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Abstract

Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are
correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term
facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing
synapses form predominantly unidirectional pairwise connections. The cause of these structural differences in excitatory
synaptic microcircuits is unknown. We show that these connectivity motifs emerge in networks of model neurons, from the
interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the
impact of STDP on SD was shown in simultaneous neuronal pair recordings in vitro, the mutual interactions between STDP
and SD in large networks are still the subject of intense research. Our approach combines an SD phenomenological model
with an STDP model that faithfully captures long-term plasticity dependence on both spike times and frequency. As a proof
of concept, we first simulate and analyze recurrent networks of spiking neurons with random initial connection efficacies
and where synapses are either all short-term facilitating or all depressing. For identical external inputs to the network, and
as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve
unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. We then
show that the same results hold for heterogeneous networks, including both facilitating and depressing synapses. This does
not contradict a recent theory that proposes that motifs are shaped by external inputs, but rather complements it by
examining the role of both the external inputs and the internally generated network activity. Our study highlights the
conditions under which SD-STDP might explain the correlation between facilitation and reciprocal connectivity motifs, as
well as between depression and unidirectional motifs.
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Introduction

Our higher cognitive functions and our memories are believed

to be encoded in the wiring diagram of the brain. The

technological efforts and the recent initiatives in mapping and

understanding the emergence and development of this diagram,

the ‘‘connectome’’ [1], undoubtedly represent the cutting edge of

research in neuroscience and are confronted with many challeng-

es.

Studies at the microcircuit level revealed that connectivity is

non-random [2,3] and, in particular, specific cellular connectivity

motifs have been found in percentages well above chance level.

Some of these studies have also been able to provide physiological

information about the neurons and synapses that are involved in

the formation of such motifs [2–5]. Besides revealing the molecular

identity of neurons, such information includes the properties of

activity-dependent short-term [6,7] or long-term plastic changes in

synaptic efficacy [8,9] as well as the synaptic rewiring [10,11].

These physiological details are of great significance, as the

transmission of information between neurons takes place by

means of more than mere ‘‘connectors.’’ For instance, synaptic

efficacy undergoes short-term dynamics (SD), quantified as

transient and reversible facilitation or depression of postsynaptic

responses, upon repeated presynaptic activation [6,12].

Of interest for our study, short-term facilitation and depression

were found to correlate to specific, pairwise, connectivity motifs:

neurons connected by synapses exhibiting short-term facilitation

form predominantly reciprocal motifs; neurons connected by

synapses exhibiting short-term depression form unidirectional

motifs. This correlation was observed in glutamatergic microcir-

cuits of rodent cortex [4] and the olfactory bulb [13], but the

mechanisms responsible are largely unknown.

Inspired by a theory on the relationship between neural code

and cortical connectivity [14], we hypothesize that interactions
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between short-term and long-term synaptic plasticity might

contribute to the emergence of pairwise connectivity motifs

observed in the experiments. We explore this hypothesis in silico

by combining together existing phenomenological models describ-

ing spike-timing dependent long-term synaptic plasticity (STDP)

[15] and SD [16], as well as by using analytical arguments, well-

established in the literature [14,15,17–20].

We find that, by SD-STDP interplay alone, identical networks

of Integrate-and-Fire model neurons [21] evolve reciprocal motifs

if their synapses are facilitating and unidirectional motifs if the

synapses are depressing. The key ingredients to explain the

evolving motifs are the facts that (i) networks with facilitating

synapses fire at higher frequencies than networks with depressing

synapses, and (ii) the model of STDP captures both a correlational

‘‘pre-post’’ temporal mode at low firing rates and a ‘‘Hebbian’’ rate

mode at high firing rates [22].

The hypothesized SD-STDP interplay for connectivity motif

correlation emergence might be one of the possible mechanisms

that contribute to shape brain microcircuitry, complementing an

existing theory [14] by focusing on the role of internally generated

network activity, in addition to external inputs.

Results

We demonstrate in simulations and by analytical arguments

that two homogenous networks of model neurons, identical in

every other aspect but the type of connecting synapses, i.e.,

facilitating or depressing, will evolve to two distinct connectivity

profiles, under identical external stimulation: the facilitating

network will develop reciprocal motifs while the depressing

network will develop unidirectional motifs.

The key mechanisms in this finding are (i) the SD, which results

in networks with facilitating synapses to fire at higher rates than

networks with depressing synapses, and (ii) the long-lasting

potentiation components (LTP) of the STDP, which above a

critical firing frequency threshold prevail over the depression

components (LTD), regardless of temporal correlations as

observed experimentally by Sjoestrom et al. (2001).

As in [14] and [2], we focus on stereotypical motifs of strong

synaptic efficacies among weak links between recurrently con-

nected neurons, and study how the values of synaptic coupling

become large enough that the internal dynamics of the network

dominates over external inputs. For instance, the moderately high

frequency internal activity of the facilitating networks overrides the

external inputs and leads to reciprocal motifs, according to the

classic Hebbian associative plasticity. This doesn’t happen with the

depressing networks, which naturally fire at lower frequency and

where external inputs prevail, evolving only unidirectional motifs.

In cases where the external inputs anyway drive neurons to fire

strongly, the networks will evolve reciprocal motifs, regardless of

the nature of the synapses (see also [14]). This fact strengthens our

results, as experimentally one always observes a minor percentage

of reciprocal connectivity and depressing synapses, as well as

unidirectional connectivity and facilitating synapses [13].

We further extend our results to heterogeneous networks, where

both facilitating and depressing synapses are present. We study the

conditions under which our results hold, we describe that spatial

structure in the initial synaptic efficacies is required, and we

propose the conditions by which this structure may be formed.

A subset of these results, limited to toy, homogenous networks

under the presence of background noise and extreme initial

connectivity (fully reciprocal or fully unidirectional), was earlier

reported in [23]. Here we considerably extend and generalise

these results, providing a full analysis of the underlying mecha-

nisms.

Homogenous microcircuits
In the following section we study and analyze small and large

scale homogenous networks, i.e., networks where all synapses

between neurons are all facilitating or all depressing, and describe

the mechanisms underlining the motif formation.

A toy, recurrent microcircuit model with weak

background external inputs. We first consider a simplified

representation of an excitatory microcircuit: a network of adaptive

exponential Integrate-and-Fire (IF) units. Neurons are connected

to each other through excitatory synapses (Fig. 1 B), whose efficacy

undergoes short- and long-term plasticity, according to widely

studied phenomenological descriptions of short-term synaptic

dynamics (SD) [6] and of long-term spike-timing dependent

plasticity (STDP) [15] (see Methods). At low firing frequencies, this

STDP model reproduces the common temporal correlation

window, i.e., the long-lasting plastic change depends on whether

the presynaptic neuron fired before the postsynaptic or not (Fig. 2

A). At moderately high firing frequencies, however, the same

model captures Hebbian associative plasticity, in the sense that

neurons that fire together wire together regardless of their firing

timing (Fig. 2 B). This is in agreement with the experiments [22],

where above 30–40 Hz LTP prevails on LTD, even when spike-

timing per se would promote LTD, i.e., tprewtpost. Below that

critical frequency, LTP or LTD instead reflects causal or anti-

causal relationships between pre- and postsynaptic firing times,

respectively [9]. Details on implementation and parameters used

are described in Methods and in Table 1.

In addition to internally generated synaptic inputs, neurons

receive weak external inputs deterministically played back over

and over, as a traveling wave of activity (Fig. 1 B). Such a

background stimulation imposes spike-timing correlations (as in

the temporal code of Clopath et al. (2010)) and should be regarded an

oversimplified generic e.g., thalamic, input with temporally-

correlated structure.

