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The Jacobian algebras

V. V. Bavula

Abstract

A new class of algebras (the Jacobian algebras) is introduced and studied in detail.
The Jacobian algebras are obtained from the Weyl algebras by inverting (not in the
sense of Ore) of certain elements. Surprisingly, the Jacobian algebras and the Weyl
algebras have little in common. Moreover, they have almost opposite properties.

Key Words: the Jacobian algebras, prime ideal, prime spectrum, unique factor-
ization of ideal, minimal primes, group of units, commutant, integro-differential op-
erators.

Mathematics subject classification 2000: 16D25, 16599, 16U60, 16U70, 16560.

1 Introduction

The aim of this paper is to introduce a new class of algebras, the so-called Jacobian
algebras. They arose in my study of the group of polynomial automorphisms and the
Jacobian Conjecture, which is a conjecture that makes sense only for polynomial algebras
in the class of all commutative algebras [6]. In order to solve the Jacobian Conjecture,
it is reasonable to believe that one should create technique which makes sense only for
polynomials; the Jacobian algebras are a step in this direction (they exist for polynomials
but make no sense even for Laurent polynomials). In this Introduction, we describe the
main results of the paper.

Throughout, ring means an associative ring with 1. Let K be a commutative Q-
algebra, K* be its group of units, P, := KJzi,...,x,] be a polynomial algebra over K;
01 = 821 ey Op = 68 be the partlal derlvatlves (K linear derivations) of P,.

Definition: The Jacobian algebra A, is the subalgebra of Endg(P,) generated by the
Weyl algebra A, := K(zy,...,2,,01,...,0,) and the elements H;',..., H-' € Endg(P,)
where Hy := 0121, ..., H, := 0,x,.

Clearly, A, = A;(1) ® --- ® Ay (n) ~ AP" where A,(i) := K{(x;,0;, H; ") ~ A;. The
algebra A,, contains all the mtegratlons [+ Py — Py, pr— [pdx;, since [, = z;H; " In
particular, the algebra A,, contains all (formal) integro-differential operators with polyno—
mial coefficients. This fact explains (i) the significance of the algebras A,, for Algebraic
Geometry and the theory of integro-differential operators; (i) why the algebras A, and
A,, have different properties, and (#ii) why the group A’ of units of the algebra A,, is huge
(there are many invertible integro-differential operators).



General properties of the Jacobian algebras.

Until the end of this section, K is a field of characteristic zero. When n = 1 the group
At is found explicitly, A¥ ~ K* x (Z® x GLy(K)) (Theorem 4.2) as well as an inversion
formula v~ for u € Af. This gives explicitly polynomial solutions for all invertible integro-
differential operators on an affine line: uy = f = y = v~ f where f € K[z;] and y is an
unknown. For n > 2, a description of the group A’ is given (Theorem 4.4), it looks like it
is a challenging problem to find an inversion formula for u € A’ (one should go far beyond
the Dieudonné determinant). Though, a criterion of invertibility is found (Theorem 4.5).
Moreover, the group A* contains the subgroup K* x ((Z")®) x GLy(K)) elements of which
are called minimal integro-differential operators. For each such an operator u one can write
down an inversion formula %! in the same manner as in the case n = 1, and, therefore,
one obtains explicitly polynomial solutions for all minimal integro-differential equations
uy = f where f € P,.

The Weyl algebra A, = A,(K) is a simple, Noetherian domain of Gelfand-Kirillov
dimension GK (4,,) = 2n. The Jacobian algebra A,, is neither left nor right Noetherian, it
contains infinite direct sums of nonzero left and right ideals. This means that the concept of
the left (and right) Krull dimension makes no sense for A,, but the classical Krull dimension
of A, is n (Corollary 3.7). The algebra A, is a central, prime algebra of Gelfand-Kirillov
dimension 3n (Corollary 2.7).

The canonical involution 6 of the Weyl algebra can be extended to the algebra A,, (see
(15)). This means that the algebra A, is self-dual (A, ~ A%), and so its left and right
algebraic properties are the same. Note that the Fourier transform on the Weyl algebra
A, can not be lifted to A,. Many properties of the algebra A, = A?" are determined by
properties of A;. When n = 1 we usually drop the subscript ‘1’ in xy, 91, H;, etc. The
algebra A, contains the only proper ideal F' = @; jenK E;; where

PR PR - .
) ) g5 0 — o7 G 5 1) ifi > j,
V) (L gVi—i(pi L _5i J+1__ 1 1y e

(550) (2! 55507 — 2T g 7)) if i < g

As aring without 1, the ring F'is canonically isomorphic to the ring M. (K) := lim My(K) =
®; jen E;; of infinite-dimensional matrices where E;; are the matrix units (F — M (K),
E;; — E;;). This is a very important fact as we can apply concepts of finite-dimensional
linear algebra (like trace, determinant, etc) to integro-differential operators which is not
obvious from the outset. This fact is crucial in finding an inversion formula for elements
of Aj.
The algebra A, = @aeczn Ao is a Z"-graded algebra where A, , = ®F_;A; 4, (k) and,
for n =1, (Theorem 2.3)
2Dy ifi>1,
A =Dy if i =0,
D0~ ifi < —1,

where Dy == L & (&, ;51 K2"H79") is a commutative, non-Noetherian algebra and L =
K[H*',(H+1)7',(H +2)7',...]. This gives a ‘compact’ K-basis for the algebra A; (and
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A,,). This basis ‘behaves badly’ under multiplication. A more conceptual (‘multiplicatively
friendly’) basis is given in Theorem 2.5.

e (Corollary 2.7.(10)) P, is the only faithful, simple A, -module.
Spec (A,). 0 is a prime ideal of A,,.
p1 = F®An—1,P2 = Al ®F®An—2a“->pn = An—l ®F7

are precisely the prime ideals of height 1 of A,. Let Sub, be the set of all subsets of
{1,...,n}.

e (Corollary 3.5) The map Sub,, — Spec(A,), I — p;:=> .., i, 0 — 0, is a bijection,
i.e. any nonzero prime ideal of A, is a unique sum of primes of height 1; |Spec(A,,)| =
2"; the height of py is |I|; and

e (Lemma 3.6) py Cpy iff [ C J.

e (Corollary 3.15) a,, := py + - - + p, is the only prime ideal of A,, which is completely
prime; a,, is the only ideal a of A, such that a # A, and A, /a is a Noetherian (resp.
left Noetherian, resp. right Noetherian) ring.

Ideals of A, and their unique factorization. The ideal theory of A, is ‘very
arithmetic.” Let B,, be the set of all functions f : {1,2,...,n} — {0,1}. For each function
[ € By, Iy :=1Ip1) @+ @ Ifx) is the ideal of A, where Iy := F and I, := A,. Let C, be
the set of all subsets of B, all distinct elements of which are incomparable (two distinct
elements f and g of B,, are incomparable if neither f(i) < g(i) nor f(i) > g(i) for all 7).
For each C € Cp, let 1o := ) rec Iy, the ideal of A,,. The next result classifies all the ideals
of A,,.

e (Theorem 3.1) The map C +— Ic = 3 ;. Iy from the set C, to the set of ideals of
A, is a bijection where Iy := 0. In particular, there are only finitely many ideals, say

Sn, of A,. Moreover, 2 —n+ 3" 2(%) < s, < 2% (Corollary 3.4).

Each ideal I of A, is an idempotent ideal, i.e. 1> = I.

Ideals of A, commute (IJ = JI).

(Theorem 3.11) The lattice of ideals of A, is distributive.

(Corollary 2.7.(4,7)) The ideal a,, is the largest (hence, the only mazimal) ideal of A,
distinct from A,,, and F®" is the smallest nonzero ideal of A,,.

e (Corollary 2.7.(11)) GK (A,,/a) = 3n for all ideals a of A,, such that a # A,,.

For each ideal a of A,,, Min(a) denotes the set of minimal primes over a. Two distinct
prime ideals p and q are called incomparable if neither p C q nor p O q. The algebras A,
have beautiful ideal theory as the following unique factorization properties demonstrate.
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e (Theorem 3.8) 1. FEach ideal a of A, such that a # A, is a unique product of
incomparable primes, i.e. if a =qq---qs = t1-- -t are two such products then s =t
and 41 = to(1), - - -, qs = Co(s) for a permutation o of {1,...,n}.

2. Fach ideal a of A, such that a # A, is a unique intersection of incomparable
primes, i.e. ifa=qN---Nqs =1t N--- N1, are two such intersections then s =1
and 41 = to(1), - - -, qs = Co(s) for a permutation o of {1,...,n}.

3. For each ideal a of A, such that a # A,, the sets of incomparable primes in
statements 1 and 2 are the same, and soa=q1---qs =1 N -+ N (s.

4. The ideals qyq,...,qs tn statement 3 are the minimal primes of a, and so a =

HpeMin(a) b= mPEMin(ﬂ)p‘
e (Corollary 3.10) aNb = ab for all ideals a and b of A,,.

The next theorem gives all decompositions of an ideal as a product or intersection of ideals.

e (Theorem 3.12) Let a be an ideal of A, and M be the minimal elements with respect
to inclusion of a set of ideals ay, ..., a5 of A,. Then

1. a=ay---ag iff Min(a) = M.
2. a=a;MN---MNag zﬁMm(a):M
This is a rare example of a non-commutative algebra of Krull dimension > 1 where one

has a complete picture of decompositions of ideals.
The group A} of units of A;. For each integer ¢ > 1, consider the element of Aj:

1 1 ep .
e A =1,
xHaixia—{_ Z]’:O 1= T +mio ifi>2,

R B | j j+1 1 j+1 ; ; *
where 7; := 2/ 570" — 277 5757077, Consider the following subgroup of Aj,

He={][(H+m J]H - )i~

i>0 i>1

(n;) € ZBOY ~ 72

where Z(*) is the direct sum of Z copies of the group Z, see (32) for detail. Let GLy(K) :=
{u €1+ My (K)|det(u) # 0}. The group (1 + F)* of units of the multiplicative monoid
1+ Fisequal to (1+ F)* = (1 4+ M (K))* = GL(K). Note that (1 + F)* C A7.

o (Theorem 4.2) 1. A7 = K* x (H x (14 F)*), each unit a of Ay is a unique product
a = Aa(1+f) for some elements A € K*, « € H, and f € F such that det(1+ f) # 0.
2. A} = K* x (H x GLy(K)).

3. The centre of the group A} is K*.

4. The commutant AT(Q) = [A}, AY] of the group Al is equal to SLo(K) := {v €
(14 F)* = Mo (K)|det(v) =1}, and Ay /[A}, A}] ~ K* x H x K*.

5. All the higher commutants Ai(i) = [A‘{,AT(FI)], i > 2, are equal to AT@).
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The group of units A} of A,,.

e (Theorem 4.4) 1. A = K* x (H, x (1 + a,)*) where H,, := [[_, H(i) and a,, :=
prt- A+ P

2. The centre of the group A} is K*.

Theorem 4.5 is a criterion of when an element of the monoid 1+ a,, belongs to its group
(14 a,)* of units.
Question. Is the global dimension of A,, equal to 2n (or oc0)?

2 The Jacobian algebras and localizations of the Weyl
algebras

In this section, two K-bases for the Jacobian algebras are found (Theorems 2.3 and 2.5),
and several properties of the algebras A, are proved: A, is a central, prime, self-dual,
non-Noetherian algebra.

We start by recalling some properties of generalized Weyl algebras. Some of these
algebras are factor algebras of the Jacobian algebras.

Generalized Weyl Algebras. Let D be a ring, 0 = (01, ...,0,) be an n-tuple of
commuting automorphisms of D, and a = (a4, ..., a,) be an n-tuple of (non-zero) elements
of the centre Z(D) of D such that o;(a;) = a; for all i # j.

