billings and Zhu, 1993) and rarely attempted for anything
other than trivial models and then only up to n=3. Symbolic processing of the generalised
FRF's would therefore seem to offer enormous potential. Analytic forms of the transfer
functions could be inspected and if required specific model parameter values could be
inserted to produce numerical or graphical output.

In symbolic processing computer algebra, computational geometry, automated reasoning,
and automatic programming are utilised. The main task in the derivation and analysis of
generalised FRF's is the manipulation of elementary functions by powerful pattern matching

methods including conditional rules. This permits the development of complex rule bases



functions to decompose them into easy to interpret components and to show how these
components combine and interact to produce the overall FRF's. -

Applying the same argument, the phase decomposition is obtained as

arg|H,(jo,.... jo,)| = argP(j@,,... jo,)| - argl0( o, jo,) (39)
However to use this transformation, the ambiguity of the argument must first be removed
and then only general superposition can be satisfied. The ambiguity of the argument is
removed by considering the principal value modulo 2. This cannot be employed here and
as a result phase unwrapping will be used as an alternative.

6.1 Phase Unwrapping:The Integration Approach
Several numerical schemes have been proposed to unwrap the phase spectrum for the linear
systems case(Tribolet, 1977, Mc Gowan and Kuc, 1982). These ideas were extending to
the generalised FRF case which is required for non-linear systems by Zhang and
Billings(1993). The approach adopted here is based upon the so called numerical
integration scheme. This scheme combines the information contained in both the derivatives
and the principal values of the phase. Initially two dimensional phase unwrapping is derived
by extending the results from the one dimensional case. The phase response can be defined
as
of Im[H(jm)]
Re[H(jw)]
To remove the ambiguity and hence the discontinuous jumps in the traditional phase plots
at +180°and at the same time to satisfy eqn(39) the argument arg[ 4, ()] must be defined
so that it is a continuous function of H,(e). Using the principal value however(Zhang and

arg[ H(jw)] A tan (40)

Billings, 1993) can introduce artificial discontinuities of 27 making it impossible to
measure the net change of phase in H,,(e) as the frequency variables {ml...mn} go from 0
to oo (0 to 2w for discrete systems). This problem can be addressed by defining an
unwrapped phase function ¢(w,) as the integral of the phase derivative. For notational
reasons it is-convenient to define

H, () A Re[H(jw)]; H,(w) A Im[H(jw)] @41)
hence
H,(jw)
H,(jw)
Then by formally computing the derivative of the right hand side of equation (40) and
equating this to the derivative of dp(o)2 ) yields

o(w,) 4 tan™

42)

) 20002y ) n(0)
do(,) _ do, dw, (43)
dw, Hilw,)+H}(w,)



The two derivatives, H,(s)and H',(e) are obtained by perturbing the frequency variable @
with a small deviation, that is _
H.R(m)=HR(u)+Am)—HR(m); H.’(m)=H,(m+Am)—H,(m)
Aw Aw
Aw = 0.001 was used in the present analysis. All the values of H,(e)and H,(e) are directly
extracted from the complex value of H(jw). The phase derivative can now be computed

using eqn.(43). The unwrapped phase function ¢(v2)at a particular frequency v, can then

(44)

be cvaluatcd at any given frequency ® by integrating the derivative
% 4 d¢ 0)1
~. o(v,) = oo )+ [ == ( s (45)

To obtain the unwrapped phase on a gwen sequence of frequency values ®,,
k=12,3,4...,N, along the frequency axis the unwrapped value at each ®, can be
evaluated separately, all from the initial point defined in this case as @, =0. Two
dimensional phase unwrapping algorithms can be derived by considering the second order
generalised phase response in detail. The extension to higher order generalised frequency
response functions is obtained by increasing the number of dimensions(Zhang and Billings,

1993). Consider the 2D unwrapped phase function as an extension of the one-dimensional
unwrapped phase

(mmv ) i a¢(0.)1, )

