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Abstract

The work presented in this report deals with the modelling and subsequent neural network emulation of
autonormous mobile robots, moving in pre-defined environments in response to given control signals. This
work was undertaken with the intention of training neural network based controllers for the vehicles, in order
to control them whilst they performed required navigational tasks, whilst avoiding collisions with each other
and with environmental obstacles. The required modelling was carried out using a combination of
trigonometry and geometry, the corresponding neural network emulators were trained using an algorithm
based on back propagation, and the resulting emulator networks performed well enough for work to now
begin on controller training.
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Abstract

The work presented in this report deals with the modelling and subsequent neural network emulation of
autonomous mobile robots, moving in pre-defined environments in response to given control signals. This
work was undertaken with the intention of training neural network based controllers for the vehicles, in order
to control them whilst they performed required navigational tasks, whilst avoiding collisions with each other
and with environmental obstacles. The required modelling was carried out using a combination of
trigonometry and geometry, the corresponding neural network emulators were trained using an algorithm
based on back propagation, and the resulting emulator networks performed well enough for work to now
begin on controller training.

1. Introduction

Multi-agent robotics deals with the development of co-operative robots. Such robots can be used to replace
humans in hazardous, unpleasant or inaccessible environments, or in situations where robot use is more cost
effective or convenient. One approach to this development attempts to emulate human co-operation by
combining robot autonomy with the use of neural networks for individual robot learning. The work presented
in this report considers co-operative mobile robots navigating within pre-defined environments in order to
accomplish some navigational task without colliding with each other or any environmental obstacle. Such
work is applicable in any situation where mobile robots equipped with sensory devices could work in co-
operation, for example, in a warehouse transportation system, or a mobile cleaning fleet.

The work set out in this report is based on that presented by Biewald,[1] in which he trained neural
network controllers for the navigation of a single vehicle, using an extended version of Nguyen & Widrow's
motion control architecture.[2,3] In order to achieve this, he first used back propagation to train networks to
emulate both the vehicle's sensor readings for various environments and the vehicle dynamics, and then,
using both the weights of the trained networks and the actual vehicle sensor readings and dynamics, trained
the controller networks, by applying back propagation through time.[4]

The behaviour of simple co-operative mobile robots, or vehicles, was modelled, and neural
networks were trained to emulate both their sensor readings, for a selection of environments, and their
dynamics, making possible the subsequent training of neural network navigational controllers which can aim
to navigate the vehicles to accomplish a set task whilst avoiding collisions.

The vehicles considered were equipped with sensors to allow them to detect obstacles within their
environment, and moved in response to a control signal. Both vehicle dynamics and vehicle sensor readings
for a selection of environments were modelled, environments being modelled both with and without
obstructing vehicles, and the models developed were tested against expected results. Vehicle dynamics were
considered in terms of forward and sideways movement and vehicle orientation change in response to a
control signal containing stop/go and left/right commands and a steering control angle.

A neural network training algorithm, based on back propagation, was developed to train a network
to emulate sensor readings for the simplest vehicle environment. This algorithm was subsequently improved

by the introduction of convergence checking and the restriction of training pattern range, the introduction of = %
a specific training set and training pattern cycling, the adoption of batch training, layer specific learnipg rates: - * /



and adjustable learning rates, the reversal of 'bad' training steps, the addition of momentum, and the addition
of noise to the network weights if a local minimum was suspected. Once developed fully, the training
algorithm was adapted to train networks both to emulate sensor readings for all other environments under
consideration and to emulate vehicle dynamics.

Results will be given, showing both the continued improvement in the basic algorithm during its
development, and the performance of the emulator networks trained.

The models and algorithms that were developed were implemented in Borland C, running under
Microsoft Windows on a 486 personal computer.

