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ABSTRACT 

Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric ឺow rate 
of runoី. Modern green roof designs are multi-layered, their main components being vegetation, substrate 

and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine 

the modelling of the separate layers into a single process; these models have limited predictive capability for 

roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a 

granular substrate over a hard plastic “egg box”-style drainage layer and ឹbrous protection mat is presented. 

The substrate and drainage layer/protection mat are modelled separately by previously veriឹed sub-models. 

Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled 

runoី is compared to the monitored runoី for each storm event. The modelled runoី proឹles are accurate 

(mean Rt
2 = 0.971), but further characterization of the substrate component is required for the model to be 

generically applicable to other roof conឹgurations with diីerent substrate. 
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1 INTRODUCTION 

Green roofs are engineered, roof-level systems, consisting primarily of a vegetation layer, a layer of low-

density substrate and a separate drainage layer. Between the substrate and drainage layer is a thin, highly 

permeable ឹbrous sheet, which prevents small particles in the substrate washing through to the drainage layer. 

Beneath the drainage layer is a protection mat, which may be rubbery or ឹbrous. Green roofs broadly divide 

into two categories: extensive, which are inaccessible and use low-growing, drought tolerant plants in 50-

150 mm of substrate; and intensive, which are generally more accessible and support a wider variety of plants 

in a deeper layer of substrate. 

Green roofs are able to inឺuence urban runoី volumes through retention and detention processes. Retention 

of rainfall occurs primarily in the substrate, which is able to store water up to ឹeld capacity by capillarity in its 

smaller pores. Further retention may occur in the drainage layer and protection mat, if appropriately designed. 

Water retained in a green roof is returned to the atmosphere by evapotranspiration, so does not become 

runoី. The annual retention of rainfall by green roofs in diីerent climates has been extensively studied; 

between them, Fioretti et al. (2010) and Gregoire and Clausen (2011) present comparisons of twenty-one 

long-term green roof retention studies. However, the maximum retention capacity is obviously ឹnite for any 

particular roof. For an extensive green roof, this capacity ranges from approximately 15 to 40 mm. Therefore, 

the retention performance of a green roof can appear to decrease under large storms, simply because the 

volume available for storage is a smaller percentage of a larger storm (Carter & Rasmussen 2006; Voyde et al. 

2010; Stovin et al. 2012). 
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Detention (temporary storage) occurs in the substrate, as rainfall percolates through larger pores, which 

cannot retain water, but do oីer resistance to vertical ឺow-through. A ឹbrous protection mat may also 

signiឹcantly detain rainfall, due to lateral resistance to ឺow. As the purpose of the drainage layer is to quickly 

remove excess water that cannot be retained elsewhere in the green roof system, its detention eីects are low. 

Detained water leaves the green roof via conventional drainage systems, but over a longer time period, at a 

reduced peak and average ឺow rate. In a time-series proឹle of roof runoី, detention is observable as a 

reduction in the peak runoី rate in comparison to the peak rainfall rate and/or as a time delay between the 

mid points of the rainfall and runoី proឹle. These eីects are often signiឹcant even when retention eីects are 

small. Moran et al. (2004), Carter and Rasmussen (2006), Stovin (2010), Voyde et al. (2010) and Carpenter 

and Kaluvakolanu (2011) all report consistently higher percentage values for peak ឺow reduction than for 

retention. 

While data are available for the performance of green roofs in diីerent climates, the huge variations in 

climate around the world, coupled with the small-scale variations in microclimate within cities, imply that 

performance metrics and/or empirical models generated from speciឹc installations will have limited generic 

applicability. Similarly, the wide variation in green roof construction characteristics, such as depth, slope and 

substrate composition, greatly limits the use of roof-speciឹc models, particularly if these models are also 

climate-speciឹc e.g. empirical models based on ឹeld monitoring studies. Furthermore, as the internal 

conditions of a green roof are dependent on the eីects of previous storms and weather, it is extremely 

unlikely that the response of a roof to two identical storms will be identical. Generic modelling of the roof’s 

internal water processes enables the eីects of climate and construction to be decoupled from runoី response, 

allowing the model to remain applicable independently of climate and construction. 

Runoី modelling methods for green roofs have been presented since the mid-2000s. Villarreal and Bengtsson 

(2005) derived and then veriឹed a unit hydrograph approach. Though the veriឹcation responses were of 

similar quality to the calibration responses, the derived unit hydrograph is conឹguration-speciឹc and therefore 

the method is not generically applicable. 