¢(Vl"v ) ¢(m101m70 J.mm_T-—d a f (46)
where the partial derivatives are given by formulas analogous to (43)
oH,(®,,. 0, H, (0.0,
Hk(m,o.mz)___(;m‘_"(.ﬂ__)_H (0,0, )a (aﬂz;o ®,)
(00.0,)= A : (47)
lH(meaJ(ﬂl)!
and
oH,(w,,v, 4 (@..v,
B R LSS AL v,
a¢(wlgvz)= 1 | (48)

|H(j,.jv,)|
The numerical integration in eqn(46) can then be evaluated to give the unwrapped phase
response value ¢(v,,V,)at any point (v,,v,). The initial point (,0,04) can be taken as
the origin (0,0) or chosen arbitrarily. The selection of the initial point may affect the
integration time and probably the relative position of the resulting phase surface. Although
results obtained with different initial points may differ from each other by 27 they will have
the same shape. In order to get a 3D mesh surface for the unwrapped phase response, the
two frequency axes are each sampled to form an N xM grid. A 3D graphical surface can

then be obtained by computing the unwrapped phase value at every point on the frequency
axis denoted by [, (1), @, (k)] with i =1...N and k =1,... M.

7.0 Examples

16



7.1 A Rational Model Example
Consider the radonal NARX model which is represent by -
(1) = 0.9004y(r—1) = y(t—2) +0.001u(¢ = 0)

0.9979+0.002097y*(¢) —0.001097 y(¢) y(¢ 1)

The sampling frequency in this case was 1KHz. The parameters of the rational model can

be coded to conform with eqn(12) as follows

a,,(1)=0.9004; a,,(2) =-1.0000; e,,(0)="0.001;

Boo =0.9979; B,,(0,0)=0.002097; B,,(1,0)=-0.001097

withk, =2, k, =land M, =1, M, =2. e

(49)

Loading this model into the symbolic manipulatibn routines the explicit symbolic form of
the symmetrized generalised FRF's up to the fifth order, are produced from an evaluation of
equations (21), (26) and (27) as

. 0, (0)
sym = -. - 0
B o) g e e - a0 .

HE"(jo,, jo,) =0 (51)
H?(jo,,..., jo,) = —([BM,(O,O) +B,,(1,0)(e7 47 47 ) 3]
H,(jo,)H,(jo,)H,(jo,))
(Boo = 0t p(1)e7termasm=) _ o,y (2)e7 2o (52)
H"(jo,,..., jo,) =0 (53)
HE™(jo,rever j005) = (B2 (0, 0)(H, (o, ) H (oo ) Hi (o, oo, oy ) +
H,(jo,)H,(jo,)H,(jo,, jo,, jos) +
H,(jo,) Hy(jo, s (jo, jo,. joy)))
—B:'D(I,O)(((e""‘" +e eI T e )H, (jw,)
H,(joog) Hy(jo,, jo, jo,)) 15+
((e""‘" +eT e 4o o) H (j,)
H (jog) H,(jo,. jo,. jo,)) / 5+

((e'i(“’|+“’:*mj) e e'j{“’s*"“:*‘“h) + e'j('-“l +wy+o,) o e'f('”:“‘"’.\"'wa) +e‘i(m|*"":""“s)

e'i(wl*m;ﬂ“s) +e‘f(“’:+‘“:+‘°s) +e'f(m|+‘"4"‘us} +e'.f("'z“'“’4*“’s} +e'i(0’:+'-°4+ws))

H,(jo,) H,(jo,) Hy(jo,. jo,. j05)) 110))/
([30‘0 _alvo(l)e-j(m,m:m,*—m‘m,) _aw(Z)G—jl{uld-mzd-w,d-m‘«m,}) (54)
These expressions reveal how each time domain model term influences the generalised
FRFs and if required they can be numerically evaluated by sweeping each frequency

variable over some defined range to yield the traditional plots of gain and phase. The
response of the first order FRF, which only depends on the linear terms eqn(50) are plotted



in figures 2a and 2b. These show a resonant peak at a frequency of 0.01518 rad/s. The
inverse tangent in eqn(40) which used to compute the phase angle is wrapped in the range
of [—180",180"] as in figure 2b. Applying eqn(42) yields the unwrapped phase illustrated in

figure 2¢ which is much easier to interpret.

The second order generalised FRF's is zero because when n=2 there are no terms which
make a contribution to H,(jw,, jo,).

