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Frequency Domain Effects of Constant Terms in Nonlinear Models

S.A. BILLINGS and H.ZHANG
Dept. of Automatic Control and Systems Engineering, University of Sheffield.

Abstract: When converting a time-domain model of a nonlinear system into the frcqucricy
domain to get nonlinear frequency response functions, any constant or dc term in the time-domain
model can have a significant effect on the time-to-frequency domain mapping. The constant term
can not therefore simply be discarded as in the linear case. This paper investigates this effect and
two new algorithms are derived to compute the frequency response functions for two classes of
nonlinear models, the polynomial model and the rational model when a constant term is present.
The results are illustrated using several examples.

1. Introduction

The generalised frequency response functions (GFRF) of a nonlinear ‘system are impor-
tant tools for investigating the behaviour of nonlinear systems. These frequency
domain representations, which are based on the Volterra series, are a natural extension
of the well-known linear frequency response function for linear systems. Classical
methods of estimating the GFRF from measured signals of real processes with unk-
nown structure isolate each order of frequency response function and employ multidi-
mensional correlation or FFT techniques together with windowing and smoothing
techniques(Schetzen, 1980; Vinh et al 1987; Kim and Powers, 1988; Chua and Liao,-
1989 etc). An alternative approach, which is also more powerful for higher order
GFRF’s, is to identify a nonlinear time-domain model, usually a NARMAX model,
and then to use this model to generate the required GFRF’s for the underlying system
(Billings and Tsang, 1988; Peyton-Jones and Billings, 1989). The higher order
GFRF’s for rational NARMAX models which represent a large class of nonlinear sys-
tems have also been derived recently by Zhang, Billings and Zhu (1993). But all these

methods are currently restricted to models without constant terms.

In the linear case the system models, linear differential or difference equations, usually
do not include constant terms in the model expressions. This often happens because
the constant term can simply be discarded if the static behaviour is not of interest,

without affecting the system dynamics. Usually before system identification any non-




zero mean value of the measured input or output data can be removed by subtracting
off the dc level if the system is known to be linear. This has no effect on the dynamic
characteristics of the system. However, this will not be the case for nonlinear systems.
Nonlinear systems may produce a d.c. output component even when the input is zero-
mean. Therefore, removing the mean level may modify the dynamic information con-
tained in the data and give misleading results. Indeed, it is easy to show that the pro-
cess of prefiltering the input/output data leaves the system operator unchanged only in
the linear case (Peyton-Jones and Billings, 1992). For most nonlinear systems the act
of prefiltering will introduce structural bias into the estimates even in the ideal noise

free case.

As a consequence, a constant term should always be explicitly estimated as part of the
model when the system is nonlinear (Billings and Fadzil, 1985). For linear models the
constant term can simply be discarded when converting the model to a transfer func-
tion since this will not affect the frequency domain characteristics. But in the non-
linear case discarding the constant term will affect the frequency domain characteristics
(Peyton-Jones and Billings, 1993). In this study, the frequency domain effects of the
constant term contained in nonlinear models is examined and a new modified algo-
rithm which generates higher order GFRF for nonlinear rational models is derived for
the case when the time domain model contains a constant term. Practical aspects of
the modified algorithm are discussed and a comparison with previcus work is includcd’

together with several illustrative examples.

2. Harmonic Expansion With a Constant Term Included

Often for simplicity of analysis it is assumed that the system steady state response to a
zero input is also zero. For this reason the Volterra series normally excludes a constant
term. For the case when the system has non-zero steady state for zero input, the model

expression should contain a constant term such as
M(t;0,yu)+cog=0 (1)

It is necessary therefore to include a constant term in the Volterra series in order to

accommodate the mean level of the output. This can be achieved by adding a degree-0




term, Y into the Volterra series. The output can then be expressed as

N
y@)= Y y.(t)
n=0

N T n
+n§1_‘[,.” [ Ba(ey - 5T0) iI;Ilu(r—Ti)dti @

=00

for which the nth order frequency response function is defined as the multiple Fourier
transform of the nth order Volterra kemel A, (")

H (o, ..., jo,) = J bk 8 J‘ B (T 5T,) g (@t 40, T,) dt - --dt, (3

Because the so-defined H, () are not unique in the sense that changing the order of the
arguments may give different values of A, (") but will still yield the same output y, (), |
it is common practice to define a symmetrised function by summing all the asymmetric
functions over every possible permutation of the arguments and divided by the number

n! to give

2 ; 1 . .
HI(0pnf®) = — % H,Goy, ..., jo,) @

n! :
* all permutations
ofw, W,

This symmetric GFRF is then unique and independent of the order of the arguments
(Bussgang, Ehrman and Graham, 1974; Chua and Ng, 1979a; 1979b).

