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Abstract — Most training algorithms for radial basis function (RBF) neural networks
start with a predetermined network structure which is chosen either by using a priori
knowledge or based on previous experience. The resulting network is often insufficient or
unnecessarily complicated and an appropriate network structrue can only be obtained by
trial and error. Training algorithms which incorporate structure selection mechanisms zre
usually based on local search methods and often suffer from a high probability of being
trapped at a structural local minima. In the present study, genetic algorithms are pro-
posed to automatically configure RBF networks. The network configuration is formed as a
subset selection problem. The task is then to find an optimal subset of n, terms from the
N, training data samples. Each network is coded as a variable length string with distinct
integers and genetic operators are proposed to evolve a population of individuals. Criteria
including single objective and multiobjective functions are proposed to evaluate the fitness
of individual networks. Training based on practical data set is used to demonstrate the
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1 Introduction

Radial basis function (RBF) neural networks have been studied by theorists and practi-
tioners in many diverse disciplines in recent years. Theorists have studied the basic aspects
of radial basis function approximation, including denseness, uniqueness of interplation and
convergence rate [1], [2], [3]. It has been proved (1] [3] that a radial basis function network
can approximate arbitraryly well any multivariate continuous function on a compact domain
if a sufficient number of radial basis function units are given. Poggio et al. [4] developed
regularization networks from approximation theory with radial basis function networks as
a special case. A network with a finite basis was also developed as a natural approximation
to the regularization network. Other extensions such as moving centres, weighted norm and
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networks with different types of basis functions and multiple scales were also considered.
These works provide a useful theoretical framework for investigating radial basis function
networks and learning algorithms. A variety of approaches for training radial basis function
networks have been developed. Most of them can be divided into two stages [5), 6], [7], [8],
[9], [10]: i). learning the centres and widths in the hidden layer; ). learning the connection
weights from the hidden layer to the output layer. In these learning algorithms, the network
structure or the number of hidden layer nodes are predetermined. An appropriate network
structure can only be determined by trial and error. Learning algorithms which incorporate
structure selection mechanisms were developed in references [11], [12], (13] and [14]. In
reference [11], the network was trained using an orthogonal least squares (OLS) algorithm.
Akaike’s information criterion (AIC) was used to determine the number of hidden layer
nodes and an error reduction ratio was used to select the centres. The algorithm provides
a compromise between network performance and network complexity and automatically
determines the number of hidden layer nodes. However, the algorithm is essentially a de-
scent method in the sence that the hidden layer nodes are located in a way such that the
approximation errors of the network are most effectively reduced at each step. Such an
error reduction is clearly local and the resulting network may become trapped at a local
minima. The learning algorithm developed in reference [12] treats the radial basis functions
associated with the hidden layer nodes as approximately orthogonal to each other. The
network starts with one hidden layer node and additional nodes are added to the network
when they are necessary. The locations of the hidden layer nodes are optimized using an
optimization package. This offers the opportunity to use advanced optimization methods to
train the network. However, the termination criterion of the algorithm is not clear and may
be problem dependent. Training algorithms presented in references [13] and [14] are based
on supervised hierarchical clustering methods. In reference [13], the learning starts with one
hidden layer node with larger width and creates additional nodes when they are desired.
The associated widths and the locations are also changed. In reference [14], the learning be-
gins with a larger number of nodes and merges them when possible. The associated widths
and locations of the nodes are updated accordingly. These two algorithms are primarily
developed for pattern recognition problems and offer alternative ways to determine network
structures. But since the number of nodes and node locations are determined by clustering
the pattern vectors, they may not be necessarily optimial for the network. This may be
especially true for system identification problems. In the present study genetic algorithms
are developed to optimize RBF network structures and to configure the network in terms
of the number of hidden layer nodes and the centre locations. The algorithms evolve to
optimize single objective as well as multiobjective functions and automatically determine
appropriate network structures accordingly.