The generalized Weyl algebra A = D(o,a) (briefly GWA) of degree n with the base
ring D is a ring generated by D and 2n indeterminates x4, ..., ,, ¥1, ..., Yy, subject to the
defining relations [3], [4]:

YiZ; = Gy, Ty = Ui(ai)a

€T = Ui<a)xia Yicx = O-i_l(a/)yh o€ Dv

[, 23] = [y, ys] = [z, 93] = 0, i #
where [x,y] = zy — yz. We say that a and o are the sets of defining elements and
automorphisms of A respectively. The GWAs are also known as hyperbolic rings, see the
book of Rosenberg [20]. For a vector k = (ki, ..., k,) € Z", let vy, = vg, (1) - - - vg, (n) where,
for 1 <i<mandm > 0: v,(i) = 2", v_n(i) = y", vo(i) = 1. It follows from the
definition of the GWA that
A = Brezn Ap

is a Z"-graded algebra (AyA. C Ak, for all ke € Z"), where Ay, = Dv, = v D.
The tensor product (over the base field) A ® A’ of generalized Weyl algebras of degree
n and n' respectively is a GWA of degree n + n':

A A =D®D'((0,0'),(a,ad)).



Let P,, be a polynomial algebra K[Hq,. .., H,] in n indeterminates and let o = (074, ..., 0,)
be an n-tuple of commuting automorphisms of P, such that o;(H;) = H; —1 and 0;(H;) =
H;, for i # j. Let A, = K(x1,...,2,,01,...,0,) be the Weyl algebra. The algebra

homomorphism
A, — Pu((o1,...;00), (Hy, ..., Hy)), zi— x5 Oi—y;, i=1,...,n, (1)

is an isomorphism. We identify the Weyl algebra A, with the GWA above via this iso-
morphism. Note that H; = 0;x; = x;0; + 1. Denote by S,, the multiplicative submonoid of
P.. generated by the elements H; + j, i = 1,...,n, and 5 € Z. It follows from the above
presentation of the Weyl algebra A,, as a GWA that S, is an Ore set in A,,, and, using the
Z"-grading, that the (two-sided) localization A, := S, 1A, of the Weyl algebra A, at S,
is the skew Laurent polynomaial ring

A, = STIP [, a0, o) (2)

) n

with coefficients from
SAP, = K[HS (H £ 1) (H£2)7 ... HF (H, £ 1) (H, £2)7", .. ],

the localization of P,, at S,. We identify the Weyl algebra A, with the subalgebra of A,
via the monomorphism,

-1 .
A, — A,y zi— g, Oi— Hax, , i=1,...n.

Let k,, be the n'th Weyl skew field, that is the full ring of quotients of the n’th Weyl algebra
A, (it exists by Goldie’s Theorem since A,, is a Noetherian domain). Then the algebra A,
is a K-subalgebra of k, generated by the elements z;, z; ', H; and H; ', i =1,...,n since,

for all natural j, . ,
(Hz :F]')_l = x;thZ-_ll‘;Fj, 1=1,...,n.

Clearly, A, > A4 ® --- ® A; (n times).
Definition: A K-algebra R has the endomorphism property over K if, for each simple
R-module M, Endg(M) is algebraic over K.

Theorem 2.1 [5] Let K be a field of characteristic zero.
1. The algebra A, is a simple, affine, Noetherian domain.
2. The Gelfand-Kirillov dimension GK (A,) = 3n (# 2n = GK(4,)).
3. The (left and right) global dimension gl.dim(A,) = n.
4. The (left and right) Krull dimension K.dim(A,,) = n.



5. Let d = gl.dim or d = K.dim. Let R be a Noetherian K-algebra with d(R) < oo
such that R[t], the polynomial ring in a central indeterminate, has the endomorphism
property over K. Then d(A; ® R) = d(R) + 1. If, in addition, the field K is
algebraically closed and uncountable, and the algebra R is affine, then d(A, ® R) =
d(R) +n.

GK (A;) = 3 is due to A. Joseph [12], p. 336; see also [16], Example 4.11, p. 45.

It is an experimental fact that many small quantum groups are GWAs. More about
GWAs and their generalizations the interested reader can find in [1, 2, 6, 7, 8, 11, 13, 14,
15, 17, 18, 19, 21].

Projections. The polynomial algebra P, = @uene K2 is a left A,-module and
Endg(P,)-module. For each ¢ = 1,...,n and a € N*, H;(z*) = (a; + 1)z%, and so
H; is an invertible map with H; '(2®) = (a; + 1)"*2® Let h; := 2;0;. Then, in P,,
hi(z®) = a;xz®, and so ker(h;) = K[z1,..., %, ..., Ty

Note that (in Endg(P,))

(HAa)@H‘Ui:fﬂHﬁrn-}U?+i—1V i>1. (3)

For each a € N”, the following element of Endg(P,) is invertible,

n

(—a,a) = 0% = HHi(Hi +1)--(Hi+a; — 1). (4)

=1

Lemma 2.2 Let K be a commutative Q-algebra and o € N,,. Then x%(—a,a)~10% is the
projection onto the ideal () of P, in the decomposition P, = (@ﬁ:xﬁg(xa)Kﬂf’g) @ (x%).

Proof If 27 ¢ (x*) then 9*(2”) = 0, and so 57—

¥ 0%(2F) = 2% 7 0% (2P ) = 2%(2P ) = 2f. O

Lemma 2.2 is useful in producing various projections onto homogeneous K-submodules
of P,. Let S be a subset of N* and S” be its complement. Then P, = P, s & P, v where
P.s = @aesKz® and P, g 1= @qes Kx®. Then mg := ) o7, is the projection onto
P,s.

Ezxample. Let a,b € N" with a < b, i.e. a3 < by,...,a, < b,; and C = {a €
N"|a < a < b} be the discrete cube in N” and C’ be its complement. Then 7o =

0%(zP) = 0. If 2P € (z%) then

ZaeC T, 18 the projection onto PnC in the decomposition P, = P,c ® P, . Note
that 7¢ = H:l [z 6% i o — x ab 5 d%), by Lemma 2.2. In more detail, for each
=1,. x aaz & Ol is the prOJectlon onto the ideal z{"K[x;] in the decomposition
[ ] = ( ;“_Ole )@x“’K[ml] Therefore, p; := x; daz & ol —u i18?i1x§iafi is the projection

onto K" @ Kx;““ DD Kxi . Now, it is obvious that the product p; - - - p, is equal to

TC.
The Jacobian algebra A,. Let K be a commutative Q-algebra.



Definition: The Jacobian algebra A,, is the subalgebra of Endg (P, ) generated by the
Weyl algebra A,, and the elements H; ', ..., H-L.

Surprisingly, the Weyl algebras A,, and the Jacobian algebras A,, have little in common.
For example, the algebra A,, contains the infinite direct sum K® of rings K. In particular,
A, is not a domain, and we will see that A,, is not left or right Noetherian algebra.

By the very definition,

A, =A(1)®A(2) ® - @A (n) ~ AP", (5)

where A, (i) := K{(x;,0;, H; ') and ® := ®x. The algebra A, contains all the integrations
fi = x;H; ', 1 < i < n. In the algebra A,, each element J; has a right inverse, fl
0; fz = idp,; and each element x; has a left inverse, Hf@i: H{l(’?@-xi =idp,. So, the algebra
A,, contains all necessary operations of Analysis (like integrations and differentiations) to
deal with polynomials. The algebra A,, contains all integro-differential operators. By (5),
properties of the algebra A,, is mainly determined by properties of the algebra A;.

We pointed out already that the multiplicative submonoid S,, of K[Hq,..., H,] gener-
ated by the elements H; + 7, 1 < i < mn, j € Z, is a (left and right) Ore set of the Weyl
algebra A, and S 'A, = A,. Using the Z"-grading of the Weyl algebra A,, coming from
its presentation as a generalized Weyl algebra one can easily verify that the multiplicative
submonoid S,  of K[Hy,...,H,| generated by the elements H; +j, 1 <i < n, j € N,
is not a (left and right) Ore set of the Weyl algebra A,,. This also follows from the fact
that the algebra A, is a domain but A, is not (if S, ; were a left or right Ore set then
A, C A,, a contradiction).

Consider the case n = 1. Let 2% be the Boolean algebra of all subsets of N and B; be
the Boolean subalgebra generated by all the finite subsets of N. So, a subset S of N is an
element of B, iff either S is finite or co-finite (that is, its complement is finite). Note that
the Jacobian algebra A; contains all the projections 7g, S € Bj.

In order to make formulae more readable, we drop the subscript 1. So, let, for a moment,
z:=ux,0:= 0, and H := H;. Since (H'0)'H '2' = (H'9)'a"(H +i)' = (H +1) !,
i > 1, the algebra A, contains the subalgebra L := K[H, H ', (H+1)"', ... (H+i)™', ...
For each i‘z 1, 55 = H(H+1)--1~(H+z’—1) €L LetD =L+, o Ke'H79" and V :=
®;>1 KX H77. The next theorem gives a K-basis for the algebra A;.

Theorem 2.3 Let K be a commutative Q-algebra. Then the Jacobian algebra A, =
BiczA1,; is a Z-graded algebra (Ay;Ay; C A,y for all i,j € Z) where Ay = Dy,
Dy =L & (®ij>1 Ka'H90Y); and, for each i > 1, Ay; = 2'Dy and Ay, = D1 0".

Proof. First, let us prove that the sum in the definition of ID; is the direct one. Suppose
that r := [ +2v,0+ 2200+ - - - +2°v,0° = 0 is a nontrivial relation for some elements | € L
and v; € V := @5 KH 7. We seek a contradiction. Since L is a subalgebra of Endg(P,),
the relation r is not of the type » = [. So, we can assume that vy # 0 and the natural
number s > 1 is called the degree of the relation r. Let r be a nontrivial relation of the least
degree. The rational function [ € K(H) can be written as § where p and ¢ are co-prime



polynomials and the polynomial g is a finite product of the type [[,-,(H +14)". Evaluating

the relation rat 1: 0 =r(1) = (1) = %, we see that the polynomial p is equal to (H —1)p’

for some polynomial p’ € K[H]. Suppose that n =1, then 0 = H'0rz = Ha_l(%/) +u H
where 0 : H — H — 1 is the K-automorphism of the polynomial algebra K[H] (and of its
field of fractions K (H)). It follows that v; = —a‘l(%) € VNno ' (L) =0, a contradiction.
Therefore, s > 2.

The K[H]-module (V + K[H])/K[H] ~ V has the K-basis {H%,4 > 1}. In this basis,
the matrix of the K-linear map v — (H + A)v (where A € K) is an upper triangular
infinite matrix with A on the diagonal. In particular, the matrices of the maps H + 1, H +
2,...,H+ s—1, are invertible, upper triangular. It follows from this fact that the relation

/

H0re = Ho (2 ) to, Havg(H+1)0+ - +a' oy (H+i—1)0" 4+ - 42 Lo, (H+5—1)9"!
4q

has degree s — 1 since s > 2. Then, by induction on s, and the fact that each matrix of
the map H +i— 1, 2 <i < s, is an upper triangular, invertible matrix with ¢ — 1 # 0 on
the diagonal, we have vy = -+ = v, = 0 and Ha‘l(%) +v1H =0. Then, v, = —a‘l(%) €
V No (L) = 0. This means that the relation r is a trivial one, a contradiction. This
finishes the proof of the claim.

Let (G, +) be an additive group (not necessarily commutative) and U = @neqU, be a
G-graded K-module, i.e. a direct sum of K-modules U,. A K-linear map f : U — U has
degree 8 € G if f(U,) C Upy, for all @ € G. The set Eg of all K-linear maps of degree
B is a K-submodule of Endg(U). Clearly, Es = HﬂeG Homg (Us, Ugta). In particular,
Ey = [[oeq Endg(Us). It follows at once that the sum E := ), Es C Endg(U) is a
direct one,

E = @ﬁegEg and E/gE7 - Eg+7, 8,7 €G. (6)

So, E := E(U) is a G-graded ring.

The K-module K[z] = ®;50Kz' is naturally Z-graded (even N-graded). By (6), the
sum S =Y. D0+ Dy + >, 2'Dy is a direct sum since the maps D18, Dy, and 2'D;
have degree —i, 0, and 7 respectively. In order to prove that A; = @ieczA1; it suffices to
show that A; C S. It follows directly from the inclusions:

Dyz' C 2'Dy, 0'D, C D, 0", 1 >0,

207 C D', 2700 C Dy, § >,
that A = >, @D’ = 3,07 ,_,2'Did’). Tt remains to show that, for s > 0,
> i D10 C 2®Dy; and, for s <0, 35, . 2'Dd? CDyo~*.