By applying the harmonic input

R .
u@) = Yy /' (5)

r=1

to the Volterra model eqn.(2), the output y (¢) is then given as

N = n R .
y@t) = yo+ X, J’ J’ INGIEERE SN ) gl or(t-%) dr;

-0 i=1 r=1

N R T T nojw, 1)
=y+> Y [ a)Ile T Ty
-0 I.'--].

n=l rra=1

=

N R - " -jo. j(, +..4w, N
=y+X X [ [ @ rme dr| e
n=1 rl,r'.:l -0 —c0
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N R . . Jlo, + - 4@, X
= Ho+ E Z HuUmr,' U 1J£Dr,,) € l "

n=l r,r,=1

©)

where H  is associated with the 0 order output yo which is independent of any input.
Eqn.(6) shows that H,(jo,, " - ,j®,) can be recognised as the nonlinear transfer
function relating the output at intermodulation frequency (w, + - - - +w, ) to inputs at
frequencies @, ,---,w,. Clearlly the value of H,(®,, -*,jo,) along
@, + * * -+, =0 will result in a d.c. component (zero frequency) in the output, this is
in addition to yg, even with a zero-mean input. Substituting eqn’s (5) and (6) into the

model expression eqn.(1) yields
M({;6,Hw,)+co=0 ¢))

where H={Hy, H,,"--,Hy). The above expression consists of various complex
exponential terms and H,(jwy, - - - ,0,) will only appear as the "coefficient of the

J@+..+0, )

non-repetitious frequency exponential e Following the procedure intro-

duced in the previous paper by Zhang, Billing and Zhu (1993) the operator €, [-] will
be used to denote the operation of extracting the coefficient of a particular term
e @ FON £rom the argument expression. Notice n starts at 0 now (n =0,1,...,N)
and €[] is associated with the constant term, or d.c. component. Because the above
equation holds for all time ¢ and arbitrarily chosen variables {w, ...,w,} the

coefficient of the e/ @+ term contained in the harmonic expression (7) should be

zero. That is
€, [M (t; 6, H,0,)+ co] =0 for n=0,1,...N (8)

H, (") can now be obtained by solving eqn.(8) with R=n. In the presence of a constant
term, it is necessary to re-consider the effects of various terms since these may be

different from the case without the constant term, as well as the case n=0.

To illustrate the application of the harmonic expansion method used in these cir-
cumstances, consider for example a difference equation model which contains a con-
stant term

y(t) = ay(@-1)+bu(t-1) + ay*(r-1) +c )




The above model with ¢=0 has been used by Billings and Tsang(1989) and it has
been shown that H; and H, are given by

. . —j(w+w;)
be—jw . aH (o)H (jape
—--—--——j—m, and HQ(J Wy.J 032) - =j (o1 +0;)

H,(jw) = -
l1-a,e

1-a,e

respectively. If ¢#0 H; and H, can be re-derived using the harmonic expansion

method by applying the input consisting of two input exponentials,
u(t) = e’ + /% (10)

The harmonic response, y (¢; H,w), when this input is applied to the Volterra model, is
given from eqn.(2) by,

Y Ho) = yo+ Hiop) e’ + H (o) e/ +
21 H9™ (wy,j,) ef @ 4 HP™ (jopjo) e L HYm (jan,j,) eX®¥(11)

where all terms of order higher than two are ignored.

The same response can also be obtained by substituting the harmonic input u(¢) in

(10) and y(¢) in (11) into the original difference equation (9) to yield
Y@ Ho)=c+b [ef“"("” + e("“’z)("”] (12)

Yo+ 2! HY™ (jo,j@,) ¢/ @D o pomin jo) e¥®¢D
+a o ey —_—
1 & H?m (I'COzJOJz) e2jm:(l 1) & Hl(jwl) e}ﬂ)l(l 1) + HIUmz) ejmz(; 1)

; ; 2
yo+ 2 HY™ (G oy,j @) o/ @rtalr=1) HY™ (jo.jo) pHo-1)

a ; i ; _ S B
2 e H?’"Umz,fmz) eZsz(! 1) + H (o) eJC'JI(f 1)+ Hl(jmz) eJm:(f 1)
Equating the constant terms across equations (11) and (12) yields

yo=ayo+ayd +c (13)

and the zero-input response Y can be solved from the above equation. The first order
frequency response function is obtained by equating the coefficients of either the term
e’®" or ¢/ across equations (11) and (12). Comparing the coefficients of e/“", for

instance, yields

HiGo) =be ™ +aH,(jo)e ™

-5.