The layout of the paper is organized as follows. Section two briefly describes the radial
basis function network and the network structure. Section three presents a canonical genetic
algorithm and introduces the basic concepts of genetic algorithms. Genetic algorithms for
RBF network configuration are described in section four together with detajls of genetic
operators and objective functions. Experimental results are given in section five, which
indicate that the genetic algorithmns are capable of creating appropriate RBF networks for
several objectives of interest. Finally, section six is devoted to conclusions and directions
for future research.
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Figure 1: Radial Basis Function Network Architecture

2 Radial Basis Function Networks

A basic radial basis function (RBF) network may be depicted as shown in Fig 1. Without
loss of generality, the number of outputs in the network will be assumed to be one, but the
architecture can be readily extended to cope with multi-output problems. The architecture
consists of an input layer, a hidden layer and an output layer. The input vector to the
network is passed to the hidden layer nodes via unit connection weights. The hidden
layer consists of a set of radial basis functions. Associated with each hidden layer node
is a parameter vector c; called a centre. The hidden layer node calculates the Euclidean
distance between the centre and the network input vector and then passes the result to a
radial basis function. All the radial basis functions in the hidden layer nodes are usually of
the same type. Typical choices of the radial basis functions are
i). the thin-plate-spline function:

B(v) = v x log(v) (1)
i1). the Gaussian function:
d(v) = e_(%) (2)

#i1). the multiquadric function:

$(v) = (v2 + B3 (3)

vi). the inverse multiquadric function:

H¥)=——uy (4)
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where v is a non-negative number and is the distance from the input vector x to the radial
basis function centre ¢, and [ is the width of the radial basis functions. In radial basis
function networks, the thin-plate-spline function has been used by Chen et al. [6], [11], and
the Gaussian and multiquadric functions have been used by Moody [5], Broomhead [15] and
Poggio [4]. In the present work, the thin-plate-spline function will be implemented in the
network. However, other functions listed above can be readily included by using a constant
B parameter. It is the authors’ intention to develop algorithms to evolve the § parameter
as well in further work.

The response of the output layer node may be considered as a map f: R™ — R, that is

N
f(x)=)_6ip(ll x =i ) (5)
=1

where N is the number of training data and || e || denotes the Euclidean norm. ¢; (i=1,
2, ..., N) is the ith centre and is the it* data sample in this particular network structure.
x,¢c; € R™, 6; (i = 1,2,..., N) are the weights associated with the i** radial basis function
centre. It may be seen that the training of the network is an interpolation problem and the
solution may be obtained by solving a set of constrained linear equations. The complexity
increases with the number of training data, which may make the implementation of the
network above unrealistic. In practical applications, it is often desirable to use a network
with a finite number of basis functions. A natural approximated solution would be

£(x) = 3 65601 x - s ) Q

where n, is the number of radial basis function centres, ¢; is the j** centre which can be
selected from the data samples. Given a set of data (x;,y:), (1= 1,2, o N)x; e R", 5, €
K., x; = (B, B s z:n )T, the connection weights, centres and widths may be obtained
by minimizing the following objective function

N
3i(8,¢) = (i — ) (% — ) (7)
=1

where 8 = (6,,02, ...,BnC)T, c = (e3.Ca, ...,cn:)T. The above minimization problem may be
solved using a nonlinear optimization or gradient decent algorithm. Note that the number of
hidden layer nodes or the network structure is predetermined in this network. The structure
may be selected using a prior: knowledge. However, an appropriate network structure can
only be determined by trial and error. It is therefore desirable to optimize the network
structure, the centres and the connection weights simutaneously. The objective function
could be chosen as

N ne L2 e
To(ne,8,¢) =3 L= Y ol xi—ei )] | wi= D 850( xi—eill) (8)
=1 =1 =1

Note that the best structure which minimizes-the objective function J; has N hidden layer
nodes and the centres tend to the data samples such that the network reverts to the one
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given in formula (5). The resulting network can only interplate the particular data set
and will fail to capture the underlying functional relation in the data, which will certainly
lead to overfitting. To provide a compromise between network performance and network
complexity, Akaike’s information criterion (AIC) may be used and the ob Jective function
to be minimized can be amended to

T
N n
I {4
J3(ne,8,¢) = N x log v o lw- Y66 x; - ¢ 1)
=1 j=1
%~ 3 0;0(] % — ¢ ||) + 4 X n, (9)
=1

More discussion on objective functions will be given in section four. In the present work,
it is assumed that the number of input nodes is known. Therefore, the minimization of
the objective function would determine both the network structure and the parameters
simutaneously. In the following sections it will be shown how this objective can be achieved
using genetic algorithms.