We define two microcircuits, identical for all aspects of neuronal

properties, maximal synaptic efficacy, anatomical connectivity,

and external inputs, with the exception of the SD properties of the

synapses. Specifically, one microcircuit includes only short-term

facilitating synapses (Fig. 1 C), while the other includes only short-

term depressing synapses (Fig. 1 F). Synaptic maximal efficacies,

which are initialized as uniformly distributed random numbers,

slowly evolve during the simulation into largely non-random

configurations of strong links among weaker connections (Figs. 1

D, G), via STDP. At the steady state, these configurations match

an experimentally observed co-occurrence: reciprocal motifs

emerge in cell pairs more often than unidirectional motifs, when

synapses are short-term facilitating; the opposite occurs when

synapses are depressing.

In our simulations, this is revealed both by direct inspection of

the synaptic efficacy matrix ½Wij � (e.g., see Fig. 3) and by

quantification via a connection symmetry index s (see Methods).

When s takes values close to 1, almost all of the existing strong

pairwise connections are reciprocal. On the other hand, for values

of s close to 0, unidirectional or very weak connection motifs

prevail.

These results, summarized in Fig. 1 for a sample microcircuit

composed by ten neurons, have been confirmed over 2000
repeated simulations and analyzed in Fig. 2 . Over a slow

timescale, which is controlled by the plasticity rate parameter of

the STDP model, the interaction of SD and STDP leads to a very

small degree of symmetry (s~0:01+0:01, mean + stdev), with

Connectivity Motifs by Synaptic Plasticity
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high significance (pv10{4) for networks with depressing synaptic

connections (Fig. 2 C). Under identical external inputs, SD and

STDP lead to a large degree of symmetry (s~0:61+0:10, mean

+ stdev), with, again, high significance (pv10{4) in about 75% of

the networks involving facilitating synaptic connections (Fig. 2 D).

In the remaining 25% of the cases, the resulting symmetry value

was in the range ½0:25; 0:55�, suggesting a degree of variability as

found in experiments [4,13], where the discussed motif correla-

tions are not observed 100% of the time. In this simplified

example, the variability is attributed to the sparse structural

connectivity imposed a priori to result in an irregular firing regime

(see Methods). Doubling the simulation time (not shown) led to a

very minor reduction of the variability on s, by less than 3% and

only for the facilitating synaptic connections, suggesting that

stationarity had been already reached. The synaptic connectivity

and firing activity configurations of our networks are stable by

virtue of the strict boundaries imposed on synaptic efficacy values,

as in most numerical implementations of STDP [24–26].

It is worthy to note that the microcircuits including short-term

depressing synapses collectively fired at 20 Hz (Fig. 1 H), reflecting

the externally imposed firing activity, while the microcircuits

employing short-term facilitating synapses fired at 59:5+4:7 Hz

(Fig. 1 E) and exhibited irregular firing patterns, which emerged by

the recurrent network structure. We underline that the firing rate

of the facilitating network was above the critical frequency that

separates the ‘‘temporal’’ mode of STDP from its ‘‘Hebbian’’

mode (i.e., as LTD reverts to LTP, see Fig. 2 B). Therefore, for

facilitating networks, LTP prevails and the temporal correlations

of spike times are no longer important. Similarly, the depressing

network fires below the critical frequency, and LTP or LTD are

determined by the timing of the pre- and postsynaptic spikes. In

the following sections, we discuss in detail the mechanism

underlining motif formation.

Mean-field analysis of homogenous microcircuits. To

understand our simulation results, and in particular the difference

of internally-generated activity in the two cases, we employ

standard Wilson–Cowan firing rate description of neuronal

population dynamics (see Eq. 12 [27]). This kind of analysis,

whose full details are provided in Text S1, is by no means novel

but to the best of our knowledge never reported before in the

context of motif emergence.

We initially consider recurrent networks of excitatory neurons,

connected by synapses whose average efficacy J is not a constant

but changes on the short term as a function of the presynaptic

firing rate, facilitating or depressing (see Fig. 4 A and Eq. 13). For

the sake of simplicity, we mimic the effect of feedforward

inhibition by an average extra input to the population: we study

the case in which this input is zero, i.e., referred to as balanced

inputs (Iext~0 in Eq. 12), or in which it is set to a positive value,

i.e., referred to as unbalanced inputs, (Iext~5 in Eq. 12). Including

recurrent inhibition does not qualitatively alter the validity of our

conclusions (see Text S1, section 1.4).

Figure 1. Emergence of connectivity motifs in a toy model network. Unidirectional (reciprocal) strong excitatory connections are indicated
(A) as dashed (continuous) line segments, representing the topology of the network (B). Each model neuron receives periodic spatially alternating
depolarizing current pulses, strong enough to make it fire a single action potential. Synapses among connected neurons display (C) short-term
facilitation of postsynaptic potential amplitudes. Spike-Timing Dependent Plasticity (STDP) leads to strengthened connections and results in a largely
reciprocal topology (D). Modifying the short-term plasticity profile into depressing (F) leads to a largely unidirectional topology shaped by STDP(G).
Distinct motifs of strong connections arise from short- and long-term plasticities, due to distinct firing patterns (compare E and H), under identical
external stimulation and initial connections. Parameters: Aij~400 pA, and Methods.
doi:10.1371/journal.pone.0084626.g001

Connectivity Motifs by Synaptic Plasticity
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The firing rate of the population can be then studied via

standard methods of dynamical system theory [28], i.e., analyzing

the system of mean-field equations for SD and for neuronal

dynamics, and evaluating the stability of their steady-state

solutions.

While for simplicity we did not choose the parameters of the

rate models to exactly match the IF simulations [29,30], we are

nevertheless able to conclude that homogeneous neuronal

populations with short-term facilitating synapses generally fire at

higher rates than populations with depressing synapses, for the

same values of maximum synaptic coupling and external inputs

Iext, and when engaged in internally-generated reverberating

activity [29]. In particular, firing rates are limited by an upper

bound that inversely depends on the time constant for recovery

from short-term depression (trec – see Text S1, Eq. S23):

Firing Rateƒ

Maximal Synaptic Efficacy

trec

zIext: ð1Þ

It follows that, with other parameters being equal, a network

with small values of t{1
rec , i.e., where the time scale of recovery from

depression is very long, would fire slower than a network with

Figure 2. Statistics of motif emergence in a toy model network. When decoupled from recurrent interactions, an isolated model synapse
undergoes long-term changes depending on pre- and postsynaptic spike timing (A) and pairing frequency (B). Above a critical frequency (grey
shading), spike timing no longer matters and long-term potentiation of synaptic efficacy (LTP) prevails on long-term depression (LTD). Panels C, D:
The simulations of Fig. 1 were repeated 2000 times, each time starting from a random initial topology. STDP progressively induced a persisting non-
random reconfiguration of strong connections, quantified across time by a symmetry index (see Methods). Neurons connected only by short-term
depressing synapses evolved strong unidirectional connections, corresponding to a low symmetry index. This is displayed in panel C, as an average
across the 2000 simulations (left panel). Initial and final distributions of symmetry index values are also shown (right panel, grey and black histogram
respectively). Neurons connected only by short-term facilitating synapses evolved instead strong bidirectional connections with high symmetry
indexes (D).
doi:10.1371/journal.pone.0084626.g002

Connectivity Motifs by Synaptic Plasticity
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comparatively larger values of t{1
rec , i.e., where the time scale of

recovery from depression is very fast or negligible. These two cases

correspond to the numerical parameters employed for the

networks with depressing and facilitating synapses, respectively

(see Table 1 and [4,13]). For a detailed analysis see section 1.3 of

Text S1.