+aglyoH e ™™ + Hi(GoDe ™y, ] (14)
hence

be—fml be‘jml

Hl(iml) = : = :
1-ae”® = 2a0e™7  1-(a;+2a5y0)e’™

(15)

The second order frequency response function follows in the similar fashion. By equat-

ing coefficients of e @+ aoross equations (11) and (12) the desired second order
response is obtained as

2 HY™ (jo1,j @) = 2la HP™ (jwy,j @) o) (@) +2a,H,(jo)H (G0 o (@rre2)
2,52 HY™ (i@ jwy) e /@D 4 a, 20" (joy,jwy) e O+ (16)
so that

a,H,(jo)H (j®,) g~ @)

H?"(onjoy) = a7)

—j (w+0;)

1-(a;+2ayype

Comparing eqn.(15) and (17) with the results obtained previously by Billings and
Tsang(1989) in which the constant term ¢ was not considered, both H; and H, have
changed. This simple example clearly illustrates the fact that if a constant term is
present this should not be discarded from the model if the system is nonlinear. Indeed,
the constant term may affect the location of the poles of the nonlinear systems and
therefore it is necessary to modify the algorithm for computing the higher order GFRF
to incorporate the effects of constant terms.

3. Properties of €,[-] in the Presence of a Constant Term

When the nonlinear model contains a constant term the mapping from the time-domain
model to the frequency-domain GFRF is affected. In other words, the way in which

the frequency response functions are generated will be changed in the presence of a

constant term. This change is reflected in the properties of the operator €,[-]. These

are summarised in following remarks.

Remark 1: The operator €, is a linear operator and this is the same as in the case of




no constant term. That is

g [ ¢ My() + CZMZ(')] = i, [ Ml(-)] +coE, [ Mz(-)] a18)

j(m|+...+m,.

Remark 2: While €, represents the coefficient of all the e ¥ terms contained

we @ . . e
in the harmonic expansion, it would be convenient to introduce €, to denote

coefficients of any individual €, (there are many according to the permutation of
(@, ...,0,}). Therefore
asym
€.[1= >y & N (19)

all permutations

of -0,
Since H $m(-) is also defined by taking the average of any asymmetric function over all
possible permutations of its arguments (see eqn.(4)) an asymmetric GFRF H;?"(‘) can

be obtained by considering only the asymmetric coefficient of el @F-30) - ihat s
asym

£

Remark 3: All the polynomial type terms contained in the model can still be classified
into three classes: pure input, pure output and the input/output cross-product terms.

The constant term can be treated as a zero degree pure output term. The effect of

each type of term on €, can then be analysed individually.

Pure Input Nonlinearities: The contribution to €, arising from pure nonlinearities in

the input is unchanged and is given by

— e-j(m,k.+- s 4wy k,) E=n
€, |TTue-k)| =1 o o i (20)
i=1

Pure Output Nonlinearities: The effect of the additional constant term occurs mainly in
the contribution from various terms involving the output y(¢). Using the. Volterra
series eqn.(6) a lagged output is expressed as

J@ ety Mi—k)

N R
yi-k) = Y of 3 Ho, - ,jo) e (21)

w0  rrel

o




7 !'

where 7 is used to remember the number of frequencies appearing as the arguments of
H;() as well as in the exponential functions, and a=1 is a dummy variable used to
keep track of all terms with the same degree (number of frequencies). Here the
influence of the constant term is takcq into account when y= 0.

The p degree pure output nonlinearities can then be expressed as

ﬁJ’(f-k) ﬁ ) oY E HTUQ)’_" v er) ej(mr,"'"'-i-m.._)(t—k.-) 22)

i=l =0 rrel
Jj(w, l+...+m,_’_)(l‘ —ki)

N
= E o ] E Hy G0 pnj0, ) €

TiYp=0 i=l rprel

From the power of the dummy variable o, it is seen that eqn.(22) contains terms from
order O up to Np. This is the major difference compared with the result obtained pre-
viously for the case without the constant component (i.e. when vy starts from 1) where
the terms run from order p up to Np. This suggests that in the absence of a constant
term a p-th order nonlinearity in the output contributes only to the Volterra transfer
functions of order p and above but with the addition of a constant term the output
nonlinearity contributes to all Volterra transfer functions including those of order less

than p. This consequence may be seen more clearly by dividing the leftmost summa-
tion of eqn.(22) into terms of like order n, giving,

1y = }f @ 3 M 3 HyGe, ey T g

=0 =l rirgl

| ¥yi=n

where the constraint that Yy;=n also lowers the limit N to n.

Now the coefficient of e/ “**“*¥ can be extracted from the right hand side of the

eqn.(23) in a similar way as before. The difference only occurs at the lower and upper

limits of the summations. An ’asymmetric’ coefficient of ¢/ (@*+@) g given by

i " | i 3o it Y
€, [ﬁy(r-k;)] = 3 11 HyGon, e, ) e Tt g
i=1 ! :

NYe=0 i=l
l Z'Y,--ﬂ

where X = ¥, , x =1..i-1. For the sake of simplicity denote




S:U m[ﬁ y@ "k;')] = Ha2"() (25)
i=1

But here H,‘,“‘g”" is different from that when the constant term is not considered. In the

same way as before H;)™ can also be computed in recursive form by expanding the
last term of the product to yield .