3 Basics of Genetic Algorithms

Genetic algorithms are inspired by the evolution of populations. In a particular environ-
ment, individuals which better fit the environment will be able to survive and hand down
their chromosomes to their descendants, while less fit individuals will become extinct. The
aim of genetic algorithms is to use simple representations to encode complex structures and
simple operations to improve these structures. Genetic algorithms therefore are charac-
terised by their representations and operators. In the canonical genetic algorithm [16] an
individual chromosome is represented by a binary string. The bits of each string are called
genes and their varying values as alleles. A group of individual chromosomes are called a
population. Basic genetic operators include reproduction, crossover and mutation. Genetic
algorithms are typically implemented as follows.

i. Define an objective function which indicates the fitness of any potential solution.

ii. Select an appropriate representation or codification and choose genetic operators ac-
cordingly.

ili. Randomly choose an initial population of P individual chromosomes bis(i=1,2,..., P
iv. Determine the fitness f(b;) (1 = 1,2,..., P) of each individual chromosome.
v. Assign a probability of reproduction p; (i = 1,2, .-y P) to each individyal

vi. Generate a new population by selecting individuals from the current population ac-
cording to assigned probabilities of reproduction p; (i = 1,2,..., P). The selected
individuals generate offsprings via the use of genetic operators such ag crossover and
mutation with respective probabilities.
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vii. If a stopping criterion is reached, stop. Otherwise repeat from step iv.

In the canonical genetic algorithm, crossover is applied to two chromosomes (parents). A
random position is selected along the coded string. The parent chromosomes are split into
two sections at this position. The two offspring chromosomes are formed by exchanging
the second sections of the two strings. The probability of reproduction of each individya]
is pi = P(b; is selected) = f(b:)/ Ef f(b;). The mutation is applied to each bit of the
selected string with a given probability. The crossover constitutes the main search operator
of genetic algorithms. It does not add any new genetic materials to the Population. Ap
important role of crossover however, was identifiedin [16] as recombining good "building
blocks™ in the population. This idea has been known as the building block hypothesis [16].
The mutation serves as a background operator to ensure that all possible alleles can enter
the population. The particular characteristic of mutation is to enable the genetic algorithm
to overcome local minima.

Genetic algorithms are often used to solve difficult optimization problems in many fields
of study. They are especially capable of handling optimization problems in which the ob-
Jective functions are discontinuous or non-differentiable, non-convex, multi-modal or noisy.
Since the algorithms operate on a Population instead of a single point in the search space,
they can climb many peaks in parallel and therefore reduce the probability of finding local
minima.

4 Genetic Algorithms for RBF Network Configuration

In section two, the RBF network configuration was formulated as a minimization prob-
lem with respect to the number of hidden layer nodes N, the centre locations ¢ (i =
1,2,..,n.) and the connection weights 6. Although the objective functions given in
formula (8) and (9) are continuous and differentiable with respect to the centre loca-
tions ¢; (i = 1,2,...,n.) and the connection weights 6, they are discontinuous and non-
differentialable with respect to the number of hidden layer nodes n,. This presents diffi-
culties for most conventional optimization methods which need derivative information of
the objective function. Since genetic algorithms operate directly on the objective functions,
this provides an alternative method for constructing RBF networks. In addition, the objec-
tive function'is multi-modal and may have many local minima, Conventional optimization
methods are likely to become trapped at these local minima. Moreover, when considering
both the network structure and parameters, the search space is virtually infinite. This may
become computionally prohibitive for many conventional optimization methods. Genetic
algorithms however, can often find good solutions efficiently and quickly for such difficult
problems. In this section, genetic algorithms will be proposed for configuring RBF neural
networks.