Consider the case s = 0. We have to show that Y ,.,2'D9" C D;. By the very
definition of D, this is equivalent to the inclusions z'L0" C Dy, ¢ > 0; and, by the very
definition of L, this is equivalent to the inclusions z'(H + j) %9 € Dy, 7,5,k > 0.

If i <jthen z'(H + j)*0" = (H + j — i) *2'0" € L C Dy.

Ifi > j then 2'(H + j)*0" = 2*VH *290" = " TH*(H —1)(H - 2)--- (H — j)0" 7 €
(V4 K[H])0"~7 C D;. This proves the case s = 0.
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If s> 1then Y, . a'Dd = 2°(3 50 2"D10%) C 2°Dy, by the case s = 0.

If s < —1then ;2D = (35 2*D,0F)0~° C D10~%, by the case s = 0.

Thus, the equality A; = @;czA; is established. By (6), this is a Z-graded algebra since
the maps A, ; have degree i. [

Despite the fact that Theorem 2.3 provides a cute K-basis for the algebra D, it is
unsuitable for computations: to write down the product of the type 2'H 70" - 2* H—'oF
literally takes half a page. Later, in Corollary 2.4 a more conceptual K-basis is introduced,
and which is more important we interpret elements of D; as functions from N to K. We
will see that the ring ID; is large and has analytic flavour.

The polynomial algebra K[z] = @;50Kz' is naturally a Z-graded algebra. Let E =
®iczE; be the algebra from (6) for K[z]. The E-module K|[z] is simple. Note that the
map

Ey = {f € Endg (K[z])| f(2") = fir",i 2 0. fi € K} = K", f+ (f),

is an isomorphism of K-algebras. In particular, Ej is a commutative algebra, and so D,
is a commutative algebra since Dy C Ey (K[x] is the faithful A;-module). Tt is obvious
that, for i > 0, E; = 2'Ey and E_; = Ey0". The algebra K" is the algebra of all functions
from N to K. When we identify the set of monomials M := {z'};cy and N via z% — 7 the
algebras Ey and K" are identified. So, each element of E, can be seen as a function. This
is a very nice observation indeed as we can use facts and terminology of Analysis. For a
function ¢ : N — K, the set supp(p) := {i € N|p(i) # 0} is called the support of p. The
set of functions Iy with finite support is an ideal of the algebra Ey. Clearly, Fy = @;enK7;
where ] ]
i 0" — x’“—al.ﬂxiﬂﬁlﬂ : Klx] — K|x]
is the projection onto Kz’ (Lemma 2.2), i.e. m(z?) = §;;27 where §;; is the Kronecker
delta.

Let m_1 := 0; then

=

I = i1 T, 67@- = 7ri_18, 1 Z 0.

The concept of support can be extended to an arbitrary element f of the algebra E
as supp(f) := {i € N| f(z') # 0}. The set F of all maps f € F with finite support is
a Z-graded algebra F = @;c F; without 1 where F; = FNE;. Fori > 1, F; = 2'F, =
@jeNKfL‘i’ﬂ'J‘ = @jeNKTFj_H‘ZL‘i = F()ZEi and F—i = F()al = @jeNKﬁjai = @jENK@iﬁj-I—i = 8ZF0
Note that F = {f € Endg(K|[z]) | f(z'K[z]) = 0 for some ¢ € N}. It is obvious that F is
an ideal of the algebra F, and so F' is also an ideal of A; since ' C A; C E.

Note that h := 20 € Ey and h(x?) = iz®, i > 0. So, h can be identified with the
function N — K, ¢ +— i. Note that H = h + 1. When A runs through 0,1,2..., H runs
through 1,2, .... Under the identification Ey = KV, for 7,7 > 1,

FH — (H_l)(gl_—zz))’il(f{_m) fH=i+1,i+2,...,
ifH=12 .. i

(7)

This means that the element x'H 79" is a function of the discrete argument H = 1,2, ...

which takes zero value for H = 1,2,...,4; and (Hfl)(glj));'_(f#m) for H=i+1,i+2,....
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Before the identification this simply means that

(kD) (k1 =2)- (kL midl) ko ,
xiH—jaz‘(xk) _ (et1—i)y—1 if k>, |
0 1fk}:0,1’72_1

So, the function 2° H 79" is almost a rational function. The case i = j = 1 is rather special,
it yields almost a constant function

g U EH=23
0 if H=1.

Similarly, for each ¢ = 1,2, ..., the element p; :== 2’0" € D, is the function

822

1 ifh=di+1,...
P {Oﬂh:QLmJ—L (8)

For each i > 0, m; = p; — pit1 € Dy where py := 1, and so Fy = ®;>om C D;. More
generally, for each i =1,2,... and j € N, let

et g 1 p_{mﬁng:wHsz”, )
Higixt (H —1)I 0 if H=1,2,...,i
Note that all p;; € D; and py; = p;. For A € Z, the element H + X is invertible in D; iff
A # —1,-2,...iff H+ ) is invertible in Ey. Fori = 1,2, ..., kerp, (H—i)! = kerg,(H—1)! =
Km; where kerp, (H — i)7 is the kernel of the map Dy — Dy, d — (H — i)’d. Similarly,
kerg, (H — i)’ is defined.
For each i > 0, let 7w, := 1 — m;. For natural numbers ¢,j > 1, consider the element

ﬁwg_l of Ey which is as a linear map defined by the rule

1 koo '
1 ,71'{ (Q}k): mx lf]{];él—l,
(H —i) 0 ith=i—1.
H - but at H = 1 it takes value 0 rather
than oo as the usual function 7 does. All e 7r; 1 € Dy since

As a function, it is almost the ratlonal function i

1 , Pj1 ifi=1
—T_ = .
(H —i) 1 pji + Zk 0 (k+1 7 Tk if ¢ > 2.

- - 1 1 / 1 / \m 1 / _ 1 I
Fori,j,m,m > 1, = l)nw 7 i1 = e Ti1s (H—1) T i1 = o i

1=
and for j > 1 such that j #1¢

1
mﬂ';_l (H mﬂ-; ICZK 1+ZK 1+K7TZ 1+K7T] 1-
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Clearly, the set

1
]Lq = L b @iyjlemﬂ-;_l (10)
is a K-submodule of ;. L; is not an algebra, though it is an algebra modulo Fy which is
isomorphic to the algebra K[H*! (H +1)7', (H £2)7',...,] (see Corollary 2.4 and (11)).

Corollary 2.4 Let K be a commutative Q-algebra, pj; := ' Hjéizi 0, j>0,i>1. Then
Dy =L & Fo = L& (®iz1,50Kpji)-

Proof. By Theorem 2.3, Dy = L & (®; ;51 Ka'H79"). By (7) and Fy C Dy, we have
D; C Ly + Fy. By (9) and Fy C Dy, we have the opposite inclusion, and so D; = L; + Fy =
L, & Fj since L; N Fy = 0.

The K-module M := L + Zj>0,i>1 Kpj; contains Fy = @;>om; since m; = p; — piq1 for
all i > 0 where py := 1; and M = L'+ Fy where L' :== L+ 3., Kpj;;. Consider the
factor module M/Fy. By (9), pj; = ﬁw;_l mod Fy, hence L' = L; mod F,. Since
D, =L; & Fy and M = L' + Fy, we must have the equality D; = M. To finish the proof of
the second equality of the corollary it suffices to show that L'+ Fy = L& (B, j>1Kpji) B Fo
since then the equality M = L& (®;>1,;>0/K pj;) follows as Fy = @;>0Km; and m; = p; — pis1.
Let | + Zz’,jzl Njipji + f =0 for some | € L, \j; € K, and f € F,. Taking this equality
modulo Fj yields [ = 0 and Aj; = 0 since pj; = ﬁwg,l mod Fy. This implies f = 0,
and we are done. []

Note that Fj is an ideal of D; such that F} = F;, and

Dy /Fy~ KHT (H+1)"', (H+2)™",.. ] (11)
The equality Dy = Ly @ Fy (Corollary 2.4) means that the set

) 1 1
Hl, 9 . /'_ 9
W T e =

ml|i€Z,1leN,jk>1}

is a K-basis for ;. Clearly, the set

< 1 1
HZ /.
U T e =

li€Z,jk>1) (12)

is a K-basis for IL;. Similarly, the equality Dy = L & (®;>1,;>0/ p;i) means that the set

, 1
H —— pi|ljeNikE>1
is a K-basis for D;.
Clearly, F' = @, j>oK E;j where Ej; (zF) = ikxt, e, {E;;} are the ‘elementary matrices’
(EijEkl = 5jkEil>7 and

Eij =

{xi—jwj if i > 7, (13)

(£0)~'m; ifi < j.

12



For k € N, Fyy, = ®;_j—+x K E;;. Note that E;; = EymiEy; for all 4,5,k > 0. Therefore,
F is a simple ring such that F? = F, and K|[z] is a simple faithful F-module. The
ring F' is neither left nor right Noetherian as the next arguments show: for each natural
k>0, let L, := @iGN,OSjSkKEij and Ry = @Ogigk,jeNKEij then Lo C Ly C --- and
Ry C Ry C --- are strictly ascending sequences of left and right F-modules respectively.
This is the main reason why the Jacobian algebra A; is also neither left nor right Noetherian
(Theorem 2.5.(3)). The ring F' is neither left nor right Artinian: for each natural k£ > 1,
let Lj, := @ jenK E; jor and Ry, := ®; jenK Ejr j then L D Ly D --- and Ry D Ry D -+
are strictly descending sequences of left and right F-modules respectively.

Theorem 2.5 Let K be a commutative Q-algebra. Then

1. Ay = @izlLlai el @ (@Z’21IiL1) @ F.

m

2. The set {H"al 1 )kal 7T;'—17Est ’Z € Zv]a kal

1 I i
s mgp a0 A Y 2
1;m, s, t € N} is a K-basis for Ay.

1 1
H)P YV H=)F

3. The algebra Ay is neither a left nor right Noetherian algebra.

4. F is an ideal of Ay, F* = F, and the factor algebra A,/ F 1is canonically isomorphic
to the algebra Ay (the localization of the Weyl algebra Ay at Sy, the multiplicative
monoid generated by H +1i, i € 7).

Proof. 1. By Corollary 2.4, D; = LL; @ Fy. For each natural number i > 1, D;0° =
L0 ® F_; and 2'D; = 2L, @ F;. Using these equalities together with the equalities
Al = @izlﬂ)l@i () ]D)l () (@ilei]Dl) (Theorem 23) and F = 691-21}768" ) F() () (@ileiF()),
one obtains the equality of statement 1 and (12).

2. Since, for all ¢ > 1, the maps L; — L%, u — ud’, and L; — 2'L;, u — z'u, are
isomorphisms of K-modules, statement 2 follows from statement 1.

3. For each i € N, the sum [; := @’_(Kn; is an ideal of Ey. Since I; € Dy C Ey,
one has the strictly ascending chain of ideals of Dy: Iy C I; C ---. The ascending chain
AyIy C Al C -+ of left homogeneous ideals of the algebra A; is strictly ascending since
the zero component of the left ideal AjI; = @;51D,0'I; @ I; & (®;>12'1;) is I; (note that
D,0I; C F_; and 2'I; C F;). Therefore, A is not a left Noetherian algebra.

Similarly, the ascending chain IHA; C I1A; C --- of right homogeneous ideals of
the algebra A is strictly ascending since the zero component of the right ideal I;A; =
@izlljai SLd (@izlfja:il[)l) is I;, and so A; is not a right Noetherian algebra.

4. We proved already that F' is an ideal of A; such that > = F. The K-module K|[z] is
a topological K-module (even a topological K-algebra) with respect to the m-adic topology
determined by the m-adic filtration {m'};>o on K[z] where m := (z). Let Endy .(K][z]) be
the algebra of all continuous K-endomorphisms of K[z]. Then E C Endg .(K|z]). Let G
be the algebra of germs of continuous K-endomorphisms of K[z] at 0. An element of G
is an equivalence class [f] of a continuous K-linear map of the type f : m* — K|[z], and
two such maps are equivalent, f ~ f’) if they have the same restriction f|n = f'|w for
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a sufficiently large j (m’ is a topological K-module with respect to the induced topology
coming from the inclusion m* C K|x]).

