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A Genetic-Based Approach to Robot Motion Planning
Considering Path Safety

Mingwu Chen* and AM.S. Zalzala®

Abstract

This paper proposes a genetic algorithm for robot path planning by considering
both the travelling distance and a safety criterion. Incorporation of the safety issue
into path planning is important not only because of the uncertainties in the robot
dynamics during path execution, but also because of the inaccuracies in the geometric
modelling of obstacles. The approach uses a wave front expansion algorithm to build
the numeric potential fields for both the goal point and the obstacles by representing
the workspace as a grid. The safety value of a node in the grid is defined as the
numerical potential from obstacles. A genetic algorithm is developed to search for near
optimal paths. Computer simulation results are presented to demonstrate the
effectiveness of the algorithm.
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1. Introduction

The motion planning of mobile robots is concerned with providing a feasible and
efficient path to accomplish a given task. Depending on the system objective, the
robot path planning has to be solved by optimising suitable criteria subject to some
constraints. This paper presents a near optimal solution to the robot path planning
problem with a weighted distance-safety criterion.

The travelling distance has been the primary object to minimise in most
conventional robot path planning approaches because the shortest distance path may
reduce the robot's travelling time and consequently reduce the computational
complexity of path planning. However, another factor which should not be ignored
during planning is robot safety during path execution . Robot safety becomes
important, especially when there are non negligible uncertainties in both the robot
dynamics during path execution and the environmental information such as obstacles.
Thus the simultaneous consideration of distance and safety needs to be called for
during robot path planning.

The safety of a robot path can be quantified by the clearance between the path and
obstacles. If robot safety is the only concern, one would choose a path providing the
maximum clearance from obstacles. However, such a path could be considerably
longer than the shortest one, and it is not desirable to consider safety only when the
robot's travelling distance is of significant importance.

The safety of a path has not been considered explicitly in most known path planning
approaches. In most papers([1],[2]), the path safety was obtained by enlarging each
obstacle by a specified amount. Though the method of growing obstacles is simple and
attractive in many cases, a potential problem with this method is that some good paths
would have been eliminated as a result of growing obstacles. Moreover, it may be
very difficult to determine the degree of enlargement of obstacles during path planning
because of its independence on the utilisation of the workspace as well as the
uncertainties in the robot dynamics during path execution. Paper [3] presented a
variational dynamic programming approach to robot path planning with a distance-
safety criterion. The method represented free workspace as channels and the safety
cost of a path is defined as the deviation of the path from the centre-line path.

In this paper, we represent a cluttered environment as a grid through cell
decomposition. Two numerical potential fields are built for the obstacles and the goal
point by using "wave front expansion" algorithm. Each point in the grid has a safety
value from the obstacles and a distance value from the goal point. The safety value of
a node is defined as the numerical potential from the obstacles. A feasible path is a set
of adjacent nodes in the free space connecting the start point and the goal point. The
cost of a path is defined as the sum of the travelling distance and the average safety of
all the points in the path.

There often exist a large, (even infinite), number of paths between the initial
position and final position and path planning is not necessarily to determine the best
solution but to obtain a good one according to certain requirements. Different
optimisation methods have been developed (e.g. calculus based methods, enumerative
schemes, random search algorithms, etc.) for solving the path planning problem.
These conventional optimisation methods are shown not to be very effective in certain

applications. Genetic algorithms are very robust search and optimisation methods.




choosing them can help searching for safe paths. Fig(1b) is a numerical potential field
for obstacles.
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Fig(1) Two numerical potential fields

Every node in the free space is assigned two values. One is the distance value from
the goal, and the other is the distance value from obstacles which represents the safety
of anode. The farther away a node is from the obstacles, the lower the safety value of
a node is and the safer it is for a robot to move through it.

3. The Cost Function

Let a path P be described by a set of neighbouring nodes connecting the starting
node and goal node , denoted by {n,, i=1,2,...,N}.