Since the objective functions are quadratic in the connectjon weights when the network
structure n. and the centres ¢; (i = 1,2,...,n.) are known, the connection weights can easily
be computed using the least squares algorithm (LS). Instead of searching for the centres in
real space R™, the centre locations are restricted to be the data samples x; (i=1,2,..,N).
This has the advantage that the search space can be significantly reduced. Former research
results with the RBF networks [11] indicated that the resulting networks are sufficient to
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capture the underlying dynamics within the data. Under these simplifications, the network
configuration can be transformed into a subset selection problem in which n, distinct terms
are selected from the N data samples as the centres. In the present work, the data sample
X; is labelled with index i (i = 1,2,..,N). A RBF network can be coded as a chromosome
with variable length and allele values ranging from 1 to N. The allele values of genes are
referred to as identities. With this representation, the phenotypic value of the following
chromosome is a RBF network with four hidden layer nodes and four centres located at

1100 [ 7 T411 | 286 |

[17] and was used by Fonseca et al. [18] for non-linear term selection in NARMAX models.
The subset selection problem was defined by Lucasias et al. as to select an optimal subset
s of fixed size n, from a source set S which contains N, serially labelled terms. The set
containing the remaining N, — n, terms in the source set S is called the complementary
subset of s. In the present work, the sizes of the subsets are variable and the representations
have variable lengths within a predetermined range. In the following, the genetic operators
and the objective functions used in the algorithms will be described in detail.

Crossover — Any crossover operator should create offsprings which satisfy the con-
strains given above, i.e. the length of the string should be in the given range and the string
should only contain distinct terms. Two crossover operators are proposed in this work. For
presentation purposes they are referred to as the fixed length crossover and the variable
length crossover respectively. The lengths of the parent chromosomes are preserved in the
fixed length crossover, while they can be changed in the variable length crossover.

The fixed length crossover works as follows. The common terms in both parents are
first searched and two binary template strings are created to mask the common terms in
both parents. The binary bit in the template string is set to 1 if the corresponding term is
a common term and 0 otherwise. The operator selects a random number of distinct terms

P 1 810374
P, = 6195423

To exchange three distinct termns between two parents, the procedure js
1. Create two template strings to mask the parents.

T
T,

100101
0100101
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2. Exchange three distinct terms from the end of the string and keep the common terms
unchanged.

Ch 195324
Co = 61810473

It may be seen that the building block defined by the common terms in both parents are
preserved in their offsprings. The operator does not change the lengths of the chromosomes.

To increase the diversity of string lengths, a variable length crossover may be used. The
operator works as follows. The following procedure exchanges three terms from parent one
with two terms from parent two.

1. Create two template strings to mask the parents.

T = 100101
I = 0100101

2. Exchange three distinct terms from the end of parent one with two distinct terms
from the end of parent two and keep the common terms unchanged.

o
C;

15324
619810473

Note that the length of child one is one term shorter than parent one and the length of
child two is one term longer than parent two. The building block defined by the common
terms in both parents are again transferred to their children.

Mutation — Mutation is usually used as a background operator in genetic algorithms.
It helps to prevent premature loss of alleles and enables the algorithm to explore the areas
containing potentially better fit chromosomes. In the present work, the trade mutation
proposed by Lucasius et al. [17] is implemented in the algorithms. The operator exchanges
with a given probability each term in a selected string with a randomly selected term in the
corresponding complementary subset of the string.

Deletion and Addition — The canonical genetic algorithm works by recombining the
best building blocks in the population. However, recombination may result in the loss of
important building blocks through the premature loss of allele diversity. In a varjable length
representation, it may result in the premature loss of length diversity as well. The variable
length crossover proposed above may alleviate this to a certain extend. But operators which
work directly on the string length are still required. The operators deletion and additjon
are proposed for this purpose.

The deletion and addition provide background operators over the string lengths. A
random change in the string length is imposed by either deleting a random number of
terms from the string or adding a random number of terms to the string. The deletion and
addition operators are applied to each selected string with equal probability, The deletion
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operator removes a random number of terms from the string beginning from a randomly
selected position. The addition operator always cascades a random number of terms to the
end of the string. The newly added terms are randomly chosen from the complementary
subset of the selected string.