Panels B and C in Fig. 4 illustrate graphically in the state plane

output firing rate versus average neuronal input (i.e., E, h), i.e., the actual

location of the population equilibria for populations with

facilitating or depressing synapses. The stability of each equilib-

rium point is indicated by different marker symbols: circles for

stable, squares for unstable equilibrium points. Similarly to Fig. 2

B, the approximate location of the STDP critical frequency has

been indicated by a grey shading.

A simple mechanism for the emergence of motifs. We

have now reviewed that networks with short-term facilitating

synapses fire on the average at higher frequencies that depressing

networks, for the same external inputs and maximal synaptic

efficacies. According to the STDP model implemented here, with

parameters as in Table 1, the long-term average change of the

maximal synaptic efficacy can be written in a concise form (see

[15] and Eq. 16):

D Maximal Synaptic Efficacy!Postsynaptic Firing

Rate{H,
ð2Þ

under the assumption that presynaptic and postsynaptic spike

trains have Poisson statistics, as hypothesized in the previous

paragraph. In Eq. 2, H is the critical firing frequency threshold of

the postsynaptic neurons, above which LTP occurs and below

which LTD takes place. If H is between the stable equilibria for

Table 1. Parameters employed in the simulations: STDP parameters are as in the minimal all-to-all triplet model described in
Pfister and Gerstner (2006); short-term depression and facilitation parameters as in (Wang et al., 2006); neuron parameters are as in
(Clopath et al., 2010).

Symbol Description Value

dt Forward Euler method integration time step 0:1 msec

N Number of simulated neurons 10{1000

cm Membrane capacitance 281 pF

gleak Membrane leak conductance 30 nS

Eleak Resting membrane potential {70:6 mV

Ereset After-spike reset potential {70:6 mV

DT Spike steepness of the exponential IF model 2 mV

Vh Spike emission threshold of the exponential IF model 20 mV

VT Threshold voltage parameter of the exponential IF model {50:4 mV

tarp Absolute refractory period 2 msec

a Voltage dependence coefficient of the spike-frequency adaptation 4 nS

Dx Spike-timing dependence parameter of the spike-frequency adaptation 0:0805 nA

tx Time constant of the spike-frequency adaptation 144 msec

tsyn Excitatory postsynaptic currents decay time constant 5 msec

UD Release probability, for depressing synapses 0:8

UF Release probability, for facilitatory synapses 0:1

trec D Time constant of recovery from depression, for depressing synapses 900 msec

trec F Time constant of recovery from depression, for facilitating synapses 100 msec

tfacil D Time constant of recovery from facilitation, for depressing synapses 100 msec

tfacil F Time constant of recovery from facilitation, for facilitating synapses 900 msec

A{
2 STDP model LTD amplitude for post-pre event 7:1|10{3

A{
3 STDP model LTD amplitude for post-pre event (triplet-term) 0

Az
2

STDP model LTP amplitude for pre-post event 0

Az
3

STDP model LTP amplitude for pre-post event (triplet-term) 6:5|10{3

tq1
STDP model decay time of presynaptic indicator q1 16:8 msec

tq2
STDP model decay time of presynaptic indicator q2 101 msec

to1
STDP model decay time of postsynaptic indicator o1 33:7 msec

to2
STDP model decay time of postsynaptic indicator o2 114 msec

Ai j Maximal synaptic efficacy 6{12 pA

Wmax Upper boundary for STDP dimensionless scaling factor Wij 5

h Threshold of the frequency-current response curve for mean-field models 3

g STDP plasticity rate 1

doi:10.1371/journal.pone.0084626.t001

Connectivity Motifs by Synaptic Plasticity
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the population firing rate of the network with depressing synapses

and those of the network with facilitating synapses (as in our setup),

it follows that the change of maximal synaptic efficacy in the

‘‘facilitating’’ network will be positive while in the ‘‘depressing’’

network will be negative. The maximal synaptic efficacies in the

facilitating network will then continuously increase until reaching

their upper bound, leading to bidirectional connectivity motifs. On

the contrary, the maximal synaptic efficacies in the depressing

network will decrease, leading to connectivity motifs that would

depend on the spike-timing information only, e.g., as those

imposed by the (weak) external background stimulus. At this point,

the correlational ‘‘pre-post’’ temporal mode of the STDP model

comes into play, enforcing unidirectional connectivity motifs to the

‘‘depressing’’ network. Indeed, causality in the spike-timing

unavoidably leads to unidirectional reinforcing of either one of

Figure 3. Strong external inputs may drive neurons to high firing rate and induce reciprocal motif emergence even in depressing
networks. As in Fig. 2, the synaptic connectivity matrix of a network of ten neurons was randomly initialized and pruned (A, B, i.e., pruning is
indicated by the ‘‘X’’ symbols). An external weak input, in addition to internally generated activity, contributes to the emergence of non-random
unidirectional motifs, resulting in an asymmetric matrix W (C, D). However, if five units of the same network (grey circles) are externally stimulated
above the STDP critical frequency, a non-random connectivity emerges, featuring reciprocal motifs and a symmetric connectivity submatrix (E, F;
upper left corner, dashed rectangle). The values indicated above panels A, C, E represent the symmetry index and its significance.
doi:10.1371/journal.pone.0084626.g003

Connectivity Motifs by Synaptic Plasticity
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connection on a synaptic pair, but never on both simultaneously

[14].

In Text S1, we show analytically that under the external

stimulus STDP promotes unidirectional connectivity that reflects

the asymmetric temporal structure of the inputs, following the

analysis of Clopath et al. (2010).

Positive and negative controls. Our analysis indicates that

the motif formation is determined by the firing frequency of the

neurons and by the features of the long-term plasticity, i.e.,

sensitive to both the timing and frequency of spiking activity. Here,

we demonstrate these two points (i) by imposing a strong

background external input, as in the rate-coding of [14], and (ii)

by ad hoc altering the physiological dependence of the STDP model

on spike timing or on frequency.

We first consider a depressing network with anatomical

connectivity and synaptic efficacies randomly initialized as in

Fig. 1 (see the Methods section). Figures 3 A, B shows the initial

network structure and connectivity. After the exposure to a weak

background external input, as in the temporal coding of [14] (i.e.,

as in Fig. 1), the network evolves only unidirectional motifs,

resulting in an asymmetric synaptic efficacy matrix ½Wij �, see

Figs. 3 C, D. However, if five units of the same network (grey

circles) are externally stimulated so that they fire above the STDP

critical frequency H, a non-random connectivity emerges, featuring

both unidirectional and reciprocal motifs and a symmetric

connectivity submatrix (Figs. 3 E, F; upper left corner, dashed

rectangle). This demonstrates that external activity can also

impose connectivity motifs to the network, as in [14]).

We then confirm the minimal set of long-term synaptic plasticity

features sufficient for motif emergence, by performing additional

negative and positive control simulations (Fig. 5). We consider the

pair-based STDP model [24,31] and adjust its parameters to get

an identical spike-timing dependency to the one predicted by the

STDP model we used (i.e., compare Fig. 5 A to Fig. 2 A). Under

Figure 4. Mean-field analysis of firing rate equilibria, in homogeneous networks without long-term plasticity. The firing rate of
homogeneous recurrent networks (A), including short-term facilitating synapses or depressing excitatory synapses, was studied by standard mean-
field analysis. Average synaptic efficacies are indicated by J . Excitatory and inhibitory external inputs are modeled by a single term, taking positive,
zero or negative values. A zero value corresponds to balanced excitatory/inhibitory inputs, while a non-zero value corresponds to unbalanced
excitatory/inhibitory inputs. The steady-state firing rate (i.e., E, in a.u.) are the roots of the equation E(h)~h (see Text S1), whose graphical solution is
provided (B–D), for facilitating (grey) or depressing (black) synapses, without long-term plasticity. Panel D is a zoomed view of C. (Un)stable firing
rate equilibria are indicated by filled circles (squares). Networks with facilitating synapses fire at higher rates than networks with depressing synapses,
as emphasized by the grey shading.
doi:10.1371/journal.pone.0084626.g004

Connectivity Motifs by Synaptic Plasticity
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these conditions, the resulting spike-frequency dependency is

completely different (i.e., compare Fig. 5 C to Fig. 2 B), showing

no reversal of LTD into LTP at high frequencies.