Hilten et al. (2008) used daily rainfall-runoី records to parameterize a test-scale system and then predict 

runoី volumes in response to 24-hour SCS design storms (United States Department of Agriculture, 1992) 

using Hydrus-1D. Almost no attenuation was simulated and these simulations were not veriឹed 

experimentally. The use of Hydrus 1-D was extended by Palla et al. (2012) to a full-scale green roof with 

separate granular substrate and drainage layers. High Nash-Sutcliីe eុciencies were observed for calibration 

and validation events. However, model use is complex: twelve input parameters, including six empirical (i.e. 

media-speciឹc) coeុcients, were required to model roof runoី. 

Kasmin et al. (2010) applied nonlinear storage routing methods to model detention in a green roof test bed in 

Sheុeld, UK, requiring only two modelling parameters. The resulting modelled runoី proឹles were very 

accurate and detailed, though the overall value of the model was lowered by its combining of the entire system 

into one process and – once again – by its reliance on roof-speciឹc empirically-derived parameter values. 

She and Pang (2010) present perhaps the most comprehensive green roof model of all, which considers the 

substrate and drainage layer components separately and uses physically-based inឹltration and open channel 

equations to model them. The performance of this model is reasonable, though it noticeably overestimates 

peak runoី ឺows for individual storm events. Various calibration parameters are included in the model 

without indication to the reader of what appropriate values may be; it is possible that the authors did not set 

these optimally in their model veriឹcation. 

The aim of this research paper is to produce and test a green roof detention model that: is based on 

hydrological processes so as to be applicable in all climates; models the processes in the substrate and drainage 
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water passes ឹrst through the substrate/ឹlter and then through the drainage/protection layer, with no reverse 

transfers taking place, the two component sets may be modelled as two nonlinear reservoirs in series, the 

inឺow proឹle to the drainage layer being equivalent to the outឺow proឹle from the substrate (Figure 2b). For 

each reservoir, the volume of water in storage is equal to the cumulative diីerence between inឺow to and 

outឺow from the reservoir, and the rate of outឺow is predicted by a nonlinear storage-discharge relationship. 

The two equations governing each reservoir are therefore: 

St+1 = St + (Qt+1 - It+1)ჸt (1) 

Qt+1 = kSt
n (2) 

Where S is the reservoir storage depth, Q is outឺow rate, I is inឺow rate and ჸt is time step. n is a 

dimensionless exponent parameter and k is a scale parameter, in units of mm1-n/͎t. Values of both k and n are 

constant and separate for each reservoir. Nonlinear storage routing was chosen due to previous success by the 

authors in using this method to model the runoី response of drainage layers (Vesuviano & Stovin 2013) and 

substrate samples (Yio et al. 2013) separately. In this experimental programme, a modelling time step of one 

minute was used. The exact k and n parameters used for each storage-discharge relationship were taken from 

previous studies and were nG = 2.97, kG = 0.00365 mm1-n/minute, nD = 1.49 and kD = 0.200 mm1-n/minute, 

where subscripts G and D refer to substrate (growing medium) and drainage layer/protection mat respectively. 

This experimental programme is therefore intended to provide an independent veriឹcation of previous 

modelling work. Delay parameters featured in the models developed by Vesuviano & Stovin (2013) and Yio et 

al. (2013), to account for time delays introduced by the monitoring equipment. Equivalent parameters are not 

included here, as the values predicted in earlier studies were generally far below the one-minute resolution of 

the runoី record.  

3 RESULTS AND DISCUSSION 

Tests were performed over eleven days (15-26th September 2012). Overall, the experimental system exhibited 

excellent mass balance and reproducibility. The total recorded rainfall volume over the test period was 

2827.1 litres, while the total recorded runoី volume was 2819.7 litres. Within individual tests, the lowest 

recovery of runoី was 98.0% and the highest was 101.0%. The quantity of rainfall supplied in repeat tests 

varied by no more than 0.4% within each constant-intensity storm proឹle and by no more than 0.8% within 

each design storm proឹle. 

Using the parameter values derived from previous studies, the model was able to generate accurate runoី 

predictions for all rainfall-runoី pairs, ឹve of which are shown in Figure 3. This is despite potential 

inconsistency between batches of substrate and samples from these batches. Although green roof substrates 

are mixed according to speciឹc recipes, some variation between and within speciឹc batches should be 

expected. Nonetheless, the results provide conឹdence that parameters derived from one sample are applicable 

to other samples of the same nominal substrate mix. Inconsistencies in drainage layer and protection mat 

should be minimal, as one is a moulded HDPE sheet and the other a woven mat of ឹbres. Correspondingly, kD 

and nD should not vary greatly between diីerent “batches” of these components. 