= . 5 -'j(mn ++..'+mn)k
Hmym() = Z H-ypomn-ypq-l- P Jm’;) e e} I P (26)
¥=0
(%)  p-1 —jla,, & o, K
%S ¥ Il Hy(Uo, . " J00) e X+1 X+,
TiYe1=0  i=1 :
IXyi=n-,
3 ) . =@y art e o0, )k, o
= X HyGopqu. - jo,) e "7 Hy -1 G @ - Ony)

Y=0

The above equation can be written more conveniently using new subscripts, and a

different (asymmetric) permutation of frequencies, as,
g . : . y —-j - )k
HEZ"() = X HP"(joy, - jopH, i 5 (W, * " 0 0j@,) € Hibyk= 23005 oy
i=0

The recursion also finishes at p=1 (although the computation starts from 0), and

Hn,10031, -+ -, j,) is given by

Hn,l(jml’ % e W ,jmn) = Hn(]'(ul,.",jmn) e_j(m1+ ] -+m,,)k| (28)’

Notice that the right hand side of eqn.(27) contains Hq, H; up to H,. This suggests
that a p degree pure output term may well produce or contribute to any order of
GFRF’s ranging from 0 to n, including those of lower order than p. Fortunately there
is no higher than n order GFRF included in the recursive formulae, otherwise it would
be impossible to obtain the solution recursively starting from lower order to higher
order. Also it is important to know that eqn.(27) holds for n=0 and p=0. The case

n=0 implies the contribution to the constant term such as

So[ﬁ ;V(f"ki)] =H,, = Hf

i=1

which suggests that a p degree pure output term will generate a constant term H§.

This result is fairly obvious after discarding the dynamics of y(t). The case p=0




implies the constant term is included in the model expression. In the harmonic expan-
sion of the model, the constant term will make no contribution to any €, term (that is,

will not generate a term e’ @) with n>0), except €, hence
g Pt €o

0 for n >0
€.lcd=Hoo=) gy  for n=0

Apart from the initial value H, ; given in eqn.(28), some other special cases can also
be derived.

Hy, (o) = HEH Gox S, e /o
i=1

2 i . ] . s
H (01, 07) = HoHy01,] 0)x 3, €O 4 HyopH iope™

i=l
g ; 2 , , 3 —j (W +wa)k; ; . —j (@ krrqk,)
Ho3(j0,j ) = HH,(j0.j0)x Y, e O + HoH ((jopH 1 egle ™
i=1

+ e—j (wqk .+m.k3)+e—j(m2k;+m|k3)]

and so on. Clearly expanding the recursions for the higher order cases is complex but
fortunately the computations can be implemented with relative ease in a computer pro-

gramme and the values can be generated automatically.

Input/Output Cross-Products: Having obtained expressions for the contribution gen-.
erated by pure input and pure output nonlinearities, the contribution from pure
input/output cross-product terms is relatively easy to evaluate. The previous analysis
on the effect of pure cross-product terms still holds, the contribution from such terms
will be jointly produced by the input part and the output part. This can be written as
o '"[ﬁ ya—k) T1 u(r-k;)} =efi,'"[ﬁ y(:-k,-)]-e;”y’"[‘ﬁ u(r-k;)} 29)
i=1 i=p+1 i=1 i=p+1

Substituting eqn.(20) and (25) yields

asym p+ —-j + o, 5 3
£, [IP'E y(t—k;) ,_lj_l u(f—k,-)] =e J (Onmgatkot +out Onkpeg) Hn—q.p(-’mlvﬂs.fmn—q) (30)
i= is

where the exponential factor relates to the input part of the nonlinearity, and the recur-

sive factor H,,_q p(-) to the output part. Because the p degree pure output in the

= i =




presence of d.c. term can produce a ¢/ @++0) term of whatever order, eqn.(29) and

(30) hold true even for p+g>n which would be zero in the absence of a constant term.

But €,[] =0 if g>n since ¢ degree pure input terms can not produce a gl (@Ot}

with n< q.