The kernel of the K-algebra homomorphism E — G, f — [f], is F. Thus, the ker-
nel of the K-algebra homomorphism ¢ : A; — G, f — [f], is also F since F C A;.
The image g(ID;) is naturally isomorphic to the algebra S;*K[H] since g(H) = [H] and
g(ﬁw&_l) = [ﬁ] for all j,k > 1. Now, it follows from statement 1 and the de-
composition A, = @157 ' K[H|0 © S{ K[H] @ (©i>12'S; ' K[H]) that the image g(A;)
is naturally isomorphic to the algebra A;. [

An ideal I of a ring R such that 0 # [ # R is called a proper ideal of R.

Corollary 2.6 Let K be a field of characteristic zero. Then
1. F is the only proper ideal of the algebra Ay, hence F is a mazximal ideal.
2. A/F ~ Ay is a simple Noetherian domain.
3. GK(Ay) = GK (A4;) = 3.
4. Ay is a prime ring.
5. The algebra Ay is central, i.e. the centre of Ay is K.

Proof. 2. Statement 2 follows from Theorem 2.5.(4) and Theorem 2.1.(1).

1. By statement 2, F' is a maximal ideal of A;. Let I be a proper ideal of A;. We
have to show that I = F'. Let a be a nonzero element of I. Then 0 # FaF C FFN 1, and
so FaF = F since F is a simple algebra (i.e. a simple F-bimodule). Now, F' C I implies
F' = I by the maximality of F. So, F'is the only proper ideal of the algebra A;.

3. Since A /F ~ Ay, we have GK (A;) > GK (A;) = 3 (Theorem 2.1.(2)). Since A; =
Dix1 110" BLy & (Bi>12'Ly) B F and Ay = @157 'K[H|0'®S; ' K[H] @ (®is12'S7 ' K[H]),
the reverse inequality GK (A;) < 3 follows from Theorem 2.5.(1,2) using the same sort of
estimates as in the proof of the inequality GK (A4;) < 3 (see [5] for details and the fact
that the elements of F' do not contribute to the growth of degree 3).

4. F is the only proper ideal of A, and so F? = F, hence A, is a prime ring.

5. The field K belongs to the centre of A;. Let z be a central element of A;. We have
to show that z € K. The algebra A;/F ~ A, is central, hence z = A + f for some A € K
and f € F. Then z — A = f belongs to the centre of I’ which is obviously equal to zero.
Hence z = )\ € K, as required. [

For k > 1,

1 1 ;o

0 L 7w A
1 1

o = L ,0, j>2

(H—j)F " = @1—jpo2h /=2
1 1

0 T, = —0



By (5), the algebra A,, is the tensor product of the Z-graded algebras A (i) = @;ezAq (7).
Therefore, the algebra A, is a Z"-graded algebra,

An = EBQGZ”An,om An,a = ®?:1A1704i (Z)

The Z™-grading on A,, is the tensor product of the Z-gradings of the tensor multiples, and
an element a of A, belongs to A, , iff a(z”) € Kz*# for all 8 € N". Let

D, = Ao =Di(1) @Dy (2) @ - - - @ Dy (n).

The polynomial algebra P, = @4enn Py, o i1s an N"-graded, hence a Z"-graded algebra. Let
E = E(P,) = ®aczn Eq be the Z"-graded algebra as in (6). The map

Ey={f € Endg(P,)| f(2) = faz®, fo € K,a €N"} — K™ f = (fa),

is a K-algebra isomorphism. Each element a = ZLI e, € 4" = @ Ze; is a unique
difference @« = ooy — o where o, = Zai>0 oze; and o = — Zai@ a,e;. For each a € Z™,
E, = x*+ Ey0*-, and so - -

E = &aecz, "t Ey0* . (14)

For each o € Z", A, , = A, N E, = 2°tD,, 0% where D,, = A, o = A, N Ey.
The involution # on A,,. Let K be a commutative Q-algebra. The Weyl algebra A,
admits the involution

0:A,— A, z;—0, Oirx;, 1=1,...,n,

i.e. it is a K-algebra anti-isomorphism (6(ab) = 6(b)f(a)) such that 6> = id,,. The
involution # can be uniquely extended to the involution of A, by the rule

0:A, — A, 1,0, O;—ux, OHHY=H"'i=1,...n (15)
Uniqueness is obvious: 0(H;) = 0(d;x;) = 0(2;)0(0;) = dix; = H; and so O(H; ') = H;*.
To prove existence recall that each right module over a ring R is a left module over the
opposite ring R°?. The involution # on A, comes from considering the polynomial algebra
P, as the right A,-module by the rule pa := 0(a)p for all p € P, and a € A,. Since
0(H;) =H;,i=1,...,n, P, is the faithful right A,-module, and this proves the existence
of the involution @ : A, — A, ( is injective since P, is a faithful right A,-module,  is
obviously surjective). So, the algebra A,, is self-dual (i.e. it is isomorphic to its opposite
algebra, 6 : A, ~ A°). This means that left and right algebraic properties of the algebra
A, are the same.

For n =1, F is the only proper ideal of A, hence (F') = F'. Moreover,
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where 0! := 1. In more detail, since §(H) = H and E;; = 7; = x"(_i 5 8i—xi+1(_i_+im8i+1,
we have 0(E;) = E;;. For i > j, E;j = 2" 7m;, and so
i g . !
Q(E,]) = 7Tj(9 J = Z(Z — 1) s (] —|— 1)E]z = FEJ,

For i < j, Eyj = ($0) "', and s0 0(Ey) = m;(2 4V~ = oo Bii = 5B

For n =1, the ring F' = &, jenK E;j is equal to the matrix ring Mo (K) 1= Ug>1 Mq(K)
where My(K) = @®o<ij<i—1K E;;. The ring F' = M, (K) admits the canonical involu-
tion which is the transposition (-)* : E;; — Ej;. Let Dy be the infinite diagonal matrix

diag(0!,11,2!,...). Then, for u € F' = M, (K),
O(u) = D; "' D. (17)

Note that Dy & M (K).
For an arbitrary n, F'*" = @, genn K Eoap = Moo(K)®" where E.p := Q@ ,E,,5,. By
(16),

«

!
0(Eap) = 3 Ega, (18)
o(Fem) — Fon, (19)
Let D, := D?". Then, for u € F®",
0(u) = D, ju' D, (20)

where ()" : Moo (K)®" — Moo (K)®", Eap — Ega, is the transposition map.
Consider the bilinear, symmetric, non-degenerate form (-,-) : P, x P, — K given by
the rule (2%, 2%) := ald, g for all a, 3 € N". Then, for all p,q € P, and a € A,

(p,aq) = (8(a)p, q). (21)

The Weyl algebra A, admits, so-called, the Fourier transform, it is the K-algebra
automorphism F : A, — A,, ; — 0;, 0; — —x;, i = 1,...,n. Since F(H;) = —(H; — 1),
H; is a unit of A,, and H; — 1 is not, one cannot extend the Fourier transform to A,,.

The algebra A, is a prime algebra. Consider the ideals of the algebra A,:

pl = F®An—1;p2 = Al ®F®An—2;'-->pn = An—l ®F
Then A, /p; ~ (A1/F) @A, 1 ~ A @ A1 and NP p; = F¥". Let a, :=p1 + -+ + pu.
Then
A /a, ~ (A /F)®" ~ A" = A,. (22)
Corollary 2.7 Let K be a field of characteristic zero. Then
1. GK(A,) = 3n.
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GK (M) > n for all nonzero finitely generated (left or right) A,-modules M.
The centre of A, is K.
F®" s the smallest nonzero ideal of the algebra A, (F®")? = F®".

The algebra A, is prime.
If0#a € A, and I is a nonzero ideal of A, then al # 0, Ia # 0, and Ial # 0.

NS v o e

The ideal a,, is the largest ideal of A, distinct from A,,; ai = a,; hence a, s the only
mazimal ideal of A,,.

8. a, FO" ~ PN s g faithful, semi-simple, left A,-module; F En” ~ p{N") A, s a faithful,

semi-simple, right A, -module; Aannn ~ P s a faithful, simple A, -bimodule.

9. F®™ is the socle of A, considered as a left A,-module, or a right A, -module, or an

A, -bimodule.
10. 4, P, (resp. (P,)a,) is the only faithful, simple, left (resp. right) A,-module.
11. GK (A, /a) = 3n for all ideals a of A, such that a # A,,.

Proof. 1. On the one hand, GK(4A,) > GK(A,/a,) = GK(A,) = 3n (Theorem
2.1.(2)); on the other, GK (4,) = GK (A?") < nGK (A;) = 3n. Therefore, GK (A,,) = 3n.

2. Statement 2 is an easy corollary of the inequality of Bernstein. GK(N) > n for
all nonzero finitely generated (left or right) A,-modules N. Let M be a nonzero finitely
generated A,-module and 0 # v € M. Then GK », (M) > GK 4, (Ayu) > GK 4, (Ayu) >
n.

3. To prove that the centre Z(A,) of A, is K we use induction on n. The case n =1
is Corollary 2.6.(5). Suppose that n > 1 and the algebra A,, is central for all m < n.
The kernel of the algebra homomorphism A, — [, A, /p; is NIp; = F®". Since all
the algebras A, /p; >~ A; ® A,_; are central, we have Z([[\_, A,/p;) = [, Z(A,/p;) =
[[;_; K where Z(R) is the centre of R. If z € Z(A,) then z + F*" € Z(][_, A, /p;) =
[[i_, K, and so z = A+ f for some A € K and f € F*". Now, f=2z—\¢€ Z(F*") =0,
i.,e. 2=\ € K, and so the algebra A,, is central.

4. Clearly, (F®")? = (F*)®" = F®". Tt remains to prove minimality of F®". This
is obvious for n = 1 (Corollary 2.6.(1)). To prove the general case we use induction on
n. Suppose that n > 1 and the result is true for all n’ < n. Let I be a nonzero ideal
of A,,. We have to show that F®"* C I. Choose a nonzero element, say a, of I. Since
a€h, =A ®A,_1, the element a can be written as a sum a = Zle a; ® b; for some
elements a; € A; and b; € A,,_; such that the elements aq,...,a, and bq,...,b, are K-
linearly independent elements of the algebras A; and A,,_; respectively. Choose an element,
say f of F such that fa; # 0. Changing a for fa # 0 (and deleting zero terms of the type
fa; ® b;) one may assume that all a; € F. Note that {Fy;} is the K-basis of F. So, the
element a can be written as a finite sum a = By @ a + By @ S+ -+ + £y, ® 7y for some
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K-linearly independent elements v, 3, ...,y of A,,_; and distinct elements Ey;, Ey, ..., Epy.
Then b := Ey,aEy = Eyy ® a € I. By induction, F®"~Y C A,_;aA,_;, and so

I ) AnbAn = AlEklAl ® AnfloéAnfl 2 F & F®(n71) = F®n~

5. Let I and J be nonzero ideals of A,,. By statement 4, they contain the ideal F®". Now,
IJ 2 (F®")? = F®" #£ 0. This means that A, is a prime ring.

6. Statement 6 follows directly from statement 5. Suppose that al = 0 for some
nonzero element a of A, and a nonzero ideal I. We seek a contradiction. Then 0 =
Apal = A,al, I # 0 since A, is a prime algebra, a contradiction. Similarly, Ja = 0 (resp.
Ial = 0) implies 0 = [A,aA,, # 0 (resp. 0 = [A,al # 0), a contradiction.

7.0, 2 ap = (p1t--+pn)? 2 pi+- - APl = pit+- - Py = ansince p7 = p1, ..., PL = P,
and so a, = a2.