On the contrary, by making minimal changes to the equations

and parameters of the STDP model we used (see Methods and

Supplementary Information, Text S1), it is possible to ad hoc

reverse the temporal dependency of STDP, e.g., as observed

experimentally for anti-STDP (aSTDP) [32], while leaving the

spike-frequency dependence roughly intact (i.e., compare Figs. 5

B, D to Figs. 2 A, B). This case still features the reversal of LTD

into LTP at high frequencies. We note that this modified aSTDP

‘‘triplet rule’’ serves only as a positive control and it is not meant to

provide an accurate description of aSTDP, since more data are

needed to access its firing rate dependence.

Panels E–H of Fig. 5 repeat the simulations of Fig. 2, and

demonstrate that only when the realistic frequency dependence of

STDP [22] is present, the heterogeneity in the network firing rates

leads to the emergence of asymmetric connectivity motifs

(compare Figs. 5 E, G or Figs. 5 F, H to Figs. 2 C, D). We

therefore conclude that all long-term plasticity models that capture

the temporal nature of the STDP at low frequencies and the LTD

to LTP reversal at high frequencies (eg. [14,33]) would also

reproduce our results.

Large microscopic simulations of homogenous

networks. We further confirm our results by means of

numerical simulations of larger recurrent networks, composed of

1000 IF neurons.

In order to increase the biological realism, in these simulations

we also introduced fluctuating random inputs to each neuron,

mimicking irregular background synaptic activity (see [34,35] and

the Methods). Each neuron thus receives an uncorrelated noisy

current, as well as a periodic wave-like stimuli as in the toy model.

As in Fig. 2, SD and STDP shape the maximal synaptic efficacies

so that unidirectional depressing connections significantly out-

number the reciprocal depressing connections, while facilitating

reciprocal connections prevail on unidirectional facilitating con-

nections. Figures 6 A, B display the count of the occurrence of

unidirectional versus reciprocal connectivity motifs.

Figures 6 D–E show the heterogeneous distributions of the firing

rates of the two networks: for the same external input, networks of

model neurons with homogeneous depressing short-term plastic

synapses fire at low rates, while networks with homogeneous

facilitating synapses fire at higher rates. The symmetry index s,

computed after a very long simulation run, results in a value of

0:28 for the depressing network and of 0:99 for the facilitatory

network.

Heterogeneous microcircuits
Here, we study the more general case of a heterogeneous model

network (Fig. 7 A) with two subpopulations: one containing

neurons connected by facilitating synapses, and the other

containing neurons connected by depressing synapses. We show

that our results on the emergence of connectivity motifs still hold,

as long as the connections across the heterogenous populations are

initially weak, preventing them form affecting each other’s firing

rates.

Synapses established within neuronal pairs that belong to the

same subpopulation, share, by definition, the same SD properties,

i.e., short-term depressing or short-term facilitating, but not both

simultaneously. On the contrary, synapses established within

neuronal pairs that belong to distinct subpopulations have, by

definition, heterogeneous SD properties. Thus a total of five

categories of connectivity motifs are possible in this network:

facilitatory reciprocal motifs, depressing reciprocal motifs, facili-

tatory unidirectional motifs, depressing unidirectional motifs, and

reciprocal motifs with both facilitation and depression. For the first

four categories, experiments support strong non-random distribu-

tion [4,13]. For the case of reciprocal motifs with both facilitation

and depression, no extensive experimental information has been

published. Our results suggest that non-random occurrences of the

first four categories arise from SD-STDP interactions, in

qualitative agreement with the experiments. We also further

predict that the last category should be largely underrepresented,

compared to chance level.

Spike-timing and associative Hebbian plasticity in

heterogenous networks. We first examine the impact of

STDP in a simplified two-neuron system, with one neuron

projecting to the other via a single synapse. Figures 7 B, D show

the long-term change in PSP amplitude as a function of the pre-

and postsynaptic firing rates, at that single synapse. Since in a

heterogeneous network the mean pre- and postsynaptic firing

frequencies may differ from each other, we swept the firing

frequencies of the two neurons throughout all the possible

combinations, within a realistic range (i.e., 0–70 Hz). We studied

two cases: each presynaptic spike precedes the postsynaptic spike

by 10 msec, i.e., tprevtpost, or vice versa, i.e., tprewtpost. We

emphasize that only synapses established within neuronal pairs

that belong to distinct subpopulations can experience heteroge-

neous pre- and postsynaptic firing rates. In this case, however, the

impact of spike-timing information becomes negligible, as soon as

pre- and postsynaptic neurons fire at different incommensurable

frequencies. In the small minority of cases where this is not true,

pre- and postsynaptic frequencies are (sub)multiples of each other,

and a transient synchronization of spike times occurs periodically.

In these circumstances, the timing information has a specific

impact, as revealed graphically by the bright or dark straight lines

in the plots of Figs. 7 B, D. In all other cases, the overall plasticity

profiles reflect the conventional associative Hebbian LTP/LTD

and its consequences [30,36,37]. This illustration captures the

essence of Eq. 2, i.e., the firing frequency of the postsynaptic

neuron determines whether the synapse will be potentiated or

depressed. Therefore, connections to neurons firing with high

frequencies will be strengthened, while connections to neurons

with low firing frequencies will be weakened.

Mean-field analysis of heterogenous microcir-

cuits. Intuitively, the heterogeneous population of Fig. 7 A

can lead to the emergence of realistic connectivity motifs. To

illustrate this point, we first ignore that subpopulations might

interfere with each other’s firing rates: the facilitating and

depressing subnetworks are still characterized by higher or lower

firing rates, respectively, as previously presented for homogeneous

networks. Then, the LTP/LTD maps of Figs. 7 B, D suggest that if

such an initial asymmetry of firing rates emerges then it will be

maintained indefinitely. The connections JDF will be in fact

increasingly weakened while the connections JFD strengthen. The

resulting configuration, sketched in Fig. 7 C, is thus stable. We

tested and confirmed this statement under the mean-field

hypothesis, by numerically simulating the full dynamics of Eqs.

12, 14, and 15, in addition to computing their equilibria. Figures 7

E, F display the mean firing rates of each subnetwork, and the time

course of the mean synaptic efficacies. We remind the reader that

the maximal synaptic efficacies act on the mean synaptic efficacies

as scaling factors, hence a weaker value of ŴWDF corresponds to a

weaker value of JDF . However, the desirable configuration

emerges only when the maximal efficacies across populations,

i.e., ŴWFD and ŴWDF , are initialized to slightly weaker values than

the maximum intra-population efficacies, i.e., ŴWFF and ŴWDD.

This prevents the facilitating subpopulation to transiently, but
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Figure 5. STDP key features for motif emergence. The pair-based STDP model, with temporal window shown in panel A and matching exactly
Fig. 2 A, exhibits a different frequency dependency (panel C) than the triplet-based STDP model (Fig. 2 B). Modifying the triplet-based STDP
parameters to ad hoc invert its temporal window (e.g., as in anti-STDP, panel B, compare to panel A), yet leaves its frequency dependency and the
LTD-reversal (grey shading) unchanged (panel D). Repeating the study of Fig. 2 with these two modified models, we find that (i) the pair-based STDP
fails to account for motif emergence (panels E, G, compare to Fig. 2), while (ii) anti-STDP succeeds (panels F, H, compare to Fig. 2).
doi:10.1371/journal.pone.0084626.g005

Connectivity Motifs by Synaptic Plasticity

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e84626



irreversibly, drive above H the activity of the depressing

subpopulation. In Text S1, we partially relax this condition

showing how weak synaptic connections across subpopulations

may still evolve from fully homogeneous initial couplings.