In summary, the contributions from all three types of polynomial terms in the presence
of a constant term are given as

axym] K 7 e-—i(c».h+---+cc.k.) Kep
s [ﬂu(t—k,.) “Lo K#n 31
i=1
il & T H, ,(o,..jo,) K<n
B [l'l y (t=k;) -={ 0 o Ksn 32)
=1 ) :
and
Sﬁm[ﬁy(r-k;) pl:f u(f—kf)] =
i=1 i=p+l
m m| p+
Efq []EI1 y(r-—lc,-)]-E:‘y [I’fl u(t-k.')] p+qsn
= i=p+
0 p+q>n (33)

where H, , is given recursively by eqn.(27)
n -1 i "

Ha3m() = X HP"(op, - Jo)dH, i p (04, -0 - j0,) e fa sy (3g)
i=0

Again notice that this is different from the case when a constant term is not considered

in the model.

Remark 4 In the presence of a constant term, nonlinear terms with m’th degree of

Jlo+..+w, )

nonlinearity may produce an e term with n < m in the harmonic expansion.

In other words, an m 'th order nonlinear term in y(¢) and u (t) may contribute directly

to €, with n < m. This is not the case when a constant term is not considered.

-11 -




Remark 5 (Extracting H,) By inspecting the effect of the three types of terms, it is

found that after applying the operator €, only the pure output terms will generate
H,(-). All the other terms can only produce lower order H;(?), i<n. In eqn.(24) the
terms which contain H, are most easily divided out by expanding the uppermost

values of ¥ in the multiple summation of eqn.(24). This gives

H:gM(-) — H‘S'l H, (j®y,....j®,) X i g @@k o

i=1
n-1 . . AL m’xw.)ki
Z ﬁl HyU@y @y, e
1 p= =
lzy,-:ri
-1 . . " . P -3 r . —
= HY oy, jo,) x T e Ol /L0 (35)

=l
Thus the contribution from degree-p nonlinearity in the output can be divided into two
parts, one part containing H, and another part containing only the lower order
H;,i<n. H,, is used to denote the second part which is simply H,, given in
eqn.(27) but excluding all the terms containing H,(). In programming this can be
implemented by using the same recursive relation eqn.(27) but setting H,=0. From the

analysis in Remark 3, it is easy to conclude that

and
Has(joy,joy) = H(jop)H (o)) g~ @krraky)

All those terms containing H,, can be brought over to the left hand side of eqn.(8) and

be computed recursively from n=1.

4. Algorithm Derivation for the Polynomial Model

Before deriving the GFRF for the nonlinear rational model with a constant term con-
sider initially the polynomial model which is a subset of the rational model. By means

of a traditional probing method, Peyton-Jones and Billings (1993) have derived a

e




e

mapping from the time-domain to the frequency domain for the polynomial NARX

model in the presence of a constant term. In this section it is shown that the same

mapping can be easily derived by using the operator €, [] defined above. The compu-
tation of the zero order GFRF H will also be discussed. The expression for the gen-
eral class of nonlinear polynomial models containing a constant is given by

M m

K pP+q
YO=3 T 5 caln k) T—4) TLuC-k)  (36)
i=1

m=0 p=0 ki ky.;=1 i=p+l

Each term is seen to contain a p-th order factor in y(r—k;) and a g-th order factor in
u(t=k;) (such that p +qg =m), and each is multiplied by a coefficient
Cpqk1s * " kyig), while the multiple summation over the k;, (k; =1, - - - ,K), gen-

erates all the possible permutations of lags which might appear in these terms. All the

terms can be divided into three main types as usual. Applying the linearity of €, and

the results presented in Remarks 1-5 above yields

K —j(wk;+ - +0,k,)
H,()= Eco.n(klv'°"kn)e" LY nkn

K ;
b = (W gsrkps Fout Wakpiy) . .
Z cp‘q(kl, R ,kp+q) e ] g+1hp+1 P Hn—q,p(-’ml’""-]m"‘q)

p=l kik,=1 Cisl

n K , —
+3 S ootk k) [HET HOX S e"“‘"*"‘*"’"”“*“”"-f’")}

Bringing over all the terms which contain H, to the left hand side of the equation
gives the following modified algorithm for computing the n’th order GFRF (n > 0) for
the polynomial model with a constant term as

M K -1 P L .
1-— Z Z Cp.O(kl' .o ’kp) Hg X E e -j (W + 'Hl’n)iu] H:s'ymoml’ E—_— ,Jmn) -
pzl kl-kp=1 i=1
E —j(enk; + - +w.k,)
z cO.n(kl"“rkn)e 1K1 n Kn
khkn=1
n M-1 K ;
= n—g+1Fp 4+ Tees ,.k . .
+ Zl - .kz lcp'q (kl'___’kp"_q) e J(Wngathp st t@pkorg) Hn-—q.p(-]ml"-ju'wn-q)
q=l p= Wpeg=
M K - ) )
& 22 . J‘Z lcp.ﬂ(kl' e 'kp) Hn,pomlv e v.’mn) (37)
pP= 1WKp=

=13




where the recursive relations H, , are given by eqn.(27) and H, p in eqn.(35) is a sub-

set of H,, which excludes all terms containing H,. The symmetric GFRF can be

obtained by taking the average of all the permutations of an asymmetric GFRF
obtained above.