2 Vehicle Modelling

2.1.  Sensor Modelling

Each mobile vehicle was equipped with 'ultrasonic' sensors, the arrangement of which is illustrated below in
Figure 2.1, and the sensors' readings were calculated from the vehicle's position with respect to
environmental obstacles, its orientation and its dimensions.
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In order to make the continuation of controller training possible in the event of a collision, vehicles
were permitted to overlap with walls and with each other, making it necessary to give meaning to their sensor
readings under such circumstances. Several separate cases had to be considered, and the various possibilities
are covered below in Table 2.1. In all cases sensor readings were defined by considering the information that
would be of most use in controller training and were limited to lie within a pre-defined range.
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/W ; Figure 2.1 Sensor Arrangement

2.1.1 Modelling for Single Vehicles

Modelling was carried out for a single vehicle, both in an environment containing a straight bounding wall
and an environment bounded by an L-shaped wall, and was achieved using a straight-forward trigonometric
approach, an example of which is given below.

The arrangement for calculating sensor readings for the vehicle's right sensors in a straight wall
environment is shown in Figure 2.2,



Sensor Position Size of Sensor Reading Sign of Sensor Reading

QOutside all obstacles Distance to closest obstacle, Positive
measured forwards along line of
sensor beam

In one wall, Distance to wall, measured Negative
pointing into wall backwards along line of sensor

beam
In one wall, Distance to closest obstacle, not Positive
not pointing into wall including wall that contains

sensor, distance measured
forwards along line of sensor

beam
In both walls, Distance to furthest wall, Negative
pointing into both walls measured backwards along line of

sensor beam
In both walls, Distance to wall that sensor points | Negative.
pointing into one wall into, measured backwards along

line of sensor beam
In both walls, not pointing into Distance to closest obstacle, not Positive
either including walls, distance

measured forwards along line of
sensor beam

In obstructing vehicle, Distance to side of obstructing Negative
but not in wall and pointing into | vehicle, measured backwards
that wall along line of sensor beam
Table 2.1 Dependence of Sensor Readings on Sensor Position In Relation to

Environmental Obstacles

(n+1/2)*

(right sensor sep)
Dist Axle Re:

(Vehicle Wédm)ﬂ\

Wall Thickness

Figure 2.2 Arrangement for Calculating Right Sensor Readings for a Single Vehicle in a Straight
Wall Environment




From Figure 2.2 it can be seen that:

y'=y—Wall _Thickness —
(Dist_ Axle _ Rear —(n+1/2)*right_sensor_sep)*sin @ @.1)

y'=(d +Vehicle _Width / 2)*cos6 (2.2)

where y'is a temporary variable, y is the y co-ordinate of the centre of the front axle, 8 is the orientation of
the vehicle, n is the number of the sensor under consideration (sensors being numbered from the rear of the
vehicle, starting from zero), and d is the distance that is interpreted as the sensor reading.

Hence, from equations 2.1 and 2.2:

d = (y—Wall _Thickness) [ cosf—
(Dist _ Axle _ Rear —(n+1/2)*right_sensor_sep)*tan@ —
Vehicle _Width /2 (2.3)

2.1.2 Modelling for Multiple Vehicles

When considering a vehicle obstructed by one or more other vehicles in either the straight or the L-shaped
wall environment, a purely trigonometric approach was judged to be too cumbersome and inflexible, and an
approach involving a combination of trigonometry and geometry was adopted. The modelling algorithm used
is summarised below, with items applicable in the presence of a vertical wall enclosed in parentheses. All
distances from sensors to detected obstacles were found using straight line intersection and Pythagorus's
Theorem, whilst trigonometry was used to find the positions of both sensors and vehicle corners.

® For each of the main vehicle sensors in turn:

®  Set sensor reading to sensor range.

e If sensor would 'see’ horizontal wall if there was no obstacle of higher priority, set sensor reading,
with appropriate sign, as though horizontal wall is seen.

®  (If sensor would 'see’ vertical wall if there was no obstacle of higher priority. Reset sensor reading
accordingly if necessary by doing the following:)

e (If sensor is in vertical wall and negative distance is less than sensor reading, reset sensor
reading to minus distance from sensor to vertical wall along line of sensor beam.)

e (If sensor is not in either wall and distance is less than sensor reading, reset reading to distance
from sensor to vertical wall along line of sensor beam.)