Considering both distance and safety, the cost function is represented by
CP)=eDP)+ A S(P) €,A20

where D(P) and S(P) represent costs associated with length and safety of P,
respectively, and €,A are the relative weightings between the two, thus

N
D) = 3 |m - ni.
i=2

and

N
S(P) = -I—ZSi S,<S,
NS
where S, is the safety value of the node n; and S, is the given upper limit of the
safety value, which is introduced to prevent a path from getting too close to obstacles.

In a given workspace there usually exist a large ( even infinite ) number of
feasible paths connecting the starting point and the goal point. By adjusting the
relative weightings € and A different paths can be searched for. In this paper, we use
genetic algorithms to optimise the cost function and search for optimal paths.



4. The Genetic Algorithm Approach

To solve the mobile robot path planning problem by a genetic algorithm, we need
a coding scheme to encode the parameters of the problem into genetic strings. In our
problem, the robot path is coded as a string of N number of points represented by their
Cartesian co-ordinates as

{(X, 7). (X5, ) s (X Y i)

with all the values stored in a decimal form. This coding method yields variable-length
paths and a proper genetic structure is required to deal with it, in particular when
performing crossover.

First, a set of valid random paths are generated as the initial generation. In order
to prevent the robot wandering endlessly inside the work space, a weighted vector of
motion direction is employed according to the goal distance values of the 8
neighbouring nodes. A neighbouring node which has a lower goal distance value, i.e. a
node closer to the goal, has more chance to be selected as the next node in the path. A
fitness value is assigned to each string according to its distance and safety. In our
algorithm, the fitness function is defined as

f=C_-CP)
where C_ is a selected positive real number not less than the maximum cost of C(P).

Second, a reproduction approach is applied to select strings for the next
generation. Genetic algorithms use the fitness value of each string of the current
generation to decide if and how many copies of the string should be passed to the next
generation. The larger the fitness value of one string, i.e. the lower the cost of the
path, the higher probability of the string being chosen for the next generation.

When in early generations there is a tendency for a few superstrings to dominate the
selection process. Later on when the population has largely converged, competition
among population members is less strong and the simulation tends to wander. In these
two cases, fitness values must be scaled to prevent the takeover of the population by a
few superstrings in the early generations and to accentuate differences between
population members to continue to reward the best performers. In this paper we use
linear scaling to calculate the scaled fitness f’ from the raw fitness f using a linear
equation of the form

f'=af+b

In this equation, the coefficients a and b are chosen to do two things: enforce equality
of the raw and scaled average fitness values and cause the maximum scaled fitness to
be two times of the average fitness. These two conditions ensure that the average
strings receive one offspring copy on average and the best receive two on average.
When the scaled fitness value of a string becomes negative, we simply set it to zero.
To reduce the stochastic error associated with the selection, we implement the
stochastic remainder sampling without replacement.

Performing crossover is not straight forward because of the variable-length coding
and, more important, since a random crossover would produce a discontinuous path.
Thus the selected path pair is checked for nodes with a certain proximity (coincident,
one or two nodes apart ). If one is found and is not coincident for both paths, a
random segment is generated to connect both nodes, and exchange the remainders of
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Fig(2) Robot paths and their costs

In the figures showing the costs, the upper lines show the average costs of each
generation and the lower lines show the lowest costs within each generation. All the
costs decrease steadily and converge as the generations increase.

6. Conclusion

In this paper, we have developed a genetic algorithm approach to search for
optimal paths for a mobile robot in a cluttered environment with a distance-safety
criterion. The incorporation of robot safety into path planning is practically important
not only because of the uncertainties in robot dynamics during path execution, but also
because of the inaccuracy in the geometric modelling of obstacles. We have
demonstrated the effectiveness and efficiency of the algorithm to reach near optimal
solutions to different weighting path planning problems through various simulations.
Although it is developed mainly for two dimensional problems the algorithm can be
easily extended to the class of three dimensional problems.
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