It remains to show that a,, is the largest ideal distinct from A,,, that is a € a,, implies
A,ad,, = A, where a € A,. Let B,, be the K-basis for A, that is the tensor product of
the K-bases from Theorem 2.5.(2). B, is the disjoint union of its two subsets M,, := {b €
B,|b€ a,} and N, :={b € B, |b & a,}. So, b € M, iff the product b contains a matrix
unit Eg (i) € F(i). Clearly, a, = ®uen, Kv and A, = a], & a,, where a], := & e, K L.
Elements of the set A,\a, are called generic. So, an element of A,, is generic iff it has at
least one nonzero p-coordinate for some p € M,,. We have to show that A, aA, = A, for
all generic elements a € A,,. This is true when n = 1 (Corollary 2.6.(1)). To prove general
case we use induction on n. So, let n > 2 and we assume that the claim is true for all
n’ < n. Let a be a generic element of A,,. Thena =a; @b+ - +a;, b, € Ay ® A,,_;
where a; are nonzero elements of A; such that a; is generic; b; are distinct elements of the
basis B,_1 such that b; € N,_1. By statement 6, Fa; F # 0, and so E;;a; Ey # 0 for some
i,7,k,1 € N. Then, for each t = 1,...,s, Eja;Fy = M\Ey for some A\, € K, necessarily
M # 0. Now, EjjaE, = Ey @ u where u := Aiby + - - - 4+ Asbs is a generic element of A,
since \; # 0 and b; € N,,_;. By induction, A,,_juA,,_; = A,_;, and so

Ayah, 2 An(Ezl & U)An =ME A @A, jubh, 1 =F A, =p.

By symmetry, all p; C A,ad,, and so a, = p; +---+p, C A,aA,. a, is the maximal
ideal of A,, that is properly contained in the ideal A,aA, (since a is generic), and so
A,ad,, = A, as required.

8. Let, for a moment, n = 1. One can easily verify that, for all i, 5, k € N|

"B = By, O°Eyj=i(i—1)---(i—k+1)Ei_, (23)

Eyx* =FE;jy, Eg0"=(0G+k)(+k—1)(+1)Eijn (24)

where Fy := 0 if either s < 0 or ¢t < 0. By (23), for each j € N, the left A;-module
C; := @ienK E;; is isomorphic to the left Aj;-module K[z], and so C; is a faithful, simple,
left A;-module. The left A;-module

F = ®ien C; ~ K[z]™ (25)
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is a direct sum of N copies of K|[z|, and so », F' is the faithful, semi-simple, left A;-module.
For an arbitrary n, the left A,-module C;, ® --- ® C; _ is isomorphic to P,. Therefore,
AnF®n ~ @il 7777 in€EN Czj (OSURIINY Czn ~ PT(LNn) (26)

is a semi-simple, left A,-module which is faithful, by statement 6.

Recall that the structure of the right A,-module P, is given by the rule: p*a := 6(a)p
where p € P, and a € A,. By (19), 0(F®") = F®". Then, by (26), the K-module
e ~ P has the natural structure of right A,-module, namely, f * a := 0(a)f where
f € F® and a € A,. In order to distinguish this structure of right A,-module from the
obvious structure (as a right ideal of A,,) we write F;”" ~ PN The map

0:F®" — Fym o~ PN f s 0(f), (27)

is an isomorphism of right A,-modules (since 0(fa) = 0(a)0(f) = 0(f) * a). Therefore,
FPm o~ BT o~ PN g the faithful, semi-simple, right A,-module by the proved left version
of this fact.

The A,-bimodule F®" is simple since the ring F®" ~ M (K)®" ~ M, (K) is simple.
The map 1 ® 6 : A, ® A%’ — A,, is an isomorphism of K-algebras such that 1 ® 0(F*" ®
For) = F® Using this equality and 4 FZ" o~ 5 oaor FE" o~ 4 F®" we see that the
A,,-bimodule F®" is faithful: if aF®" = 0 for some nonzero ideal a of A, then F®?" C q,
and so 0 = qF®" D [®2n. pon — penponpen — pen £ () g contradiction.

9. Let soc(A,) be the socle of the module 4, A, (resp. a,A,,, ). By statement 8,
F®" C soc(A,,). Suppose that F®" # soc(A,). Then soc(A,) = F®* @ M for a nonzero
module 4, M (resp. s, My,). On the one hand, F®"soc(A,) C F®" and so F®"M = 0. On
the other hand, F®"M = 0, by statement 6, a contradiction. Therefore, soc(A,) = F®".

The algebra A,, admits the involution 6 such that (F®") = F®". Therefore, soc(An, ) =
F®" since soc(y, A,) = F®".

10. Let M be a faithful, simple, left (resp. right) A,-module. Then F®"M # 0
(resp. MF®" #0). Choose a nonzero element, say m, of M such that F®"m # 0 (resp.
mF®" £ 0). Then M = F®'m (resp. M = mF®"), by simplicity of M. There is the
epimorphism F®" — F®'m = M, f — fm (resp. F®" — mF®" = M, f — mf) of left
(resp. right) A,-modules. Now, the result follows from statement 8.

11. 3n = GK (A,) > GK (A,,/a) > GK (A, /a,) = GK (A,) = 3n, and so GK (A, /a) =
3n. U

3 Unique factorization of ideals of A, and Spec(A,,)

In this section, all the results on ideals that are mentioned in the Introduction are proved.

Let B,, be the set of all functions f: {1,2,...,n} — Zy := {0,1} where Zy := Z/27Z is
a field. B, is a commutative ring with respect to addition and multiplication of functions.
For f,g € B,,, we write f > g iff f(i) > g(¢) for alli =1,...,n where 1 > 0. Then (B,,>)
is a partially ordered set. For each function f € B, Iy denotes the ideal I;1) ® -+ - ® Iy
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of A, which is the tensor product of the ideals I;;) of the tensor components A (i) in
A, =A(1)®---®Ay(n) where Iy := F and [ ;== A,. f>gifft I; D I,. For f,g € B,,
I;1, = Iy N1, = Iy, By induction on the number of functions one immediately proves
that, for fi,..., fs € By,

S
II@,:m;Jﬁ:Ihﬁ,
=1

Let C,, be the set of all subsets of B,, all distinct elements of which are incomparable (two
distinct elements f and g of B,, are incomparable iff f £ g and g £ f). For each C € C,,
let Io =5 fec I+, the ideal of A,,. The next result classifies ideals of the algebra A,,.

Theorem 3.1 Let K be a field of characteristic zero. Then

1. The map C — 1o := ZfeC’ Iy from the set C, to the set of ideals of A, is a bijection
where 1y := 0. In particular, there are only finitely many ideals of A,,.

2. Each ideal I of A, is an idempotent ideal, i.e. 1> = 1.

3. Ideals of A, commute (I1J = JI).

Proof. 1. Statement 1 follows from Lemma 3.2.

2. The result is obvious for I = 0. So, let I # 0. By statement 1, [ = Zfec I for
some C &€ Cn Then %2 = ZfECI)%+Zf#ng[9 = ZfECIf+Zf7ég[fIQ = ZfeC[f =1.

3. Itly = Ity = 1gp = I,y for all f,g € B,. The result is obvious if either I = 0 or
J =0. So, let I #0 and J # 0. By statement 1, I = I and J = Ip for some C, D € C,.
Then IJ = (Zfec ]f)(zgeD Iy) = (deD Ig)(ZfeC Iy)=JI. 0O

Let B, be the K-basis for the algebra A, that is the tensor product of the K-bases
from Theorem 2.5.(2) (see the proof of Corollary 2.7.(7) for details). For each element
b=b®- ---®b, of B,, one can attach an element f, of B, by the rule

, 1 ifb & F,
wa{OﬁmeF

Let a = ) ,cp Apb be a nonzero element of A,, where {)\;} are the coordinates of a with
respect to the basis B,. One has the well-defined map A,, — C,, a — Max(a), where
Max(a) are the maximal elements (in B,,) of the subset {f, | Ay # 0} of B,, where Max(0) :=
0.

Lemma 3.2 Let K be a field of characteristic zero and 0 # a = ), 5 \pb € A,. Then
Apah, = ZbEMax(a) Ifb = Z{b\)\,ﬁéo} Ifb’

Proof. 1t suffices to prove only the first equality since the second follows from the first:
for any b € B,, such that A\, # 0 there exists ¢ € Max(a) such that A. # 0 and f. > f,, and

so Iy, 2 Iy,. Hence, ZbEMax(a) Iy, = Z{be;éO} Iy,
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Fix b € Max(a). Up to order of the tensor multiples in the tensor product A, =
@ 1A1(7), one may assume that

fb(l) =

1 if1 <i<s,

0 ifs+1<i<n.
We have to show that A,ad,, D A, @ FE=%) g = \iby + -+ -+ \by + Air1biir + -+ Ay
where b := by, all \; # 0, fp, = -+ = fy, and f;, # fy for j =t +1,...,r. By the choice
of b, for each j such that t +1 < j < r, either fy, < f, or, otherwise, the functions f;,
and fj, are incomparable. by = ¢; ® f; for unique elements ¢; € M, and f1 = E,, 4, (s +
1) E, .4 .(n) € Ny_s where M, and N,_, were defined in the proof of Corollary
2.7.(7). Let Epy := Ep, p (s + 1)+ Ep,_ p, . (n) and Egg := Eg (s +1) - Ey,_ g, (n).
Then E,, f1E, = fi. Note that E,,A,_ E,, = KE,, = K f;. Changing the element a for
the element E,,aE,, and deleting zero terms of the type E,,\, b, Ey, one may assume that
a = (22:1 wic;) ® fi where all u; # 0 and p; € K; all ¢; € By fo, = -+ = f., = 1 for
some k such that 1 < k <[ ie c¢,...,cp € Mg; and fo, < f., where k +1 < j < [.
The element ¢ := 22:1 wici € as, hence AscAy = A, Now, Ayadd, = A, (c® A, =
Aychy @ Ay filh,_s = Ay @ F®=9)  as required. O

The next result is a useful criterion of when one ideal contains another.

Corollary 3.3 Let K be a field of characteristic zero and C,C" € C,. Then I C I iff
C < C' (this means that, for each f € C, there exists f" € C" such that f < f').

Proof. This follows at once from Lemma 3.2 and Theorem 3.1.(1). O

Corollary 3.4 Let K be a field of characteristic zero and s,, be the number of ideals of
A,. Then2 —n+ 3", 2(%) <s, <2?".

Proof. Let Sub,, be the set of all subsets of {1,...,n}. Sub, is a partially ordered set
with respect to ‘C’. For each f € B, the subset supp(f) := {i| f(i) = 1} of {1,...,n} is
called the support of f. The map B,, — Sub,, f +— supp(f), is an isomorphism of posets.
Let SSub,, be the set of all subsets of Sub,. An element {Xj,..., X} of SSub, is called
incomparable if for all © # j such that 1 <4, j < s neither X; C X, nor X; O X;. An empty
set and one element set are called incomparable by definition. Let Inc, be the subset of
SSub,, of all incomparable elements of SSub,,. Then the map

Cn - InCn7 {fb R fs} — {Supp(fl)a s .. ,Supp(fs)}, (28)

is a bijection. For each 7 = 1,...,n, there are precisely (T;) subsets of {1,...,n} that
contain exactly ¢ elements. Any non-empty collection of these is an incomparable set,
hence s, > 2+ 2?:1(2(?) —1)=2-n+>1, 2(%) where 2 ‘represents’ the zero ideal and
the ideal F'®" which corresponds to an empty set. Clearly, s, = |Inc,| < 22". O

The next corollary classifies all the prime ideals of A,,.
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Corollary 3.5 Let K be a field of characteristic zero. Then the map

Sub,, — Spec(A,,), I — p;:= Zpi, 0 — 0,

el

s a bijection, i.e. any monzero prime ideal of A, is a unique sum of height 1 primes;
|Spec(A,,)| = 2"; the height of py is |I].