Large microscopic simulations of heterogenous

networks. We further evaluate our results by numerical

simulations of a large heterogenous network, as in Fig. 6 C (see

Methods). These simulations involve 1000 Integrate-and-Fire

units, subdivided in two subpopulations of equal size, with a

structural connectivity set to approximately 80% of all possible

connections, as in the homogenous case.

As in the mean-field model, the scaling factors of the maximal

synaptic efficacy Wij across populations are initialized to weaker

values than the intra-population terms. Each neuron receives an

uncorrelated background noisy current as well as periodic wave-

like stimuli, similar to the homogeneous case. As indicated by Fig. 6

F, the firing rate distributions is bimodal: neurons in the

subnetwork of depressing short-term plastic synapses fire at

generally low rates, while neurons in the subnetwork of facilitating

synapses fire at higher rates. The location of the critical firing

frequency for the STDP is represented again as a grey shaded

area.

Results in Fig. 6 C show all the possible synaptic combinations.

Qualitatively similar to the data of Wang et al. (2006), reciprocal

motifs are significantly co-expressed with facilitatory synapses and

unidirectional motifs with depressing synapses. The actual motif

counts are compared to the null hypothesis of having statistical

independence between the connection occurrence within a pair of

neurons, estimated at a 95% confidence interval upon the same

hypothesis of Bernoulli repeated, independent, elementary events.

The frequency Q of observing a connection between two neurons,

regardless of its SD properties, is first estimated by direct

inspection of the connectivity matrix ½Wij �. Then the conditional

occurrence frequencies of a facilitatory synapse QF and of a

depressing synapse QD~(1{QF ) are computed, given that a

connection exist between two neurons. The null hypothesis for

each possible combination is given by standard probability

calculus, under the hypothesis of independence of identical events.

Figure 6. Results from numerical simulations of large recurrent networks of model neurons with short- and long-term plasticity.
Homogeneous and heterogeneous recurrent networks made of 1000 Integrate-and-Fire model neurons were numerically simulated, under identical
conditions. Panel A shows the comparison of the emergence of weak or no connectivity pairs (indicated as ‘‘-, -’’), of unidirectional strong
connectivity pairs (‘‘?’’, ‘‘D, -’’), and of reciprocal strong connectivity pairs (‘‘<’’, ‘‘D, D’’) for a homogeneous network of neurons connected by
depressing synapses: strong unidirectional depressing connections significantly outnumber reciprocal depressing ones. The fractions of emerged
motifs (black) is significantly different than the null hypothesis (white) of random motifs occurrence. Panel B repeats this quantification for a
homogeneous network with facilitating synapses: strong connections are found only on reciprocal connectivity pairs (‘‘<’’, ‘‘F, F’’) and all emerging
motifs are non-random. Panel C repeats the same quantification for a heterogeneous network with both short-term facilitating and depressing
synapses. Emerging motifs display highly non-random features and confirm that reciprocal facilitatory motifs (‘‘<’’, ‘‘F, F’’) outnumber unidirectional
facilitatory motifs (‘‘?’’, ‘‘F, -’’), and that unidirectional depressing motifs (‘‘?’’, ‘‘D,-’’) outnumber reciprocal depressing motifs (‘‘<’’, ‘‘D, D’’). Panels
D–F display the steady-state firing rate distributions, corresponding to homogeneous depressing, homogeneous facilitating, and heterogeneous
networks respectively. The plots confirm that heterogeneity in connectivity motifs is accompanied by bimodal firing rates above and below the
critical frequency, represented here by a grey shading.
doi:10.1371/journal.pone.0084626.g006
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For example, the occurrence frequency of observing by chance no

connections within a neuronal pair is (1{Q)2, while the

occurrence of observing by chance a reciprocal motifs with mixed

depressing and facilitating properties is 2(Q2QF QD).

Finally, as the symmetry index s was computed over a very long

simulation run, it resulted in a value of 0:18 for the depressing

subnetwork and of 0:66 for the facilitation subnetwork.

Figure 7. Mean-field simulation of a heterogeneous network with short- and long-term plasticity. The firing rate evolution of a
heterogenous recurrent network, including both short-term facilitating and depressing synapses (A), was estimated by numerically solving the
corresponding mean-field equations. The average synaptic efficacies among and across populations, indicated by JFF , JDD, JFD , and JDF , undergo
long-term modification. Panels B, D show the long-term changes of an isolated synapse (decoupled from recurrent interactions) depending on pre-
and postsynaptic spike timing (i.e., tpre , tpost) and frequencies (i.e., fpre, fpost). When fpre and fpost are varied independently, long-term potentiation (LTP)
and depression (LTD) emerge as in associative Hebbian plasticity. This suggests that JFF and JFD will become significantly stronger than JFD and JDD

(C) and that such a configuration will be retained indefinitely. This was confirmed by simulations (E–F) plotting the temporal evolution of the firing
rates EF (black trace) and ED (grey trace), and of the mean synaptic efficacies J (F). The heterogeneity occurs by separation of emerging firing rates
(Fig. 4), as emphasized by the grey shading. Parameters: Iext~5, t~10 msec, with initial conditions for the maximal synaptic efficacies

ŴWFF ~ŴWDD~3, and ŴWDF ~ŴWFD~1. Please note that without loss of generality we fix ÂAFF ~ÂADD~ÂADF ~ÂAFD~1.
doi:10.1371/journal.pone.0084626.g007
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Microcircuits with overlapping SD properties
In the heterogeneous network of Fig. 7, as well as in the

homogeneous networks, we make the assumption that the SD

profile is determined primarily by the identity of the projecting

neuron. Therefore the same neuron always establishes short-term

depressing or short-term facilitating synapses with its target. This

has been experimentally found in the olfactory, visual, and

somatosensory cortices as well as in other brain areas [38–41].

Nonetheless, the assumption on the projection-cell specificity can

be removed in order to theoretically explore the impact of SD

heterogeneity across distinct synaptic connections, established by

the same presynaptic neuron [42].

We assume that a generic neuron has a certain probability pD of

establishing a short-term depressing synapse with a target neuron,

and a probability 1{pD of establishing a short-term facilitating

synapse with another one. In this case, individual neurons are still

indistinguishable (Fig. 8 A). For small values of pD, the emerging

firing rates approximate those of a network of facilitating synapses,

while for large values of pD the firing rates behave as for a network

of depressing synapses. In other words, the mixed networks behave

dynamically as an intermediate case between two extremes. This

result is quantified in Fig. 8 B, where the location of the stable

equilibrium points has been computed under the mean-field

hypotheses and plotted as a function of pD, for different external

inputs regimes. The qualitative location of the critical firing

frequency for the STDP is represented as a grey shaded area. As

an explicit consequence of the lack of any structure (i.e., compare

Fig. 8 A with Fig. 7 A), STDP fails to discriminate individual

connections within the network, but rather shapes them as

reciprocal or as unidirectional motifs, depending on the particular

choice of pD. For a simple mechanism of how the desirable

structure may evolve please see Text S1.

Discussion

The impact of long-term synaptic plasticity in recurrent

networks of spiking model neurons has been studied earlier in

the context of stimulus-driven dynamical attractors of network

activity representing working-memory states [30]. Within the same

aims, the interactions between long-term plasticity and SD were

also partly explored, both in numerical simulations and in mean-

field descriptions [43]. In this work, we focus on a specific long-

term plasticity mechanism (STDP) [9] previously reported to lead

to the emergence of network structure [44–47] and connectivity

motifs [14,48]. To the best of our knowledge, the interaction of SD

and STDP has not been previously considered as key element for

the emergence of non-random network connectivity.