The mean value of Rt
2 (Young et al. 1980) for constant-intensity tests was 0.981. However, the rising and 

falling limbs of the modelled runoី proឹle are generally slightly shallower than those of the monitored runoី 

proឹle for each test. This means that the model over-predicts the attenuation eីects of the green roof, initially 

under-predicting runoី rate as it rises from zero to steady-state then over-predicting runoី rate as it falls 

back to zero after the storm. This is not a fault of the modelling methodology; it is most likely the result 
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Figure 3. Time-series (a-e) and cumulative (f-j) rainfall, monitored runoី and modelled runoី proឹles for storm events. 
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of imperfect values being speciឹed for kG and nG, as potential variations in substrate are large in comparison 

to potential variations in synthetic drainage layers/protection mats. However, over-prediction of attenuation is 

slight, as the lag time of the modelled runoី proឹle is in the order of minutes or seconds for all constant-

intensity tests. 

The model’s response to storm events of varying rainfall proឹle generally ឹts closely to the monitored runoី 

response (Figures 3 (d) and (e)), with a mean Rt
2 of 0.957. As the model can be applied to variable-intensity 

design storms with only a low loss of accuracy, this demonstrates that the routing parameters derived from 

constant-intensity storms are applicable to time-varying inputs. In common with the constant-intensity storms, 

the rising and falling limbs of the modelled runoី proឹle are shallower than the rising and falling limbs of the 

monitored runoី proឹle. For the 1-in-10 year storm events, the peak intensity of monitored runoី was 4.9% 

below the peak storm intensity. However, the model under-predicts the test bed’s peak runoី rate by an 

average of 9.4%. This is again due to the attenuation eីects of the green roof being over-estimated by the 

model; the peak of the storm is of a short duration, and so the rainfall rate starts to fall before the modelled 

runoី rate has risen to the peak runoី rate. Conversely, the monitored peak ឺow reduction for the 1-in-100 

year storm was 10.3%, which the model typically over-predicted by 2%. The over-prediction is likely due to 

the sudden spike in rainfall intensity at the beginning of the peak period, which is a limitation of the rainfall 

simulator. Figure 3 (e) shows the four minutes comprising the rainfall peak to consist of alternating spikes and 

troughs. Any rainfall intensity aside from a constant 0.3, 1.2 or 4.8 mm/minute is approximated by activating 

and deactivating rainfall dripper networks. Consequently, the peak period of 2.577 mm/minute consists of 

greatly varying rainfall rates that average out over four minutes. 

Figure 3 (f) to (j) show the cumulative proឹles corresponding to Figure 3 (a) to (e). These all show a close ឹt 

for the duration of the storm, followed by an under-estimation of cumulative runoី in the long-term. 

However, as the storage routing method is unable to permanently retain water, the under-prediction is purely a 

result of insuុcient time being allowed for the modelled runoី rate to decay to zero. Conservatively, the 

modelled cumulative runoី depth at the ឹnal time point should be assumed equal to the rainfall depth. 

For all tests, cumulative median-to-median delay was quantiឹed separately for the substrate and drainage 

layer. Detention eីects in the substrate were found to be 1.6-3.6 times greater than those in the drainage 

layer/protection mat. As peak rainfall intensity increased, detention decreased in both stages, though 

noticeably more so in the substrate. 

4 CONCLUSIONS 

It is shown that the two-stage storage routing model produces consistently high-quality results. Furthermore, it 

is shown that the many potential inconsistencies and variations between diីerent batches and samples of 

nominally identical substrate do not greatly aីect the parameterization of the model, though in this case 

attenuation eីects were slightly over-estimated. This may cause short runoី peaks, in response to short 

rainfall peaks, to be under-predicted. However, this is a consequence of imperfect parameterization and not a 

fault of the underlying conceptual model. An analysis of the cumulative rainfall proឹle, modelled runoី 

proឹle and intermediate drainage layer inឺow proឹle found that the greatest detention eីects occurred in the 

substrate, but that their relative magnitude decreased as peak storm intensity increased. 

It is suggested in Vesuviano and Stovin (2012) that the kD and nD parameter values for a drainage layer may be 

dependent only on the roof slope, drainage length and surface roughness of the drainage component material. 

Therefore, values for kD and nD may be estimated for untested drainage layers of similar material to those 

already tested. Further work should attempt to link values of kG and nG to measurable or estimable 

characteristics of substrate (Yio et al. 2013) in order for the two-stage storage routing model described here to 

be applicable to green roofs generally. 
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