Objective Functions — To provide a compromise between network performance and
network complexity, an appropriate objective function would be Akaike’s information cri-
terion (AIC). In network training, the data samples are usually divided into two sets, the
training set and the test set. The objective is then to minimize AIC on the training set
and the objective function becomes

T
N; n
l 1 13
Ja(ne,6,¢)= Nexlog | 32 (9= 22 05¢(ll xi = e ll)
=1 =1
y,'—ZHJ‘qS(H x;— ¢ ||) +4 X n, (10)
=1

where N, is the number of data samples in the training set, y;, x; are the output and input
data samples in the training set. The number of centres n. is initially chosen between a
lower boundary nemin and a upper boundary nemqa-. These boundaries can then be changed
during evolution if the lengths of all individuals in the population are nemin OT Nemaz-

The above objective function is minimized on the training set only. This intrinsicaly
involves the risk of overfitting on the training set such that the resulting network has
smaller training errors but larger generalization errors. This may be appreciated from the
experimental results given later. To alleviate this, it may be advantageous to minimize AIC
on both the training set and the test set simultaneously. The network configuration may
then be formed as a multiobjective minimization problem. The objective function becomes
a vector valued quantity (Js; Js,) where Js, is defined as

T
1 N, e
Jau(nc,8,¢) = N, x log FZ i — 308 xi — i ||)
=1

v j=1
yi— > 0ol xi—ci|)] | +4xne (11)
.=1

Note that the centres ¢; (i = 1,2, ...,n.) are selected from the training set, N, is the number
of data samples in the test set and y;, X; are output and data samples in the test set.

Scaling and Ranking — Scaling is often used to prevent a super individual dominating
the population in the early stage of evolution and to increase the resolution of selection in
the later stage of evolution when many individuals in the population have high fitness
values. Note that the computation of AIC is equivalent to applying a non-linear scaling
to the MSE value. At the later stage of evolution, the AIC computation can increase the
resolution of selection because it stretchs the range of the MSE values. However, at the
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early stage of evolution the AIC computation will tend to emphasis the super individual in
the population. In addition, the AIC value may be negative. To compute the fitness of the
individual it is necessary to transfer the AIC values to positive numbers. A linear scaling
proposed in reference [16] is implemented in the algorithm. This is given as

f(b:)=ax AIC;+ b (12)

where a is a negative scaling factor, b is a constant offset and AIC; is the AIC value of
individual ¢. The coefficients a and b are chosen to ensure that average individuals receive
one offspring on average and the best individual receives a specified multiple number of
offsprings.

As noted by Fogel [19] adding a large constant value to the objective function can
eliminate the selection and lead to a purely random walk. To avoid this the selection may
be based on ranking the individuals by objective function values.

For the multiobjective optimization, a relation called partially-less-than is applied to
compare two vector valued quantities. If vector a is partially-less-than vector b, it is
symbolically written as a <, b and is defined as [16]

(a <p b) i=2 (Vi)(a,- < b,) A (32)(&1 < bi) (13)

Under this condition, it is said that b is dominated by a or inferior to a. If a vector is not
dominated by any other, it is said that the vector is nondominated or noninferior. If a vector
set is not dominated by others, it is called a Pareto optimal (P-optimal) set. For multiobjec-
tive optimization, the objective is to search the Pareto optimal set. In the present work, the
population is ranked on the basis of nondomination. At each generation, all nondominated
individuals in the population are identified and assigned rank one. These individuals are
flagged and removed from contention. The next set of nondominated individuals is then
identified and assigned rank two. This rank procedure continues until the entire population
is ranked. The selection probabilities of individuals are then assigned according to rank.
Note that the rank process intrinsicaly avoids the possibility of a random walk.

The Algorithms — The genetic algorithms to evolve networks for single objective and
multiobjective functions are presented in the following.

i. Randomly choose an initial population of P individual chromosomes b; (i =1,2,..,P).
Each chromosome defines a network and the associated centre locations.

ii. Decode each chromosome. Compute the connection weights from the hidden layer
nodes to the output layer nodes. Compute the AIC value for each chromosome
b; (i =1,2,..., P). Set the number of generations N, for evolution. Set counter g=0.

iii. Determine the fitness f(b;) (i = 1,2, ..., P) of each individual chromosome.