Our modeling results indicate that time- and frequency-

dependent STDP mechanisms may be responsible for the

observation that excitatory model neurons connected by short-

term facilitating synapses are more likely to form reciprocal

connections, while model neurons connected by short-term

depressing synapses are more likely to form unidirectional

connections. More specifically:

1. The internally generated firing rates in model networks with

facilitating connections are higher than in networks with

depressing connections, under identical background/external

inputs;

2. Neurons, participating in such an internally generated activity,

are likely to form bidirectional connections with each others

when firing at sufficiently high rates, reflecting the ‘‘Hebbian’’

mode of STDP; neurons firing at low rates are likely to form

unidirectional connections, reflecting the temporally asymmet-

ric ‘‘pre-post’’ temporal mode of STDP;

3. Once formed, these connectivity motifs persist through the

internally-generated firing activity of the network, from which

the motifs emerged;

4. Externally generated inputs, strongly depolarizing or strongly

hyperpolarizing individual neurons, when prevailing over

internally generated activity, may lead to opposite motif

emergence.

Our results suggest a mechanism that should be considered

when explaining the features of connectivity motif emergence in

the cortical pyramidal microcircuitry. Preliminary data collected

in the olfactory bulb reveal the same trend, therefore our

framework might point to a common principle for synaptic wiring

in different brain areas. For instance, long-term and short-term

plasticity has been experimentally found among olfactory mitral

cells [13,49]. STDP was reported in the rodent and insect

olfactory systems [50,51], and considered as a mechanism that

explains decorrelation of sensory information [52] in mitral cells.

The major difference in SD properties, which accounts for motif

emergence, is the heterogeneity of the time constant representing

the short-term depression recovery trec. In this respect, our results

and conclusions would be qualitatively unchanged by replacing

facilitating synaptic properties with linear, i.e., non-depressing,

properties. Along these lines, we predict that the value of trec, in a

pair of connected neurons should be inversely correlated to the

occurrence frequency of reciprocal motifs.

A key simplifying hypothesis of our work is that STDP scales

only the SD parameter G, i.e., the PSC amplitude, leaving the

parameter U , which represents the maximal usage of resources,

unaltered [53]. This choice is biologically consistent but not

representative of all cortical areas [54]. Although the debate on

pre- and postsynaptic expression of plasticity is fierce, our choice of

SD and STDP interaction is in part an arbitrary hypothesis and in

part supported by experimental evidences [55]. This choice serves

as a first solid ground for our conclusions. Enabling STDP to

modify the parameter U would have partly altered in an activity-

dependent manner the SD profile of a synapse. This would have

made isolating SD contribution more complex, and relating our

findings to previous theoretical works [14,44–47] less straightfor-

ward. The model itself is purely phenomenological, and does not

capture biophysical details, but rather the interaction of SD and

STDP via a set of variables locally known to the synapse. It does

maintain, however, the desirable compatibility with experimental

data. In addition, detailed information on the STDP mechanisms

at excitatory facilitatory synapses in prefrontal cortex are currently

scarce [4]. While more efforts, both experimental and theoretical,

should be undoubtedly devoted in these directions, the hypothesis

of scaling G and not U remains a simplifying assumption, in view

of the lack of a systematic understanding on how STDP affects all

the parameters of the SD model [56].

Our proposed mechanism for non-random pattern emergence is

based on the sole interactions between STDP and SD. Obviously,

it is unlikely that these mechanisms operate independently of other

synaptic phenomena. Homeostatic plasticity could for instance

continuously rescale synaptic efficacy and make SD heterogene-

ities less predominant in determining connectivity motifs. In the

lack of a priori experimental information, we chose the maximal

synaptic efficacy to be the same for all the microcircuits we

examined, in order to ensure a fair comparison. With all its

limitations, our proposal may still provide a simple working

hypothesis on one component underlying the emergence of

connectivity, linked to short-term synaptic dynamics, along the
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same lines of the theory proposed by Clopath et al. (2010). Its

validity could be challenged by experiments that interfere and

probe the emergent firing activity, e.g., in local in vitro cultured

microcircuits with known synaptic properties [57].

In the context of the motifs, we have also limited our study to a

stereotypical external signal, with the view to demonstrate that

under identical external stimuli, facilitating and depressing (sub-

)networks will evolve different structures. To this end, it would be

of interest to investigate how such motifs would emerge while

learning a specific task, in the context for instance, of reinforce-

ment- [58,59] or unsupervised-learning [15].

Our framework might be also useful for investigating further

structure–function relationships at the subcellular level, by altering

the synaptic machinery, or by employing (future) genetically-

encoded fluorescent reporters of synaptic efficacy and dynamics.

The use of optogenetics and genetically-encoded neuronal voltage

and calcium sensors may lead to experimental validation or

falsification of our hypothesis, which might directly contribute to

understand short- and long-term plasticity interactions.

We emphasize that our theory refers only to one of many

possible, perhaps competing, mechanisms that contribute to

stereotypical motif emergence. Alternative explanations and a

causal demonstration of the key ideas we suggest remain to be

provided. It might be of interest exploring to which extent

developmental changes in SD, such as the switch from depression

into facilitation at synapses between layer 5 pyramidal neocortical

neurons [40], occurring after postnatal day (P) 22, are mirrored by

changes in motif statistics. For marginal pairwise probability of

connection, Song et al. (2005) [2] report no significant dependence

on age, but provide no systematic characterization of motif

statistics beyond P20.

It may be also possible to attempt a chronic manipulation of the

firing rates of neuron (sub)populations, by pharmacologically

altering synaptic profiles, e.g., modulating postsynaptic receptor

desensitisation, changing the presynaptic probability release, or

interfering with neurotransmitter recycling. As future directions,

more complex heterogeneous anatomical architectures and single-

cell properties should be incorporated within the same computa-

tional modeling framework. Very specific, non-random initial

architectures, e.g., small-world and scale-free [60], could be

explored, extending our results towards other aspects that

determine reciprocal or unidirectional motifs, possibly beyond

the firing levels and towards, for instance, the density of hub

nodes, ranking orders or heavy tails in distribution of neighbours.

Finally, we underline the great value of physiological informa-

tion that may accompany the anatomical connectivity. These

complementary data-sets contain precious statistical information

regarding the expression of microcircuit motifs [2,3]. We believe

that computational modeling is, in this context, a very powerful

tool to explore additional hypotheses and challenge further

theories.

Materials and Methods

We study and numerically simulate networks of spiking model

neurons [21], connected via plastic, current-based, excitatory

synapses [6,14–16,19,20]. We conventionally distinguish between

‘‘strong’’ and ‘‘weak’’ connections, and provide a simple measure

to quantify the occurrence of strong pairwise motifs in our model

networks. We finally examine a Wilson–Cowan firing rate model

that is helpful for the interpretation of the numerical results. The

values of all model parameters are indicated in Table 1, while the

full numerical implementation in MATLAB (The Mathworks,

Natick, USA) and in ANSI-C is available from ModelDB [61]

at http://senselab.med.yale.edu/modeldb via accession number

150211.