-

Now consider a slice of the third the order FRF H,(jo,, jo,, jo,), which is illustrated in--
figure 3a for the region 0<, £0.06 and —0.06 < w, <0.06. Figure 3a shows a number
of resonant peaks and ridges which can also be seen in the corresponding contour plot of
figure 3b for w, = w,. The ridges are generated whenever one of the factors H,(e) in the
numerator of eqn(52) is excited at 0.01518 rad/s the linear resonant frequency and the
peaks occur when this is true for all three factors(see the dotted lines in figure 3b).
However, the plots seem to be very complicated and which model parameters contribute to

the formation of which peaks, ridges or valleys is not apparent. Symbohc processing the
third order FRF in eqn(52) using the results of equations (38) and (39) with @, =,

simplifies the analysis further.

The complete third order FRF is now easier to understand because it can be decomposed
into the addition of individual contributing effects. Each of these effects can be graphed as
shown in figures 4a, b, ¢, d and e which make-up the total magnitude of the FRF in figure
3a. The original phase plot shown in figures 3¢ and 3d exhibits the usual discontinuities
which make it difficult to interpret. The unwrapped phase is illustrated in figures 3e and f.
The individual components which contribute to figure 3¢ are shown in figures 5a, ¢, e, g
and i. Inspection of the components revealed by the symbolic processing aids the
interpretation of HJ( Jjo,, jo,, jmj). Figure 4a shows that the effect of the parameter
a,,(0) is to lower the magnitude of H,(e) by a constant amount of -360dB.
H,(jw,, jo,, joo,) will therefore be negligible compared with the first order FRF under
normal operation of the system. This parameter has no affect on the phase which for this
term will be zero. The contribution of the phase angle 180° in the phase plots of the FRF's
in figure Sa comes from the minus sign in H,(e)as indicated in the symbolic expression
eqn(52). The ridges in figure 4b and figure 4¢ are formed by the dimensional extention of
the first order frequency response functions, H,(jo,) and H,(jw,) which covers the
frequency range (—0.06,0.06) and (0,0.06) respectively. Clearly the model parameters in
eqn(49) have a direct influence on the shape of the FRF's in figures 4b, 4c and 4d. The
magnitude plots in figure 44 exhibit two distinct ridges and by graphical measurement,
these ridges correspond to the output frequency w,,, =, +w, =%0.01518 rad/s. Thus,
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significant non-linear characteristics. Analysis shows that these effects are negligible for this
system.

7.3 A Non-linear Integro-Differential Equation Example
This class of models includes systems of the following form(Adamopoulos and
Hammond, 1988) with the inclusion of a constant term

D*y(£)+0.1Dy(1)=0.1y()+ y(¢)' =10 =u(r) =0 (62)
where from gqn(28)
Cio (2) =10 Cio (1) =0.1 C1,o(0) =-0.1
€;,(0,0,0)=1.0 ¢, =-10 ¢, (0)=-1.0 else ¢, ()=0;

The behaviour of the process can be analysed using the non-linear transfer function
approach using the recursive relationship given in section 4.0.

The symmetrized generalized FRF's, up to fifth order, can be obtained for this model
symbolically using equation (32) and converted to symmetrical form using equations (26)
and (27) to yield

sym [ . — Cﬂ.l(o)
Homjo) e2(0)+ @), () + U, 7 0,5 (2) + 3H,2635(0,0,0) (63)
3H, ¢,,(0,0,0)H,(jo,)H,(jw,)

€,0(0)+(Jo, + jo,)c o (1) + (jo, + jw,)*c,,(2)+3H, c;,(0,0,0)

quz(jwlvjwz) e

(64)
Hs(joo,, joog. jooy) = =(650(0.0,0)(H, (o, ) H, (oo, ) H, (o, ) +3HoH, (jeos ) H (Jeo, joo,)
+ 3H . H, (jml )Hz(jm:fmj))

Cl.a(o)'*'(fm] +Jjo, + jmJ)Cl.U(l)
+(j@, + j@, + jo,) ¢,,(2) +3H,%¢,,(0,0,0) (65)

H™(j,0er jo, ) = =03, (0.0,0)(H, (oo ) H, (e, ) Hy (o, jo, )+ H, (o, )H, (oo, ) H, (o, jeo,)

H,(jo,)H,(jo,)H,(jo,, jo,)+3H,H,(jo,, jo,)H,(jo,, jo,)
+3H,H,(jo,)H,(jo,. jo,, jo,)+3H,H,(jo,)H,(jo,, jo,, jo,))
€,0(0)+ (jo, + jo, + jo, + jo,)c,,(1)
+(jo, + jo, + jo, + jo,) ¢,(2) +3H,%¢,,(0,0,0) (66)