For the single objective algorithin, scale the AIC value of each individual on the
training set according to formula (12).

For the multiobjective algorithm, rank each individual in the population as described
above.
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iv. Assign a probability of reproduction p; (i = 1,2,..., P) to each individual according
to its fitness (or rank).

v. Set counter k = 1, apply genetic operators as defined above to create offsprings.

(a) Select two individuals according to their reproduction probabilities.

(b) Apply crossover with given probability to the two parent strings, create two
offsprings.

(c) Apply mutation with given probability to every bit of the offsprings.

(d) Apply deletion and addition with given probability to the offsprings.

(e) Decode the two child chromosomes. Compute the connection weights from the

hidden layer nodes to the output layer nodes. Compute the AIC value (or values)
of each child.

(f) Compare the two children with their parents. The two best chromosomes are
kept for evolution. For the single objective, the two chromosomes with smaller
AIC values are kept. For the multiobjective, the two non-infereor chromosomes
are kept for evolution.

(g) Set k = k + 2,if k > P, goto step vi. Otherwise, return to step a

vi. Set g =g + 1,if g > N,, stop. Otherwise, return to step izi.

5 Experimental Results

The genetic algorithms proposed above are coded for multi-output systems but a single
output example will be used to demonstrate the performance of the algorithms in this
paper. The example considered is a liquid level system. The system consists of a DC water
pump feeding a conical flask which in turn feeds a square tank. The system input is the
voltage to the pump motor and the system output is the water level in the conical flask.
1000 data samples generated in an experiment are shown in Fig 2. The first 500 data
samples were used for training and the last 500 data samples were used for testing. The
input vector to the network was chosen based on previous studies [6] [20] as

(y(t=1)y(t=2) y(t = 3) u(t — 1) u(t —2) u(t —3) u(t — 4) u(t - 5))

The emphasis here is on the capability of the genetic algorithm to find appropriate networks
for the given objective functions rather than a "correct” network for the dynamic system.
The later is a more complicated issue and will be addressed in future publications. Both the
fixed length and variable length crossover were used in the expeximents. The fixed length
crossover showed a higher probability of producing a premature loss of length diversity
and only the results with variable length crossover will therefore be presented. In the
experiments, the population size was chosen as 60. The crossover probability was 0.5 and
the mutation probability was 0.02. These strategic parameters may not be optimal for the
existing problem and further investigation into the selection of the strategic parameters
of the algorithms will be conducted. The initial minimum string length was 15 and the
maximum string length was 60. Since the training set contains 500 distinct terms, the
search space therefore contains 3%, (3% = 3.0133 x 1078 different networks.
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Figure 2: Input and output of a nonlinear liquid level system

5.1 Single objective with deletion and addition

In this experiment, the AIC values on the training set were used to evaluate the fitness
of individual networks. The probability of deletion and addition was 0.04. The evolution
of AIC and MSE on both the training set and the test set are shown in Fig 3 and Fig
4 respectively. Although the objective function provides a compromise between network
performance and network complexity and therefore results in an appropriate network for
the training set, the resulting network can still have higher generalization error on the test
set. Note that the lowest AIC value on the training set of the population was considerably
improved through evolution but the AIC value on the test set at the 400*" generation is
worse than that of the initial population. This may be further appreciated from the MSE
values of the best network at the 400t generation. The MSE values on the training set and
the test set are 0.001757 and 0.003154. The evolution of the minimum and maximum string
lengths of the population are shown in Fig 5. The algorithm automatically searchs for the
appropriate network size according to the given objective. The best network at the 400t
generation has 21 centres. Compared with the network obtained in [20] the complexity
of the genetically configured network is significantly reduced. In reference [20], a network
with 41 centres achieved a training error of 0.002333 and a generalization error of 0.003051
respectively. This is probably because the genetic algorithm developed here has a lower
probability of becoming trapped at a local minima. Finally, the output of the best network
and the residuals are plotted in Fig 6.
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Figure 3: AIC on training set and test set (single objective with deletion and addition).
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Figure 4: MSE on training set and test set (single objective with deletion and addition).
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Figure 6: One step ahead predictions (top) and residuals (bottom) of the best network
(single objective with deletion and addition)