It is important to point out that eqn.(37) is only valid for H,, with n 2 0. In order to
get the zero order kernel H consider the input to be zero corresponding to the case
R=n=0. This follows since H, is independent of any input. In eqn.(8) only the d.c.
component arising from each term after substituting ¥=0 and y=H, needs to be con-
sidered. For the standard polynomial model, or NARX model for example it is clear

that only the pure output terms can make contributions to the d.c. component after the

substitutions. So that

M K ,
Ho =Cg— z Z cp.O(kl'“"kp )HB =0 (38)
p=1 .k|.k‘,=1

In the above equation H is the only unknown which can therefore be obtained by
solving the equation. Notice that the equation may have many roots but only the real
roots will make sense. If there is more than one real root for eqn.(38) this suggests
that the underlying system has multiple steady states. In comparison, linear systems

can only have one steady state.

Using the above algorithm to derive H; and H, for the previous example given by

eqn.(9), identical results are obtained. For this specific example the parameters
specified in eqn.(36) are

M=2; K=1l; c1o(l)=a; cg (1) =b;
- el 1) =ay co=c; else ¢, ,=0.
Then
[1-ae/® - a-Hole 7 471 (o) = be ™™

be @
1-(a;+2ayy )e

=> H(joy) =

[1=a le—j(ﬂ)lHJJz)kl _ G’2H0(€_j(m'+m2)kl+€-j(wlm1)k3]h'2(j0)1,_]7 mg) =a ZH l(j ml)ﬁl‘](j wz)e-—jmﬂc]

"B &



—

a, Hy(jo)H (o) " Lt

- m (5 7 s
= HY"(jo,jo,) = )

1-(a;+2ay9e

5. GFRF for Nonlinear Rational Models With a Constant in the Numerator

For a nonlinear rational model, which is defined as the ratio of two polynomials, the
constant term can be present either as an isolated d.c. output term or contained in the
numerator polynomial. Notice that the former case can be included in the latter case
when the d.c. output is merged into the numerator/denominator form. Only the latter

case will therefore be considered. Consider a general form of rational model

Y, (1:0,,y.u)
o e T . 39
y (r) Yb (I ;eb 1y’u) . ( )

where Y, (2;6,.,y,u) and Y, (t;0,.y,u) are used to denote polynomials in the numerator

and denominator, respectively, which are defined as

Ma m Ka
Y, (#;:0,.yu) = Y, [E > o, kg, * Kopiegd ]'Iy(r -k;) ]'I u(t=k; )-l (40)

m=0{p=0 kk,,,=1 i=p+l
- and
" ' Mi[m K |
Y, t:0,yw) =Y | X Bogki k) I'I)’(I —k;) r[ u(t—k;)| (41)
m=0|p=0 ki kp.g=1 i=p+1

where M, and M, are the maximum degrees of nonlinearities, K, and K, are the
maximum lags in the input and output, () and B(-) are the parameters associated with
the various terms in the two polynomials (corresponding to the parameter sets 0, and

0, respectively), p+q =m; and

M=
M:e

K
T

ky

z
ko

,.-_-1 k1=1

Notice that the lower limits on the first summations of Y, and Y, are zero, which

implies that both the denominator and numerator may include a non-zero constant term
(0o and Pgp, respectively). Now decomposing the two polynomials as pure input
terms, pure output terms, cross-product terms and constant terms, the rational model

eqn.(39) can be denoted as

- 15 -
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) = oo+ Y (3 0,,u) + Y (6 0,,y) + Y, (15 0,, yu)
Boo+ Ys(t;0,,u) + Y,(r58,,y) + Yu(50,, yu)

After multiplying out the model becomes
Booy (1) + ¥ ()Y, (15 8,, u) + Y ()Y, (15 6y, ¥) + y ()Y, (15 Oy, y51)
= Ya(t; B;;’ u) - Ya(r; ey’ Y) = Ya(t: eyy! y,“) - a{),{) .

which is the standard form given by eqn.(1). All the terms in the above model can
still be classified into three parts. The pure output parts, namely, Boqy (),
Y,(t: ©,,y) and y(t)Y,(s; 6;, y) contain the unknown nth order GFRF H,(-) and
these need to be extracted:

i)  The term to be extracted from Bgqy (¢) is
Boo Hx ()

ii) The terms to be extracted from Y, (¢; 6y, y) are

Mﬂ Kd p I PR o
Z E ap,o(kl, k. ,kp) Hg'l H, ()x E e-;(w1+ +, )k;
P:l kl,kp=l ‘_=1

iii) The terms to be extracted from y (¢)Y, (t; 6,, y) are

M, K, : s &
E Z ﬁp,o(kl’ Y ’kp) H{ H,()x i e_J(mH' +, k; +1
p=1 knk,=1 i=1

The effects of all the other terms will remain basically in the same form except for
some modifications to the summation limits. After moving all the terms containing H,
over to the left hand side of the equation, the final algorithm, for computing the nth
order GFRF for the general class of nonlinear rational model with a constant term
takes the form