Proof. 0 is the prime ideal since A, is a prime ring. Let I be a nonzero subset of
{1,...,n} that contains, say s, elements. Then A,/p; ~ A, ® A,,_,. The ring A, is a
central, simple K-algebra, hence the map a — A, ®a is a bijection from the set of ideals of
A,,_; to the set of ideals of A;® A,,_ (this is an easy consequence of the Density Theorem).
Then, A, ® F®™9) is the smallest nonzero ideal of A ® A,,_, and it is idempotent, and so
A ® A, is a prime ring. This means that p; is a prime ideal. By Theorem 3.1.(1), the
map Sub,, — Spec(A,,), I — p;, is an injection. It remains to prove that it is a surjection.
Let p be a prime nonzero ideal of A,,. Then p = ZfeC Iy for some C' € C, (Theorem
3.1.(1)). If |supp(f)| =n—1for all f € C then I; = p; where i = i(f) is a unique element
of the set {1,...,n} such that f(i) =0, and so p = > p;.

Suppose that |[supp(f)| # n — 1 for some f € C. Let us show that this case is not
possible since then p would not be a prime ideal. One can choose two distinct functions,
say g,h € B,,, such that g > f, h > f, and gh = f. Then Iy = Iy, = I;I;. Let a := 1, +¢
and b := I+ ¢ where ¢ := >, . Iyr. The ideals a and b strictly contain the ideal p and

ab= (I, +c)(I,+¢)=I0, +cly+ Ic+ =Ty +cly+ I+ Clp+c=p.

This contradicts to the fact that p is a prime ideal, and we are done.

It is obvious that |Spec(A,,)| = 2™. The fact that the height of the ideal p; is |I| follows
from Lemma 3.6.(1). O

The next criterion of when a prime ideal contains another prime is used in finding the
classical Krull dimension of the algebra A,, (Corollary 3.7).

Lemma 3.6 Let K be a field of characteristic zero; p,q € Spec(A,); p = piy, + -+ + pa,
and q =p;, +---+p;, be their decompositions as in Corollary 3.5. Then

1. p - q iﬁ{pin S >pis} - {pj17"'7pjt}'

2. If p C q then pq =p.

3. The poset (Spec(A,,), C) is an isomorphic to the set Sub,, of all subsets of {1,...n}.

Proof. 1. (=) (q+ p)/p is the ideal of the algebra A, /p ~ A, ® A,,_;. The algebra A,
is central and simple. By the Density Theorem, each ideal of the algebra A, ® A,,_g is of
the type A ® a for some ideal a of A,,_;. By Corollary 3.5 (applied to the algebra A,,_),
we have the inclusion {p;,,...,pi.} € {pj,...,p; }-

(<:) If{pin-.‘apis}g{pj17-..7pjz} thenp:pz1++pzs gp]1++p]t:q
2. By statement 1, if p C q then q = p+t for an ideal t. Then pq = p?+pt = p+pr = p.
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3. Statement 3 follows from Corollary 3.5 and statement 1. [J
For each s =0,1,...,n, there are precisely (Z) prime ideals of height s, namely,

{pi1_|_..._|_pl.s 1 < gy <o < g STL}
Corollary 3.7 Let K be a field of characteristic zero. Then the classical Krull dimension
of A, isn.

Proof. By Lemma 3.6.(1), 0 C p; Cpy +p2 C--- Cp1+---+ P, is a longest chain of
primes, and so cl.K.dim(A,) =n. O

(Spec(A,,), C) is a poset. Two primes p and q are called incomparable if neither p C q
nor p 2 4.

For each ideal a of A,, such that a # A, let Min(a) be the set of all minimal primes
over a. The set Min(a) is a non-empty set since the ring A, has only finitely many primes.

For each f € B, the set csupp(f) := {i| f(i) = 0} is called the co-support of f. Clearly,

csupp(f) = {1, ..., n}\supp(f).
Theorem 3.8 Let K be a field of characteristic zero. Then

1. Fachideal a of A, such that a # A, is a unique product of incomparable primes, i.e. if
a=dqy---qs =1ty -t are two such products then s =1t and q1 = 1), ..., ds = To(s)
for a permutation o of {1,...,n}.

2. Fach ideal a of A,, such that a # A, is a unique intersection of incomparable primes,
te. ifa=qiN---Nqs =1ty N---Nty are two such intersections then s =t and
q1 = to(1), - - - ds = Co(s) for a permutation o of {1,...,n}.

3. For each ideal a of A, such that a # A, the sets of incomparable primes in statements
1 and 2 are the same, a =q1---qs =q1 N --- N (s.

4. The ideals qy, . . ., qs in statement 3 are the minimal primes of a, and so a = HpeMin(a) p=
mpGMin(a)p'

Proof. 1. For each ideal a of A,,, we have to prove that a is a product of incomparable
primes and that this product is unique. Since the ring A, is prime these two statements
are obvious when a = 0. So, let a # 0.

Existence: Let f € B,; then Iy =[]
it follows at once that

() Pi- Let b be any ideal of A,,. Since b2 = b,

1ECcsupp

Ir+b= J] (i+b). (29)

i€csupp(/f)

By Theorem 3.1.(1), a = Iy, +--- + Iy, for some f; € B,,. Repeating s times (29), we see

that
a= 11 (iy + - +pi,) (30)

i1€csupp(f1),...,is €csupp(fs)
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is the product of primes, by Corollary 3.5. Note that ideals of A, commute; each ideal is
an idempotent ideal; and if p C q is an inclusion of primes then pgq = p. Using these three
facts and (30), we see that a is a product of incomparable primes.

Uniqueness follows from the next lemma which will be used several times in the proof
of this theorem.

Lemma 3.9 Let {q1,...,9s} and {r1,..., v} be two sets of incomparable ideals of a ring
such that each ideal from the first set contains an ideal from the second and each ideal from
the second set contains an ideal from the first. Then s =1t and q; = to1), ..., qs = To(s) for
a permutation o of {1,...,n}.

Proof Lemma 3.9. For each q;, there are ideals t; and t; such that v; C g; C t;, hence
q; = tj; = t; since the ideals t; and v are incomparable if distinct. This proves that for
each ideal g; there exists a unique ideal, say t,(;, such that q; = v,(;). By symmetry, for
each ideal t; there exists a unique ideal, say q(;), such that v; = q,(;. Then, s = ¢ and
q1 = (1), - - -, qs = to(s) for the permutation o of {1,...,n}. O

Uniqueness: Let a =q1---qs = t1--- v, be two products of incomparable primes. Each
ideal ¢, contains an ideal t;, and each ideal v; contains an ideal q;. By Lemma 3.9, s = ¢

and ¢y = t,), ..., (s = ty(s) for a permutation o of {1,... ,n}.
2. Uniqueness: Suppose that an ideal a has two presentations a = q; N ---Ngqs =
t;N--- Nt of incomparable primes. The sets {q1,...,qs} and {ry,...,t;} of incomparable

primes satisfy the conditions of Lemma 3.9, and so uniqueness follows.
Existence: Let Z be the set of all the ideals of A,,, and Z’ be the set of ideals of A,, that
are intersection of incomparable primes. Then Z' C Z. The map

_'Z:_>I/7 ql...quqlﬂ...ﬂqs’

is a bijection since |Z| < oo and by uniqueness of presentations q; - - - g5 (statement 1) and
qi N ---Ngqs (see above) where qq,...,qs are incomparable primes. Then Z = Z’. This
proves that each ideal a of A, is an intersection of incomparable primes.

3. Let a be an ideal of A,, and a=q;---q; =t; N--- N, where S := {q1,...,qs} and
T :={v1,...,t} are sets of incomparable primes. The sets S and T satisfy the conditions
of Lemma 3.9, and so s = ¢ and q; = to(1), - . ., s = to(s) for a permutation o of {1,...,n}.
This means that a =q;---qs =1 N --- N qs.

4. Leta=gq;---qs = q1 N---Ngs be as in statement 3 and let Min(a) = {t1,..., %}
be the set of minimal primes over a. Then Min(a) C S := {q1,...qs} (a =¢q1---qs C v
implies q; C t; for some j, and so q; = t; by the minimality of v;). Up to order, let
ty = q1,...,% = @¢ It remains to show that t = s. Suppose that t < s, we seek a
contradiction. This means that each prime q;, © = ¢t + 1,...,s, contains a and is not
minimal over a. Hence, q; contains a minimal prime, say q,(;), a contradiction (the ideal
q; and q,(;) are incomparable). O]

Corollary 3.10 Let K be a field of characteristic zero, a and b be ideals of A, distinct
from A,, in statement 1, 2 and 5. Then
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1. a="b iff Min(a) = Min(b).

2. Min(a N b) = Min(ab) = the set of minimal elements (with respect to inclusion) of
the set Min(a) U Min(b).

3. anb=ab.
4. If a C b then ab = a.

5. a C b iff Min(a) € Min(b) (the € means that and each q € Min(b) contains some
p € Min(a)).

Proof. 1. Statement 1 is obvious due to Theorem 3.8.(4).
2. Let M be the set of minimal elements of the union Min(a) U Min(b). The elements
of M are incomparable, and (by Theorem 3.8.(4))

By Theorem 3.8.(2), Min(a N b) = M. By Lemma 3.6.(2),

ab = H p- H q:Ht:aﬂb.

peMin(a)  qeMin(b) teM

3. The result is obvious if one the ideals is equal to A,,. So, let the ideals are distinct
from A,,. By statement 2, Min(a N'b) = Min(ab), then, by statement 1, aN b = ab.

4. If a C b then, by statement 3, ab=anNb = a.

5. (=) If a C b then Min(a) € Min(b) since a = [ [ c\sin( P € [qertine 9 = b-

(<) Suppose that Min(a) € Min(b). For each q € Min(b), let S(q) be the set (nec-
essarily nonempty) of p € Min(a) such that p € q. Then Min(a) 2 S := Ugemin(e)S(q)
and

a = NpeMin()P € NpesP € NgeMin(@q = b. 0

Theorem 3.11 Let K be a field of characteristic zero. Then the lattice of ideals of the
algebra A, is distributive, i.e. (a N b)c = acNbc for all ideals a, b, and c.

Proof. By Corollary 3.10.(3), (aNb)c=anbnNec=(anc)n(bNc)=acnbc O

Theorem 3.12 Let K be a field of characteristic zero, a be an ideal of A,,, and M be the
manimal elements with respect to inclusion of a set of ideals ay,...,ar of A,. Then

1. a=ay---a; iff Min(a) = M.
2. a=a N---Nag iff Min(a) = M.
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Proof. By Corollary 3.10.(3), it suffices to prove, say, the first statement.
(=) Suppose that a = a; - - - a; then, by Theorem 3.8.(4) and Corollary 3.10.(4),

G—H H CIjZHCI,

=1 g;;€Min(q; qgeEM

and so Min(a) = M, by Theorem 3.8.(4).

(<) If Min(a) = M then, by Corollary 3.10.(4), a = a; - - - a;.

The involution c. Let K be a field of characteristic zero and Z(A,,) be the set of
all ideals of the algebra A,,. Consider the map C,\{0} — C,\{0}, C — C + 1, where
for C ={f1,....fs}, C+1:={fi+1,...,fs +1}. The map is well-defined: C' € C, iff

{supp(f1),...,supp(fs)} € Inc, iff {csupp(f1),...,csupp(fs)} € Inc, where csupp(fi) :=
{1,...,n}\supp(f;) iff C + 1 € Inc,,. Consider the map

CI(AH)—)I(An), [Cl—>10+1, CECn,

where ¢(0) := 0. Then, for C € Cy, ¢(D ;e I5) = e cf). Note that c(A,) = F*",

c(ps) = Hj;éi pj, and c(a,) = D7, c(pi).
Let C,C" € C,, we write C' < C" if for each f € C there exists f’ € C' such that f < f’,
and for each ¢’ € C’ there exists g € C such that g < ¢'.

Lemma 3.13 Let K be a field of characteristic zero. Then
1. ¢: Z(A,) — Z(A,) is an involution (¢* =id) such that f < g implies c(I1;) 2 c(I,).
2. cla)=aiff a=Ic for some C ={f1,f1+1,...,fs, fs +1}.
3. IfC,C" e Cp, and C 2 C" then c(I¢) 2 c(ler).

4. c(a+b) C c(a) + c(b) for all ideals a and b of A,,. If a = I and b = I for some
C,C" € C,, such that CUC" € C,, then c(a+b) = c(a) + ¢(b).