5.2 Multiobjective without deletion and addition

In the previous experiment, it was shown that the network obtained by minimizing the
objective function on the training set alone can have a lower training error but a higher
generalization error. A possible solution would be to evolve the population to minimize the
objective function on both the training set and the test set. The multiobjective function
given in the previous section will be used to rank the individuals in this experiment. The
centres are selected from the training set and the population evolve to minimize the objective
functions in the sence of Pareto optimality. In this experiment, the deletion and addition
operators are not applied to the individuals. The evolution of AIC and MSE on both the
training set and the test set are shown in Fig 7 and Fig & respectively. Note that the
AIC on both the training set and the test set are improved. The string lengths converged
from a larger range (15-60) to a smaller range. One of the networks of the final generation
has 14 centres and the MSE values on the training set and the test set are 0.001952 and
0.002490 respectively. The generalization error is smaller than that achieved in the single
objective algorithm. The lower limit of the string length has been changed from 15 to 13.
This indicates that the algorithm is not restricted by the initial limits of the string length.
The predictions and the residuals of the network are shown in Fig 10.

5.3 Multiobjective with deletion and addition

As mentioned in the previous section, in a variable length representation the premature
loss of allele diversity may result in the premature loss of string length diversity. It may be
correct to say that the premature loss of string length diversity can accelerate the prema-
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a). AIC on training set b). AIC on test set

Figure 7: AIC on training set and test set (multiobjective without deletion and addition).

top: generation 1-50, bottom: generation 10-400. *-’ minimum, ...’ average, - -’ maximum
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Figure 10: One step ahead predictions (top) and residuals (bottom) of the best network
(multiobjective without deletion and addition)

ture loss of allele diversity. The deletion and addition operators are proposed to increase
the string length diversity. The performance of these operators are demonstrated in this
experiment. The strategic parameters of the genetic algorithm will be set to be the same as
those in the previous experiment. The deletion and addition operators were applied to the
individuals with a probability of 0.2. The evolution of AIC and MSE on both the training
set and the test set are shown in Fig 11 and Fig 12 respectively. The evolution of the
maximum and minimum string lengths are plotted in Fig 13. Compared with Fig 9, it may
be seen that the length diversity of the population has improved significantly. The string
lengths of the population nearly converged around the 100" generation in the previous
experiment (Fig 9), while the population maintained a richer length diversity throughout
the evolution process in Fig 13. The predictions and residuals of one of the networks at
the 400" generation are shown in Fig 14. The network has 20 centres, a training error
of 0.002029 and a generalization error of 0.002444. The network is more complex and the
performance evaluated by the errors is slightly worse than in the previous experiment but
this may be due to the slower convergence rate of the algorithm.

6 Conclusions

In this paper, genetic algorithms have been proposed to configure radial basis function
networks. It has been demonstrated that the proposed algorithms can automatically deter-
mine appropriate network structures and network parameters according to given objective
functions. Since the genetic algorithm can escape from local minima, it has a lower prob-
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Figure 12: MSE on training set and test set (multiobjective with deletion and addition).
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Figure 14: One step ahead predictions (top) and residuals (bottom) of the best network
(multiobjective with deletion and addition)

ability of becoming trapped at structural local minima. The network complexity can be
significantly reduced compared with that achieved by alternative algorithms. In addition,
a group of networks can be obtained if the algorithm maintains a reasonably rich diversity
of string length and allele value.

Both single objective and multiobjective functions have been proposed to evaluate net-
work fitness. The AIC value provides an appropriate compromise between network com-
plexity and network performance. However, when applied to the training set alone, the
objective can result in a network with lower training error but higher generalization error.
One way to avoid this is to evaluate the network on both the training set and the test set si-
multaneously. The generalization performance of the resulting network can be significantly
improved.

The selection of strategic parameters has been a long standing problem in genetic al-
gorithm research and has attracted attention from many researchers. It is worth noting
however that strategic parameters used in the experiments may not be optimal for the
given problem and further work is needed to resolve these issues.
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