Neuron model
The network is composed of identical adaptive exponential

Integrate-and-Fire (IF) neurons [21], each described by a

membrane potential Vm(t) and by a spike-frequency adaptation

variable x(t) [62]. Below a threshold Vh, Vm(t) satisfies the charge-

balance equation

Figure 8. Mean-field analysis of firing rate equilibria, in homogeneous networks with overlapping short-term synaptic properties
and no long-term plasticity. Panel A represents the sketch of a recurrent network where a clear segregation between subpopulations of
depressing- or facilitating-only synapses does not occur. A neuron has a probability pD of connecting to its postsynaptic target by a depressing
synapse, and 1{pD of connecting to its target by a facilitating synapticapse. Panel B plots the location of the equilibria of the firing rate E, under
distinct external inputs conditions and for increasing values of pD. For the same parameters of Fig. 4, stable equilibria move as a function of pD, taking
intermediate values between the two extreme cases, i.e., pD~0 and pD~1; compare to panels D–F of Figs. 4 .
doi:10.1371/journal.pone.0084626.g008
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where Isyn is the synaptic input from other neurons and Iext the

external (background) input currents. When a spike occurs, i.e.,

Vm(t) crosses Vh, Vm is reset to a Ereset.

The spike-frequency adaptation variable x(t) evolves as

tx~a Vm{Eleakð Þ{x ð4Þ

When a spike occurs, x evolves as x ? xzDx. The numerical

integration of Eq. 3 is suspended for a period of time tarp following

each spike, to mimic absolute refractoriness, during which Vm

remains ‘‘clamped’’ at Ereset. The model details are not essential to

our conclusions (not shown).

External (background) inputs
Each neuron, identified by an index i~1,2,3 . . ., receives a time

varying input Iext i according to the following protocols.

Toy Network. (Fig. 1 B, 10 neurons) Iext i consists of a 0:5 nA

constant current, as well as periodically repeating 1 nA square

pulses. Pulses occur as in a traveling wave of activity, which moves

every 5 msec from one unit, e.g., the ith neuron, to its neighbour,

i.e., the (iz1)th neuron. In space, each pulse is delivered in turn

to all neurons as an extremely narrow bell-shaped profile, with

unitary peak amplitude and standard deviation of 0:5, resulting in

neighbouring neurons being only weakly stimulated simultaneous-

ly. Each pulse is of sufficient amplitude to elicit firing in the unit

where the bell-shaped profile is centred on, e.g., the ith unit.

Large Network. (Fig. 6, 1000 neurons) Iext is as in the toy

network with the addition of a (spatially) uncorrelated gaussian

noisy term [29], with mean m, standard deviation s~200 pA, and

autocorrelation time length tsyn~5 msec. Parameter m is drawn

randomly for each neuron of the network, before launching the

simulation, using a normal distribution with mean 200 pA and

unitary coefficient of variation. The noisy current mimics

asynchronous synaptic inputs from (not explicitly modeled)

background populations [35,63].

Internal (synaptic) inputs
Neurons connect to each other according to a fixed wiring

matrix ½Cij �, which indicates whether the jth neuron projects to the

ith neuron, i.e., Cij~1, or not, i.e., Cij~0. The matrix ½Cij � is

obtained from an all-to-all connectivity without autapses (i.e.,

Cii~0), upon randomly pruning approximately 20% of its elements

(see e.g., Fig. 1 B). This is performed uniquely to introduce a more

realistic variability in firing across neurons. A more substantial

reduction of the structural connectivity does not affect our

conclusion qualitatively, although it downscales the number of

plastic synapses available for further statistical analysis.

The ith neuron receives at any time a total synaptic current

Isyn i, described as

_IIsyn i~{Isyn i=tsynz
XN

j~1

X?
f

CijGij d(t{t
f
j ) ð5Þ

where t
f
j represents the occurrence time of the f th spike emitted by

the jth presynaptic neuron, and where Gij is the peak amplitude of

the elementary postsynaptic current (PSC), corresponding to the

activation of the synapse by the presynaptic jth neuron. The Dirac

delta function d(t) is employed to represent the occurrence of a

presynaptic action potential. Thus Eq. 5 models individual PSCs

with instantaneous rise time and exponential decay [64]. In terms

of implementation, this implies that in the lack of any presynaptic

activity, Isyn i decays exponentially to zero with a time constant

tsyn and that, as a presynaptic spike is fired, Isyn i evolves as

Isyn i ? Isyn izCijGij .

Frequency-dependent short-term synaptic dynamics (SD)
Gij defines the amplitude of the PSC from presynaptic neuron

jth to postsynaptic neuron ith and is proportional to the amount of

used resources for neurotransmission uij rij and to their maximal

availability Aij , i.e., Gij~Aijuijrij .

Frequency-dependent short-term synaptic dynamics are de-

scribed by

_rrij~(1{rij)=trec{uijrij

P?
kj

d(t{tkj
)

_uuij~{uij=tfacilzU(1{uij)
P?

kj
d(t{tkj

)

8><
>:

ð6Þ

The above equations, with a different set of parameter values,

have been shown to capture depressing or facilitating synapses [6]

and are widely employed by the community.

For the sake of notation, indexes have been dropped from U ,

trec, and tfacil in Eqs. 6, although each synapse has its own

parameters (see Table 1). In terms of implementation, Eqs. 6

reduce to the following update rules: (i) when no spike is fired by

the presynaptic neuron j, uij and rij recover exponentially to their

resting values, U and 1, respectively; (ii) as a presynaptic spike

occurs, rij is reduced as rij?(1{uij)rij , while uij is increased as

uij?uijzUij(1{uij). The impact of short-term plasticity of PSCs

amplitude has been exemplified in Figs. 1 C, F.

Spike-timing dependent long-term plasticity (STDP)
We further extend the description of PSCs (Eqs. 5–6) by an

additional scaling factor Wij , which incorporates STDP [9], see

also [65]:

Gij~WijAijuijrij : ð7Þ

Wij changes on timescales longer than trec and tfacil according to

the correlated activity of both pre- and postsynaptic neurons,

closely following the model proposed by [15].

Briefly, each neuron is complemented by four variables, i.e., q1,

q2, o1, o2, which act as running estimates of its firing rate [27],

over distinct time scales, i.e., tq1
, tq2

, to1
, to2

. In the lack of any

activity of the jth neuron, those variables exponentially relax to

zero:

tq1
_qq1j

~{q1j

tq2
_qq2j

~{q2j

to1
_oo1j

~{o1j

to2
_oo2j

~{o2j

ð8Þ

while each time the neuron fires, they are increased by a unit:
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q1j
?q1j

z1 q2j
?q2j

z1 o1j
?o1j

z1 o2j
?o2j

z1: ð9Þ

This enables a compact implementation of STDP: as the jth

neuron fires, over all indexes i

Wij?Wij{g o1i
(t) A{

2 zA{
3 q2j

(t{E)
h i

Wji?Wjizg q1i
(t) Az

2 zAz
3 o2j

(t{E)
h i

8>><
>>:

ð10Þ

since the jth neuron is presynaptic to all connected ith neurons,

and postsynaptic to all connected ith neurons, respectively.

Numerically, the evaluation of q2j
and o2j

is performed just

before the jth neuron spikes, as indicated by the infinitesimal time-

advance notation of E. When no spike occurs, Wij retains

indefinitely its value. As in the large majority of STDP

implementations, the value of Wij is further bounded in

½0 ; Wmax� and, unless otherwise stated, randomly initialized prior

to the start of each simulation.

To graphically illustrate this model, we isolate the impact on

synaptic efficacy of Eqs. 8, 9, 10 in a two-neuron system, with one

neuron projecting to the other via a single synapse. We simulate

the long-term change in PSP amplitude at that synapse according

to the standard STDP protocol (see Fig. 2 A), imposing (i) each

presynaptic spike precedes the postsynaptic spike by 1{40 msec,

i.e., tprevtpost (pre-post protocol) or (ii) vice versa, i.e., tprewtpost

(post-pre protocol). We further apply a frequency STDP protocol

(see Fig. 2 B and [15]), imposing 75 pre-post spike pairing events,

evoked at regular increasing pairing frequency. We study two

cases: (i) each presynaptic spike precedes the postsynaptic spike by

10 msec, i.e., tprevtpost, or (ii) vice versa, i.e., tprewtpost. The latter

reveals the two regimes, depending on spike-timing and on spike-

frequency (separated by the grey shading).