M‘ Kﬂ .
Bo,o— E E ap.o(kl’ o i ?kp) Hﬁ'l X f‘ e-J(m1+---+m..)k.- Iy

p=1 ki k=1 i=1
o K. g —j (@ +... 4+, k;
Y 3 BP_O(kl....,kp) HEx Y e POT=TEI 21| HF"(j @y @) =
P=1 kl,kp=1 i=1

K, )
—j(@ky+ - +w,k,)
Y, 0o,k k) e
1 wany
ki k=1
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M, K,

* E u‘p.D(kl’ e ’kp) En,p(')
P=2 kik=1

n M-1

K, —; :
+ Z E | z ap‘q (k Ireos ’kp+q) e J(mu-q-'—l"pd-l 4+ u),.kpw) Hn_q‘p ()
q=1 p=1 k k=1

K, ;
=3 X Boglkpkg)e Ottt by, )
g=1 kk,=1

Mb Kb

=3 3 Brotky - kSO
p=1 Kk k,=1

n M-1 K,

—j (@peguihp i tot Ok T
s Z E E Bp.q(kl*""kp-*q) e J(@pgatkparFet ©Onky.0) Hn-q.p+1(') (42)
q=1 P=1 khkpﬂ]:l

where the recursive relations H,, , and H, p are given by eqn’s (27) and (35), respec-
tively. Also notice that k,,; which occurs in H, p+1 is zero because it is associated

with y (¢) where the lag is zero.

Finally the initial value H can be obtained by setting the input to zero and substitut-
ing the steady state output yo= H into the model (discarding all the dynamics). H

can then be computed from the resultant steady state equation.

M, K, M, K,
BooHo— 00— Y X 0y otkpk,) HE+ X 3 Byolkink,) HEY =0 (43)
p:] k,,k,,:l p=1 k|,kp=] .

It is seen that 0y is the only constant term in the above equation. If o o= 0, that is, if
the numerator polynomial does not contain a constant, H or one solution of will be
zero and the whole algorithm eqn.(42) will reduce to the procedure derived earlier in
Zhang, Billings and Zhu (1993). Notice that more than one real solution may exist for
H. This simply implies that the underlying system possesses multiple steady states. It
is important to emphasise that the Volterra series model can not exactly match the
behaviour of such multiple steady state systems, although it is always possible to use

Volterra series to approximate the system near one specific steady state or equilibrium
point.
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6. Examples

The model which is analysed as example E; was identified from an unknown non-
linear circuit in a sealed box representing different structures of a single degree of
freedom system. The input/output data of the system were sampled at 1600 Hz and
after structure detection, nonlinear identification, and model validation, the following

model was obtained (for more details see Billings, Tsang and Tomlinson, 1990)
y(t) = 0.13597 + 1.6021y (t-1) = 0.94726y (r-2) + 0.061490u (t-1)
— 0.013829y (r-1)y (r—1) — 0.0025225y (¢—1)y (¢—1)y (r-1) (44)

Clearly a constant term is included in the model. When the input u(¢) is zero, the

steady state form of the model is
0.0025225 y& + 0.013829 y& + 0.3452 yo — 0.13597 = 0

The above polynomial equation has three roots at 0.3874 and —2.9349tj 11.4241. The

output mean level, or the degree-zero kernel of the system is therefore the real root
Ho =Y = 0.3874

If the constant term is discarded from the model then the frequency response functions
H, and H, would be

; 0.06149 ¢~©
H(jw)= : _ 45
i 1 - 1.6021e77 + 0.94726e 2/ (43)
and
0.013829H ,(j 0)H (j ) e~ @r¢D
Hy(jop,jwy) = - 1 OpH, G @ 46)

1 — 1.6021e~/ (@+e2) 4 0.94726¢ =2/ (@+e2)

The first order GFRF H (j w) is plotted as the solid line in Fig.1(a) and (b). The sys-
tem has a bandpass type characteristic with a resonant peak at a normalised frequency
of 0.96 ( corresponding to 154 Hz ). The gain and phase of the second order GFRF
H,(j®,,jw,) is given in Fig.2 (a) and (b). However, if the constant term is taken into
account, using the modified algorithm eqn.(42) then H, and H, will be given as