H™s(je, ... joos) = ~{€30(0,0,0)(H, (je, ) Hy (jw, , je, ) Hy (s, jeo,)

+Hl(jmj)H2(ij vjmz)Hz(J.m.th.ms)*' Hl(jml )H:(J'wzsjmg)Hg(jﬂJ,;,jms)
+H,(jo,)H,(jo)H,(jo,, jo,. ju,)+3H,H,(jo,, jo,)H,(jo,, jo,, jo,)
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The use of symbolic algebra in the corﬁputation, decomposition and analysis of generalised
or higher order frequency response functions for both discrete time polynomial and rational
NARMAX models and continuous time non-linear differential equations has been
presented. The symbolic processing provides an analytic form for each frequency response
function and allows the user to see how the complex peaks, ridges and valleys are produced
by the time domain model terms and coefficients. Three examples have been discussed in
detail to illustrate the application of the new algorithms.

~

V]

Acknowledgements

One of the author, (SAB) gratefully acknowledges the support of SERC grant ref
GR/J051469.

Both authors gratefully acknowledge Dr. R Jefferys of Conoco Ltd for supplying the TLP
data and for all the help he provided during the analysis of this data.

-~
e

References
ADAMOPOULOS, P.G. AND HAMMOND,J.K, 1988, Wigner-Ville distribution and pattern
identification for non-linear systems, 6th IMAC Orlando, pp1446-1452.
BEDROSIAN,E. AND RICE,S.0,1971,The output properties of Volterra systems (nonlinear

systems with memory)driven by harmonic and gaussian inputs , Proc JEEE, Vol.59,
pp. 1688-1707.

BILLINGS,S.A. AND CHEN, S. 1989, Identification of nonlinear rational systems using a
predictive error estimation algorithms, /nt J. Systems Sci., Vol.20(4), pp. 467-494.

BILLINGS,S.A. AND PEYTON JONES, J.C,1990, Mapping non-linear integro-differential
equation into the frequency domain, /nt J. Control, Vol.52(4), pp. 863-879.

BILLINGS,S.A. AND ZHANG,H.,1994, Frequency domain effects of constant terns in non-
linear models, Research Report no. 524, Deparmment of Automatic , Control and
System Engineering, University of Sheffield, UK.

BILLINGS,S.A. AND ZHU,Q.M, 1991, Rational model identification using an extended least
squares algorithm, /nt J. Control, Vol.54, pp. 529-546.

BILLINGS, S.A. AND ZHU,Q.M,1994, A structure detection algorithm for nonlinear
dynamic rational model, /nt J. Control (to appear)

BILLINGS,S.A. AND TSANG,K.M,1989a, Spectral analysis for nonlinear systems.Part I-
Parametric nonlinear spectral analysis, J. Mechanical Systems and Signal
Processing, Vol.3(4), pp. 341-359.

BILLINGS,S.A. AND TSANG,K.M,1989a, Spectral analysis for nonlinear systems.Part II-
Interpretation of nonlinear frequency response functions, J. Mechanical Systems
and Signal Processing, Vol.3(4), pp. 341-359.

24



CHEN,S. AND BILLINGS,S.A.,1989, Representation of nonlinear systems: The NARMAX
model, Int J. Control, Vol.49(3), pp. 1013-1032.

CHO,,Y.S., KM, S.B., HIXSON, E.L. AND POWERS, E.J., 1992, A digital technique to
estimate second order distortion using higher order coherence spectra, JEEE
Transaction on Acoustic, Speech and Signal Processing, Vol. 40(5), pp. 1029-
1040.

CHUA,L.O. AND NG,C.Y.,1979a, Frequency domain analysis of nonlinear systems:
Gengral theory, JEE Journal Electronic Circuits and Systems, Vol.3(4), pp.165-
185. ““

CHUA,L.O. AND NG,C.Y.,1979b, Frequency domain analysis of nonlinear syst;-:ms:
Formulation of transfer functions, IEE Journal Electronic Circuits and Systems,
Vol.3(6), pp.257-269

EVANS,BRIAN.L.,KARAM,LINA J.,WEST,KEVIN A AND MCCELLAN,JAMES H. ,1993,
Learning signals and systems with Mathematica, IEEE Transaction of Education,
Vol.36(1), pp. 72-78.