Due to the generality of the formulation of this model, we can

easily modify it to produce different STDP curves. By setting

Az
3 ~A{

3 ~0, and Az
2 ~4:5|10{3 in Eq. 10 and slightly

modifying Eq. 9, one can reproduce the pair-based STDP model

[24,31]. By inverting signs and swapping the values Az
2 , Az

3 , A{
2 ,

and A{
3 in the same equations, it is possible to ad hoc reverse the

temporal dependency of STDP, as observed experimentally for

anti-STDP (aSTDP) [32], while leaving the frequency dependence

roughly intact. We have used both these forms to identify the

minimal requirements of an STDP model in the context of the

motifs formation that we study.

Convention on ‘‘strong’’ and ‘‘weak’’ connections and
motifs symmetry index

In this study, we focus on the appearance or disappearance of a

strong connection between two neurons, but only for units that are

anatomically connected, i.e., Cij~1. For the sake of comparison,

we adopted the framework of Clopath et al. (2010), where the

activity-dependent appearance or disappearance of a connection

conventionally occurs in terms of a competition among ‘‘strong’’

links in a ‘‘sea’’ of weak synapses. As in their paper, we adopt the

convention of identifying as ‘‘strong’’ those connections whose

factor Wij is above the 2=3 of its upper bound Wmax.

With such a definition, we measure the average motifs

reciprocity by a symmetry index, obtained by counting reciprocal

or unidirectional motifs as

s(W )~1{ 0:5N N{1ð Þ{Mð Þ{1
XN

i~1

XN

j~iz1

DW �
ij {W �

ji D ð11Þ

where N is the size of the matrix W , as well as the size of the

network (see, e.g., [66] for alternatives). The symmetry index s(W )
takes values in the range ½0 ; 1� and depends on the average

similarity between elements of W that are on symmetric positions

with respect to the diagonal. Following our previous convention,

Wij and Wji are first normalized and then zero-clipped:

W �
ij ~Wij=Wmax if Wij w 2=3 Wmax, and otherwise W �

ij ~0. In

Eq. 11, M represents the number of null pairs fW �
ij , W �

jig~f0, 0g
that occur as a consequence of clipping or by initialization and

pruning.

Evaluating s(W ) on networks with a majority of unidirectional

connections results in values close to 0 (e.g., Fig. 2 A), while its

evaluation on networks with a majority of reciprocal connections

results in values close to 1 (e.g., Fig. 2 B). For uniform random

matrices W , it is possible to calculate the full statistics of s(W ) and

use it for deriving a significance measure for s as a p-value, being

the probability that the value of s observed in simulations could

result by chance.

Mean-field Network Description
We analyze the firing rate of the IF network through its mean-

field dynamical description [18,27,67], closely following earlier

work [16,19]. We assume that (i) the network consists of one or

more non-overlapping subpopulations (see Figs. 4 A and Fig. 7 A)

and that (ii) neurons within each subpopulation share identical

synaptic coupling, connectivity, and short-term synaptic plasticity

properties, i.e., all depressing or all facilitating, as in Fig. 7 A; see

Fig. 8 A for an exception. We also assume that (iii) for each

(sub)population, individual neuronal firing occurs as a Poisson

point process, with instantaneous mean firing rate E(h), which

depends monotonically on the corresponding average input

currents h. Under these hypotheses, neurons can be distinguished

only by the subpopulation they belong to, i.e., depressing D or

facilitating F, and their firing rate is indicated as ED(hD) and

EF (hF ). For the case of two subpopulations (Fig. 7 A), hD and hF

evolve over a characteristic time scale t as

t _hhD~{hDzJDDEDzJDF EF zÎI ext

t _hhF ~{hF zJFDEDzJFF EF zÎI ext

8><
>:

ð12Þ

where ÎIext represents the average external input, JDD and JFF the

average synaptic efficacies of recurrent connections within each

subpopulation, and JDF and JFD the average synaptic efficacies of

connections across subpopulations. On a first approximation, J
can be considered as the ensemble average over Gij and firing

rates ED and EF can be computed from hD and hF as threshold-

linear frequency–current response functions: ED~ hD{h½ �z and

EF ~ hF {h½ �z, with x½ �z~maxfx; 0g (for alternatives see

[68,69]). JDD, JFF , JDF , JFD undergo short and long plastic

changes. Indicating by Jab the mean synaptic efficacy between the

presynaptic population b and the postsynaptic population a, then

Jab~ŴWabÂAabûubx̂xb, ð13Þ

with a,b[fD,Fg. The quantities ÂAab and ŴWab represent the

maximal synaptic efficacy and the weighting factor modified by
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STDP. The quantities ûub and x̂xb depend only on the presynaptic

firing rate Eb, and capture the short-term homosynaptic plasticity

in the mean-field version of Eqs. 6 [16]:

_̂uûuuD~ UD{ûuDð Þ=tfacil DzUD 1{ûuDð ÞED

_̂xx̂xxD~ 1{x̂xDð Þ=trec DzûuDx̂xDED

_̂uûuuF ~ UF {ûuFð Þ=tfacil F zUF 1{ûuDð ÞED

_̂xx̂xxF ~ 1{x̂xFð Þ=trec F zûuF x̂xF EF

8>>>>>><
>>>>>>:

ð14Þ

On longer timescales, controlled by the plasticity rate parameter

g, we adopt the mean-field approximation of STDP given in [15]:

the factor ŴWab evolves as a function of both presynaptic Eb and

postsynaptic Ea rates:

1

g
_̂

WŴWW ab~{A{
2 to1

EbEa{A{
3 to1

tq2
E2

bEa

zAz
2 tq1

EbEazAz
3 tq1

to2
EbE2

a :

ð15Þ

With parameters A{
3 ~0 and Az

2 ~0, as in our simulations, see

Table 1, the above expression can be rewritten as

1

g
_̂

WŴWW ab~EbEaAz
3 tq1

to2
Ea{Hð Þ, ð16Þ

with H~(A{
2 to1

)=(Az
3 tq1

to2
). Considering the postsynaptic

activity Ea fixed, the stability analysis shows that the point

Eb~0 is stable if EavH and unstable if EawH. In the latter case,

the weight will increase towards its upper bound. Considering the

presynaptic activity Eb fixed, there are two equilibrium points:

Ea~H, which is unstable, and Ea~0, which is stable. Hence, the

postsynaptic activity will tend to go to either the maximum

possible value or to zero depending on whether initially EawH or

not. This translates to weights going to their upper bound or to

zero.

The mean approximation is derived under the assumption of

Poisson distributed presynaptic and postsynaptic firing times.

When there is temporal (pre-post) correlation in the external

activity, which the model is able to capture, it would lead to

unidirectional connections and non-zero postsynaptic activity, see

also Text S1.

Supporting Information

Text S1 A Supplementary Information (Text S1) accom-
panies this paper and reviews in detail the basic mean-
field analysis of firing rate stability of recurrent
networks of model neurons with plastic synapses. It also

explores the impact of recurrent inhibition, presents a viable

alternative to heterogeneous initial weight initialization, and a

analytical description for the development of unidirectional motif

for networks with low firing activity imposed temporally correlated

external inputs. Further, it provides the implementation details of

the alternative STDP models (i.e., pair-based and anti-STDP), and

demonstrates that results presented in the main text are

independent on IF model details. It finally provides full statistics

of the conventional symmetry index employed in our paper and

reveals its sensitivity on the value-clipping threshold.

(PDF)
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