5. c(ab) D c(a) 4 ¢(b) for all nonzero ideals a and b of A,,.

Proof. 1. ¢® = id since, for all ) # C € C,,, C + 1+ 1 = C. The rest is obvious.
2. c(lp)=IcitC+1=CitC={fi,fi+1,....fs, [« + 1}

3. IfC <" then C"+1=C+1, and so ¢(I¢) 2 c(Ier).

4. The second statement is obvious: If C' U C’ € C,, then

cla+b)=cllooe) = Y, Ippn=> I+ Y Ipji=a+b.

fecuc’ feC fec’

For arbitrary a and b, let a = I and b = Ip, and a+ b = Iy for some C,D, E € C,.
Then, for each e € F, either e > f for some f € C or e > g for some g € D. Then, either
c(I.) C c(Iy) or ¢(1.) C ¢(I,). Hence, c(a+b) C c(a) + ¢(b).
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5. Let a=Is, b = Ip, and ab = I for some C, D, FE € C,,. Then F <X C and E < D.
By statement 3, c¢(ab) 2 ¢(a) + ¢(b). O

The involution 7. Let K be a field of characteristic zero. For each p € Spec(A,,),
there exists a unique prime ideal 7(p) such that a, = p @ 7(p). In more detail, if p =
P, + -+ p;, then 7(p) = p;, +--- + pj, where {j1,....5} = {1,...,n}\{i1,... i}
The map 7 : Spec(A,) — Spec(A,,) is an order reversion involution, i.e. p C g implies
7(p) 2 7(q) for p,q € Spec(A,); and 72 = id. In particular, 7 is an anti-automorphism
of the poset Spec(A,). 7(a,) = 0 and 7(p;) = >_;;p;- Let Z,, be the set of ideals of A,
distinct from A,,. The map 7 can be extended to the map

7Ly, — Ly, &= NgeMin(a) — T(a) = NgeMin(a)7(4)-
Lemma 3.14 Let K be a field of characteristic zero, and a,b € Z,,. Then
1. 7:1, — I, is the involution (% =id).
2. 7(a) = a iff 7(Min(a)) = Min(a).
Proof. 1. The elements of the set Min(a) are incomparable, then so are the elements
of the set 7(Min(a)), hence 7(Min(a)) = Min(7(a)). Then 72 = id.
2. By Corollary 3.10.(1), 7(a) = a iff 7(Min(a)) = Min(a). O

A prime ideal of a ring R is called a completely prime if R/p is a domain.

Corollary 3.15 Let K be a field of characteristic zero. Then
1. a, is the only completely prime ideal of A,,.

2. a, 1is the only ideal a of A, such that the factor ring A, /a is Noetherian (resp. left
Noetherian, resp. right Noetherian).

Proof. 1. By Corollary 3.5, any prime ideal p of A,, is a unique sum p =p; +---+p;..
Then A, /p ~ A, ® A,,_,. The ring A, ® A,,_ is a domain iff s = n, that is p = a,.

2. The factor ring A, /a, ~ A, is Noetherian. It remains to show that A, /a is not
left and right Noetherian for all ideals a distinct from a,. By Theorem 3.8.(4), if a # a,
then a,, & Min(a). Choose p € Min(a). Then A, /p ~ A, ® A,,_; for some s > 1. The ring
A ® A, is not left or right Noetherian. The ring A, ® A,,_; is a factor ring of A,,/a, and
the result follows. []

4  The group of units A’ of A,

In this section, K be a field of characteristic zero. Let A¥ | A* and K* be the groups of units
of the algebras A,,, A, and K respectively. Using the Z"-grading of the skew polynomial
algebra A, (see (2)), it follows that

AL = (8, Pa)" = {K~ Hﬁ(Hj +1)" | (nyg) € (2P} = K = (2" (31)

i€Z j=1
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where the abelian group (Z")(Z) is the direct sum of Z copies of Z".

The group K* x H,. Let, for a moment, n = 1. In this case we usually drop the
subscript 1. For each integer ¢ > 1 and A € K*, the element (H — i)y := H — i 4+ Am;_1 is
a unit of the algebra D; and its inverse is equal to

+ A*l f . 17
f o [t
Pt 2o AT M i > 2,

1

As a function of the discrete argument H, (H — i)' coincides with 7= but instead of

having pole at H = i it takes the value A~!. Consider the following subgroup of D7,

He={][(H -+ []H - )i~

i>0 i>1

(n;) € 2} ~ 7). (32)

For an arbitrary n > 1, recall that A, = @7 ,A,(i) = AP". For each tensor multiple
Ay(i) = Ay, let H(i) be the corresponding group H. Their product H,, := H(1)---H(n)
is a subgroup of D* and H,, ~ H" ~ (Z")®). The natural inclusion H,, ~ (H,, + a,)/a, C
A, /a, ~ A, and (31) yield the isomorphism of groups

K*XHy,— A, A=\, Hy+iv— Hy+i, (Hy—j), — H, — 7, (33)

where A € K*, 1 <s<n,72€ Nand 1< jeN. K*H, is the subgroup of D? such that
K*H, ~ K* x 'H,.

The group (14 F®")* of units of the monoid 1+ F®". We are going to find the
group (1 + F®")* of units of the multiplicative (noncommutative) monoid 1 + F®". Let,
for a moment, n = 1. The ring F' = &, jenK E;; is the union My (K) := Ugs1 My(K) =
ll_H)lMd(K) of the matrix algebras Md(K) = @lgi,jfd—lKEijv le. FF= MOO(K>

For each d > 1, consider the (usual) determinant det; = det : 1 + My(K) — K,
u +— det(u). These determinants determine the (global) determinant

det : 1+ M (K)=1+F — K, uw> det(u),

where det(u) is the common value of all determinants detq(u), d > 1. The (global)
determinant has usual properties of the determinant. In particular, for all u,v € 1+
My (K), det(uv) = det(u) - det(v). It follows from Cramer’s formula that the group
GLw(K) := (1 4+ My (K))* of units of the monoid 1+ M, (K) is equal to

GLoo(K) = {u € 1+ Moo(K) | det(w) # 0}. (34)

Therefore,
(1+F)={uel+ F|det(u) # 0} = GL(K). (35)

The kernel
SLoo(K) := {u € GLo(K) | det(u) = 1}

of the group epimorphism det : GLo(K) — K* is a normal subgroup of GL(K).
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For any n > 1,

FO" = QP F(i) = @ (Ug,»1 My, (K)) = Uy,
= Uay, . dy>1Ma,.q,(K) = Moo (K).

dn>1 @iy Mg, (K)

.....

77777

Consider the determinant
det : 1+ F®" =1+ M (K) — K, u+~ det(u),
as in the case n = 1. Hence,
1+ F)* ={u €1+ F® |det(u) # 0} = (1 + Myo(K))* = GLyo(K). (36)

For each element u € (14 F®")*, using Cramer’s formula one can easily find a formula for
the inverse !, it is Cramer’s formula.

Lemma 4.1 Let K be a field of characteristic zero and v € 1+ F®*. The following
statements are equivalent.

1. ueAj.
2. The element u has left inverse in A, (vu =1 for some v € A,,).

3. The element u has right inverse in A, (uv =1 for some v € A,,).
4. det(u) # 0.

Proof. Using the Z"-grading on A, it is obvious that the first three statements are
equivalent to the fourth. [

Since F®" is an ideal of A,,, the subgroup (1 + F®")* of A’ is a normal subgroup: For
alla € Af, a(1+F®)a ' =1+aF®'a™! C 1+ F®" and so a(1+ F®")*a™! C (14 F®")*.

The subgroup K* x (H, x (1 + F®")*) of A%. Let A/, be the subgroup of the group
A generated by its subgroups K*, H,, and (1 4+ F®")*. Let us prove that

Al = K* X (H, x (1+ F®")). (37)

The subgroup (1 + F®")* of A% (and of A/)) is normal and the subgroup K* belongs to the
centre of A% hence A/, = K*H, (14 F®")* ie. each element a of A/ is a product a = Aau
for some elements A € K*, o € H,, and u € (1+ F®")*. In order to prove (37) it suffices to
show uniqueness of the decomposition a = Aawu. Since a +a, = A\a+a, € (A, /a,)* ~ A",
the uniqueness of A and « follows from (31) and (33). Then v = (Aa)™'a is unique as well.
This finishes the proof of (37).

The group A} and its commutants.

Theorem 4.2 Let K be a field of characteristic zero. Then
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1. A} =K*x (Hx (14 F)*), each unit a of Ay is a unique product a = Aa(1 + f) for
some elements A\ € K*, o € H, and f € F such that det(1+ f) # 0.

2. A7 = K* x (H x GLy(K)).
3. The centre of the group A7 is K*.

4. The commutant AT := [AT, A*] of the group AT is equal to SLoo(K) := {v € (1 +
F)* = M(K)|det(v) =1}, and Ay /[A], A]] >~ K* x H x K*.

5. All the higher commutants AT7 = [A7, A7), i > 2, are equal to AT®.

Proof. 1. By (37), A} = K* x (H x (1+ F)*) C Aj. It suffices to show the reverse
inclusion. By (33), there is the exact sequence of groups

L= 1+ F)" = A7 = (A F) = A = 1 (38)

which, using again (33), yields the inclusion A} C A/. The rest of statement 1 follows from
(36).

2. Statement 2 is equivalent to statement 1 since (1 + F)* = GLy(K), see (35).

3. Let Z be the centre of the group Aj. Since K* C Z, we have

Z=27Z0A=Z0(KH(+F) = K(ZNH(1+ F)).

We have to show that Z N H(1 + F)* = {1}. Let z = au € ZNH(1 + F)* where
a=a(H)eHand u € (1+ F)*. It remains to show that z = 1. §z = zf for all g € H iff
Pu = up for all § € H (since H is an abelian group) iff [3lu = u[5] (the equality of infinite
matrices) for all 5 = S(H) € ‘H where [f] is the diagonal matrix diag(5(1), 8(2),...) iff u
is a diagonal matrix of (1 4+ F)*. The diagonal entries of the matrix u, say u;, i € N, are
elements of K* such that u; = 1 for all ¢ > d for some natural number d = d(u). For all
distinct ¢,j € N, 1 + Ej; € (1 + F)*. Now, it follows from the equalities

z+ OC(Z + 1)UZE7,] = 2(1 -+ EU) = (1 + El])z =z + Eszé(j + 1)u3

that a(i + 1)u; = a(j + 1)u; where o(i + 1) := (H)|g=i+1 (we have used that aE;; =
a(i +1)E;; and E;jo = Ej;a(j 4+ 1)). For all distinct natural numbers ¢ and j such that
i,7 > d, we have a(i+1) = a(j+1). This means that the function o(H) € H is a constant,
i.e. o = 1. This gives u; = u; for all 7,j € N such that 7 # j, i.e. all u; = 1. Therefore,
z =1, as required.

4. The determinant can be extended from the subgroup (1 + F)* of A} to the whole
group by the rule

det : A] - K" x H x K*, Aauw— Aadet(u) = (\ «a,det(u)), (39)

where A € K*, o € H, and u € (14 F)*. It turns out that det is a group epimorphism. By
the very definition, det is a surjection. It remains to show that det(aa’) = det(a)det(a’)
for all @ := Aaw,d’ := Na/v' € Aj. This follows from the following equality

det(a 'ua) = det(u), a € H, ue (1+F)*. (40)
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Indeed,

det(aa’) = det(A\Nad - (o) tuad'v') = A aa' - det((a/) tua’)det(u')
= M ad - det(u)det(u') = det(a)det(a’).

The proof of (40):

det(atua) = det([a ula]) (where [a] := diag(a(1), a(2),...))
= det([a quqglaly) for all d>>1
= det(uq) = det(u) for all d>1

where, for an infinite matrix X = >
of X of size d x d.