[1 -1.6021e~7® + 0.94726e"%° + 0.013829H y"2e~/® + 0.0025225H § -3¢ “1H ,(j )
= 0.06149 ¢~/© (47)

hence

w 18 =




0.06149 e~/©
1 — [1.6021 + 0.027658H o + 0.0075675H ¢ 1e™© + 0.94726¢=%/©

H,jo)= (48)

and in the same way
Hy(jopjwy) =

0.013829H ,(j @)H 1(j ) €™/ @12 s
1 - [1.6021 + 0.027658H 3 + 0.0075675H & :3le 92 4 0.94726¢ —2j (@t

where Hg = 0.3874. Comparing eqn.(48) and (49) with eqn.(45) and (46) shows that
the denominator, or the poles of H, and H, are changed because of the effect of the
constant term, because H#0. The new H;(jw) is plotted as a dotted line in Fig.1(a)
and (b). It is seen that the frequency response plot shifts slightly towards the low fre-
quencies because of the constant term. The shape of H, has also changcd, although

only slightly.

It should be pointed out that the mean level of the output or zero input steady state
response is not very significant for this specific system and therefore the effect of the
constant term appears to be small. But if the system had a larger output mean level
the effect would be significant and can not simply be ignored. Consider the case
where the constant term 0.13597 is replaced by a larger term 2.0 say. The output

mean level would then be obtained by solving the steady state equation
0.0025225 yg + 0.013829 y3 + 0.3452 yg—2=0

From which the real root is found as 4.3976. Substituting H ;=4.3976 into eqn’s (48)
and (49) yields the new H, and H,. H is plotted as a dashed-line in Fig.3 while H,
is plotted in Fig.4. It is seen that the frequency response functions have been
significantly affected.

Consider the denominator, or characteristic equation of H; when a constant term is

present
1 - [1.6021 + 0.013829H 52 + 0.0025225H ¢ -3]e ™/ + 0.94726e %% = 0

If the constant term is ignored, that is Hy=0, eqn.(49) has two conjugate roots (poles)

at
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215 = 0.8011 % j0.5528 = 0.9733¢ 46
which has an 'undamped natural frequency w, given by

1+4r2
2r

®, = cos [ coswg)-w; = 965.7 rad/s = 153.7 Hz

But when a constant term ¢=0.13597 is considered, the poles move to
2y, = 0.8077 £ j0.5441 = 0.9733 ¢*>°

with a natural frequency ©, = 948.3 rad/sec. or 151 Hz. Furthermore, if ¢=2.0 is con-
sidered, the poles locate at

2,2 = 0.9350 % j0.2702 = 0.9733¢*!¢

and the natural frequency becomes ,=448 rad/sec. or 71.3 Hz. The pole locations are
marked in Fig.5 within the unit circle. The constant term contained in the system
model can therefore move the pole locations of the system and this -can certainly be a
significant effect.

As a further example consider a simple nonlinear rational model which is expressed as

ay(-1)+au@-y@-1)+c
1+ by%(r-1)

y)=

Using the recursive formulae eqn.(42) yields

H (o) g ag™>
W)= = - = 7
! | —a;e® - b HE(142¢7%)  (1-byH}) - (a+2b \H§)e™®

and

ase™ “H (o)

(1-bHE) - (ay+2b H e @)

Hy(joy,jw,) =

a«_,H l(j ml)e'f(ml*'mz)

" (1-bHE) - (ay+2b,HE)e OO

The degree-0 kernel Hy =y, can be obtained by solving the zero-input steady state

equation as follows

yol +by3) = ayo+c
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7. Conclusions

When identifying a nonlinear system from measured input/output data, a constant term

often appears in the resulting nonlinear model. This reflects the zero-input response of

: the underlying system. In this study it has been shown that the constant term in the
. nonlinear system model may have a significant effect on the frequency domain
behaviour of the system by for example altering the system poles. Therefore constant

terms can not simply be ignored. Many important conclusions formulated assuming a

zero constant terrn do not hold when such a term is present. Consequently previously

developed algorithms to compute higher order frequency response functions from non-

linear time-domain models do not apply in this case. New modified algorithms which

avoid these restrictions were therefore derived in this paper for the nonlinear polyno-

mial and the nonlinear rational model. Although the new algorithm is more compli-

cated compared to earlier versions with no constant term it is suitable for a wider class

of nonlinear models, and includes the previous algorithms as a spcciaLl case.
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Fig.1 The gain and phase of H; of the example E; with c=0 and c¢=0.136.
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Fig.2(a) The gain of H, of the example E; with c=0.
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Fig.3 The gain and phase of H; of the example E; with larger constant c=2.
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Fig.4(b) The phase of H; of the example E, with constant term c=2.0.




Imag Axis

Real Axis

Fig.5 The movement of the systems poles caused by constant terms.