JEFFERYS,E.J, BILLINGS, S.A, JAMALUDD]N, H., AND TOMLINSON, G.R,, 1991 A
non-linear discrete time model of the drift force, Proc. Sixth Int. Workshop on
Water Waves and Floating Bodies, Woods Hole.

KM, K.I. AND POWERS,E.J.,1988, A digital method of modelling quadratically non-linear
systems with a general random input, JEEE Transaction on Acoustic, Speech and
Signal Processing, Vol.36, pp.1758-1769.

MCGOWAN,R. AND KUC,R.,1982, A direct relation between a signal time series and its
unwrapped phase: Theory, examples and program, /EEE Transaction on Acoustic,
Speech and Signal Processing, Vol.30, pp.719-726.

NETHERY,J.F. AND SPONG, M.W., 1994, Robotica: A Mathematica package for Robot
analysis, JEEE Robotics & Automation magazine, Vol. 1, No.1, pp13-40

PEYTON-JONES,J.C. AND BILLINGS, S.A., 1989, A recursive algorithms for computing
the frequency response of a class of non-linear difference equation models, Int J.
Control, Vol.50(5), pp. 1925-1940.

PEYTON-JONES,J.C. AND BILLINGS, S.A., 1992, Mean levels in non-linear analysis and
identification, Research report no.454, Department of Automatic Control and
Systems Engineering, University of Sheffield.

WIENER,N., 1942, Response of a nonlinear device to noise, Report no. 129, Radiation
Laboratory, MIT

WOLFRAM,S., 1991, Mathematica, A System for doing Mathematics by Computer,
Addison Wesley Publications.



TOMLINSON,G.R AND BILLINGS,S.A., 1991, Higher order frequency response functions
in nonlinear system identification, Int. Forum on Aeroelasticity and structural
Dynamics, Aachen, 3-6 June.

TRIBOLET,J.M.,1977, A new phase unwrapping algorithm, JEEE Transaction on
Acoustic, Speech and Signal Processing, Vol.26, pp.170-177.

VINH,T.,CHOUYCHALT.,LIU,H., AND DJOUDER,M., 1987, Second order transfer
function: Computation and physical interpretation, 5th JMAC, London.

ZHANG,H., AND BILLINGS, S.A.,1992 , Unwrapping the phase response functions for
nonlinear system(Submitted for publication)

ZHANG,H., BILLINGS, S.A. AND ZHU,Q.M,1993, Frequency response functions for
nonlinear rational models, /ut J. Control (to appear)

26



Figure Captions
Figure 1: The n-th order transfer function

Figure 2: H, (jw ) of the rational model eqn(49) (a) Magnitude response (b) Phase
response (c) Unwrapped phase response

Figure 31H3(j0)1 , j©,, ja, ) of the rational model eqn(49) (a) Magnitude response (b)
Magnitude contour plot (c) Phase response (d) Phase contour plot (¢) Unwrapped phase

response (f) Unwrapped phase contour plot

Figure 4: Magnitude decomposition of H,(jw,, jw,, jm,) for the rational model eqn(49)

Figure 5: Phase decomposition of H,(jw,, jo,, jw,) for the rational model eqn(49) (a),(b)

,(d), (f) and (g) -Principal value of phase response (c).(e).(g) and (i) - Unwrapped phase
response. _ :

Figure 6: Hl(jml) of the polynomial model eqn(SS) (a) Magnitude response (b) Phase
response

Figure 7: Hz(ju)l,jml)ofthe polynomial model eqn(55) (a) Magnitude response (b)
Magnitude contour plot (c) Phase response (d) Phase contour plot

Figure 8: H,(jw,, jo,, jo,)of the polynomial model eqn(55) (a) Magnitude response (b)
Magnitude contour plot (c) Phase response (d) Phase contour plot

Figure 9: H,(jo,) of the NIDE model eqn(62) (a) Magnitude response (b) Phase response

Figure 10: Hz(jcol,jo)z)ofthe NIDE model eqn(62) (a) Magnitude response (b)
Magnitude contour plot (c) Phase response (d) Phase contour plot

Figure 11: H:,( Jo,, jo,, jcoj)of the NIDE model eqn(62) (a) Magnitude response (b)
Magnitude contour plot (c) Phase response (d) Phase contour plot
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Figure 1: The n-th order transfer function
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