The kernel of the epimorphism det, (39), is SLoo (K) := {u € (14+F)* = GLyo(K) | det(u) =
1}. In particular, SL (K) is a normal subgroup of A} such that the factor group A} /SLy (K) ~
K* x H x K* is abelian. Hence, [A}, Aj] C SL.(K) and there is the short exact sequence
of groups

ijen TijBijy Xa = Zogi,jgd—1 z;; E;; is the sub-matrix

1 — SLoo(K) — AT 2% K x H x K* — 1. (41)

The group SL(K) is generated by the transvections t;j(A) := 1+ AE;;, A € K*, 4,5 € N,
1 # 7. Note that o
t=J

LtV = (=7 A) (42)

where [a, b] := aba='b! is the commutator of two elements of a group. In more detail,

1+ 1 t—J

—— Mtii (=) =ti;(—= ).

T (Y = Y

Since H € H, we have the inclusion SLo(K) C [A], A]], i.e. [A], Af] = SLoo(K).

5. Statement 5 follows from (42) and the fact that the group SL.(K) is generated by
the transvections. [

An inversion formula for v € Aj. Let K be a field of characteristic zero. By Theorem
4.2.(1), each element u of A} can written as u = Aa(1 + f). The inverse (1 + f)~! can be
found using Cramer’s formula for the inverse of matrix. Then u=! = A\7}(1+ f)~ta™!. Let
f € Klz] be a given polynomial and y € K|[z] is an unknown. Then the integro-differential
equation uy = f can be solved explicitly: y = u~1f.

In contrast to differential operators on an affine line, in general, the space of solutions
for integro-differential operators is infinite-dimensional: Example. E;;y = 0.

For an ideal I of A, such that I # A,, let (1 + I)* be the group of units of the
multiplicative monoid 1 + 1.

[H, ti;(N)] = Htig(A)H ()7 =ty

Lemma 4.3 Let K be a commutative Q-algebra, I and J be ideals of A, which are distinct
from A,,. Then

1A N (L4 1) = (1+1)".
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2. (1+1)* is a normal subgroup of A¥.

Proof. 1. The inclusion A¥N(1+41) D (1+1)* is obvious. To prove the reverse inclusion,
let 1+a € AN (1+ 1) where a € I, and let (1 +a)™' =1+ b for some b € A,,. The
equality 1 = (1+a)(1 + b) can be written as b = —a(1+b) € I,i.e. 1+a € (1+I)*. This
proves the reverse inclusion.

2. Foralla € A%, a(l+a'=1+ala'=1+1,and so a(l1+I)*a™! = a(AX N (1 +
N)at=al*a ' Na(l+Nat=A>N(1+1)=(1+I)*. Therefore, (1+ I)* is a normal
subgroup of A*. [J

Let K be a field of characteristic zero. By (33), the group homomorphism Af —
(A,/a,)" ~ A% is an epimorphism. By Lemma 4.3.(1), its kernel is A N (1+a,) = (1+a,)*,
and we have the short exact sequence of groups

l-(1+a,) — A - A — 1 (43)
which together with (33) proves the first statement of the next theorem.

Theorem 4.4 Let K be a field of characteristic zero. Then
1. A = K* x (Hy, % (14 a,)").
2. The centre of the group A}, is K*.
Proof. 2. Let Z be the centre of the group A*. Then K* C Z and, by statement 1,
Z=ZNA =ZN(K'H,(1+a,)")=K(ZNH,(1+a,)").

It remains to show that Z' := ZNH,(1+ a,)* = {1}.

Let us show first that 2/ = Z N (1 4+ a,)*. Let z = pu € Z’ for some ¢ € H, and
u € (1 + a,)*. It suffices to show that ¢ = 1. Note that, for each element a € a,, there
exists a natural number ¢ = ¢(a) such that aE,3 = E,sa = 0 for all o, € N” such that all
a;, 3 > c. For short, we write o, 3> 0. So, uF, 3 = Eopu = Eup for all o, 3 > 0. Note
that Eiﬂ =0 for all @ # 3, and so 1 + E,3 € A’. Now, for all o, 3 > 0 such that a # 3,
2(14 Eup) =(14+Eup)z & 2+ pla+1)Eyg =2+ Eupp(B+1) © ola+1) =o(B+1)
& p = 1, as required, where p(a + 1) is the value of the function ¢ = ¢(Hy,..., H,) at
H =a1+1,...,H, = «, + 1. This proves the claim.

So, it remains to show that Z' := Z N (1 + a,)* = {1}. The result is true for n =1
(Theorem 4.2.(3)). So, we may assume that n > 2. Consider the descending chain f; D
oD Do D fp D faar = 0 of ideals

fiim ) b

1<j1 <<ji<n
of A,,. Note that f; = a,, f, = F®", and
(Pjy -0+ Fis1)[Fisr 205005, /Py 05 N1 = FE @Ay ~ FQ Ay =~ Moo (An_y).
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In the proof of the above series of ring isomorphisms without 1 we have used the facts that
F=My(K)and F® ~ F.

Wi T o wi + fa) o = (F¥ @A) 0 = Mg (A,-) ()

1<ji<-<jisn
are isomorphisms of rings without 1. Consider the isomorphisms of groups
(1+fi/fi+1)* = (1+ H (pjl Py +fi+1)/fi+1)*
1<j1<<gi<n

[T @t py tfe)/fon) = (14 F 0 4,0

1<j1<-<gi<n

~ (14 Mao(Ay))' ) = QLA 1))

12

where GLoo(Ai—1) := (1 4+ My (A,—;))*. The descending chain above yields the descending
chain of normal subgroups of A*:

I+f)" =(+a) 2 DA+f)" D D(1+fn) =0+ F") D (1+fun)" = {1}

For each ¢ = 1,...,n, there is the natural homomorphism of groups ¢; : (1 + f;)* —
(14 fi/fi+1)", the kernel of which is (1 + fi+1)*. So, (14 §;)*/(1 + fix1)* is a subgroup of
(1+f;/fix1)*. To prove that Z’ = {1} is equivalent to show that Z N (1+f;)* = {1} for all
1 =1,...,n. To prove this we use a downward induction at i starting with + = n. In this
case, f, = F'®", and the fact that Z N (1 + F®")* = {1} follows from the inclusion

ZO(1+ F) C Z((1+ Fo)*) = Z((1 + Moo (K)*) = {1}

since Z (M (K)) = 0.

Suppose that ¢ < n and Z N (1 + f;41)" = {1}. Using a downward induction on i it
remains to show that Z; := Z N (1 +f;)* = {1}. Note that in any ring elements 1 4+ a and
1 + b commute iff the elements a and b commute. Using this observation we see that, for
any ring R, the centre Z(1 + My (R)) of the multiplicative monoid 1 + M, (R) is 1 since
1 is the only element of 1+ M, (K) that commute with all the elements 1 + Ey;, k # .
All these elements belong to the group GLu(R) := (1+ My (R))*, and so it has the trivial
centre

Z(GLw(R)) = {1}. (44)

In particular, Z(GLOO(.An,i)(')) = {1}. For each subset J = {j1,..., i} of {1,...,n} that
contains exactly ¢ elements, we have seen above that

(Pjr Py, + Fi1) [Fir1 = FO @ A,y = Moo (Any).

For each matrix unit Fog = Ea5, (1) Eaip, (i) € pj, -+ pj, where o, 3 € N* and « # [,
the elements 1+ E,3 belongs to (1+ f;)* since EC%B = 0, and its image under the map ¢; is
equal to the element 1+ E,g + f;y1. This means that an element ¢;(z) commutes with all
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elements 1 + E,g + fi1 for all possible choices of J, i.e. ¢;(z) € Z(GLOO(AH,Z-)(?)) = {1}.
This means that z € Z N (1 + f;41)" = {1}, i.e. z = 1, as required. By induction,
{1} =Zn(1+f)*=ZnN(1+a,)*. This proves that Z(A¥) = K*. O

The subgroup (1 + a,)* of A’. Let K be a commutative Q-algebra. For each
1=1,...,n,

(i +2)/fe = pi/piNFoA 1 QFRA, /(i1 @F®@A,_i+A 10 F®a,,)
Ai1/a,i 1 @F @A, /o i A 1 @F @Ay ~ Mo (An_1)

12

is the series of isomorphisms of rings without 1. The factor ring without 1

an/f2 > [[(pi+R)/fo = [[ A1 ® F @ Ay i = Moo(Ay )"
=1

i=1

is the direct product of its subrings without 1. It is a semi-simple A,-bimodule where
(p; + f2)/f2, 1 < i < n, are the simple isotypic components of the A,-bimodule a, /f;. Fix
a section s : a,/fs — a, of the K-module epimorphism a, — a,/f2, a — a + f2. Then
a, =1im(s) @ fy is a direct sum of K-submodules. Using the K-basis B,, for A, considered
in the proof of Corollary 2.7 one can easily find such a section which even satisfies the
additional property that im(s) is a free K-module.

Consider the ring K & (a,/f2) with 1 and the subgroup (1 + (a,/f2))* of its group
(K @ (a,/f2))* of units. There are canonical group isomorphisms

n

(L+an/f2)" = (14 [ (pi+f2)/f2)"

=1

+ (pi + F2)/F2)", 1+Zp1 H1+pi>,
i=1

12
|";

~ JJ(1+ Mo(A HGL = CLaso(Ap_1)™

i=1
We have the group monomorphism
(I+a,)"/(1+F)" = (T +a/f)" (I+a)(l+f)" —1+a+f.

An invertibility criterion. The next theorem is a criterion of when an element of
the monoid 1 + a,, is invertible.

Theorem 4.5 Let K be a commutative Q-algebra, a € a,. Then 14+ a € (1 + a,)* iff
1.1+ a+f € (1+a,/f)* (= GLy(A,_1)"), and

2. a+(14a)ce (1+a)fs and a+c(1+a) € f2(1 +a) where ¢ :=s((1 +a+f2)~ ' — 1)
(the value of the section s : a,/fa — a, at the element (1 +a+f2)™' — 1 € a,/f2).
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Suppose that conditions 1 and 2 hold and a+(1+a)c = (1+a)r (resp. a+c(l+a) =(1+a))
for some r € fy (resp. 1 € fa) thena ™ =1+c—r (resp. a™' =1+c—1).

Proof. (=) Suppose that (1 +a) € (1 + a,)*. Due to the group homomorphism
(1+a,)*— (1+a,/f)* wehave 1 +a+— 1+a+f € (1+a,/f2)* ie. the first condition
holds. (1 + a,)* 2 (1 +a)~! =1+ b for some element b € a,, = im(s) @ f» which can be
written as b = ¢ + d where ¢ :== s((1 +a+f2)"' — 1) € im(s) and d := b — ¢ € fo. The
equalities (1 +a)(1+c+d) =1 and (1 4+ ¢+ d)(1+a) =1 can be rewritten as follows
a+(14+a)c=—(1+a)d € (1+a)fs and a+c(1+a) =—d(1+a) € fo(1 + a), and so the
second statement holds.

(<) Suppose that conditions 1 and 2 hold, we have to show that 1+ a € (1 + a,,)*,
i.e. the element 1+ a has a left and a right inverse. Condition 2 can be written as follows
a+ (1+a)c=(1+a)r and a+ c¢(1+ a) =1(1 + a) for some elements 7,1l € f5. These two
equalities can we rewritten as (1+a)(1+c¢—r)=1and (1+c—1)(1+a) = 1. This means
that 1+a€ (l1+ay,)*andat=1+c—r=1+c—1. 0O

An inversion formula for u € K* x (H, X (1 4+ F*")*). Let K be a field of charac-
teristic zero. By Theorem 4.4.(1), each element u € A* is a unique product u = Ah(1 + a)
for some A\ € K*, h € H,, and a € a, such that 1 +a € (1 + a,)*. Clearly, v =
A1+ a)"*h™!. So, to write down explicitly an inversion formula for u boils down to
finding (1 + a)~!. As a first step, one should know an inversion formula for elements of
GLs(A,—1) which is not obvious how to do, at the moment. It should not be entirely trivial
since as a result one would have a formula for solutions of all invertible integro-differential
equations (for all n > 2). Nevertheless, for elements u = Ah(1+a) € K* X (H,, x (1+F®")*)
one can write down the inversion formula exactly in the same manner as in the case n = 1.
Hence, one obtains explicitly solutions to the equation uy = f where f € P,. Elements of
the group K* x (H, x (14 F®")*) are called minimal integro-differential operators.
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