®  (If sensor is in both walls, pointing away from both and parallel to either, then reset sensor reading
to minus sensor range.)

e If sensor is not in wall and pointing into that wall, sensor may 'see’ one of the obstructing vehicles.
Reset sensor reading accordingly if necessary by doing the following for each side of each
obstructing vehicle:

e If line of sensor beam intersects with side, find distance from sensor to side along sensor beam.

e If sensor is not in vehicle under consideration, sensor beam points towards side, and distance is
less than sensor reading, reset sensor reading to distance from sensor to side along line of
sensor beam.

e [f sensor is in vehicle under consideration and sensor points away from side, then reset sensor
reading to minus the distance from sensor to side along line of sensor beam.

The above algorithm has the advantage that it can be applied for any number of obstructing vehicles,
assuming that sensors do not become embedded in more than one of the vehicles at any time. It should also
be possible both to remove this restriction and to alter the arrangement of walls within the environment with
relatively little effort.

2.2. Dynamics Modelling

The vehicle's dynamics were simplified for modelling purposes, by considering the front wheels and axle
alone. The control signal was a vector consisting of three components, the first being a stop/go command, the
second a left/right command and the third a steering control angle. The movement vector also consisted of



three components, the first being the distance moved forwards in the direction of the vehicle's orientation at
the moment when the control was applied, the second the distance moved perpendicular to this and the third
the change in the vehicle's orientation. The stop/go command was included so that it would be possible for
vehicles to avoid each other by stopping if necessary, the steering control angle dictated the angle between
the outside front wheel and the vehicle body, and both the distance moved per control interval in response to
a'go' command, and the scale factor by which the angle between the inside front wheel and the vehicle body
differed from the steering control angle (referred to as SF below) were pre-defined.

Consider a command to turn right. The arrangements for calculating the movement vector from the
control vector are shown below in Figures 2.3, 2.4 and 2.5.

SF*{contrul angle)
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) Figure 2.3 Arrangement for Calculating

/ the Co-ordinates of the Centre of Rotation and
of ntauon . .

s gt S its Distance from the Centre of the Front Axle

From Figure 2.3 it can be seen that if the centre of rotation has co-ordinates (Xcog» Ycor) »

Xeop = Vehicle _Width | 2x(tan(SF *control_angle) +
tan(control_angle)) /
(tan(SF *control_angle) — tan(control _angle)) (2.4)

Yeor = —tan(control _angle)*Vehicle _ Width *
tan(SF #control_angle) /
(tan(SF *control_angle) — tan(control_angle)) 2.5)

From Figure 2.3 it can also be seen that:

2 2
r’= Xcor T Ycor (2.6)

where r is the distance from the centre of the front axle to the centre of rotation.

From Figure 2.4(a) it can be seen that

D = r¥,J2%(1—cos(Dist _Travelled_ Per_Control_Int /r)) 2.7

where D is a temporary variable.
From Figures 2.3, 2.4(a) and 2.4(b) and equation 2.7 it can be seen that:

dist _moved _ forwards=
r#[2%(1—cos(Dist _Travelled_ Per_Control_Int | r))+
cos(Dist_Travelled _ Per_Control_Int / (2%r)+

tan”’ (=Ycor ! *cor)) (2.8)
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Figure 2.4 Arrangements for Calculating Required Distances Moved in Response to Control Signal
dist _moved _ sideways =
r* \/2* (1=cos(Dist _Travelled_ Per_ Control_Int/r))*
sin(Dist _Travelled _ Per_ Control_Int | (2%r)+
tan™ (= Yeor / Xcor ) (2.9)
St % Figure 2.5 Arrangement for
angle Calculating Orientation Change in

Response to Control Signal

Dist Travelled
Per Control Interval



From Figures 2.3, 2.4(a) and 2.5 it can be seen that:

change_in_orientation= tan™ ((Xypyc —
dist_travelled _ sideways) /
(dist _travelled_ forwards—
Ynowe)) =T/ 2 (2.10)

If a command is given to turn left instead of right, the resulting movement can be obtained in the same way,
but the sign of change_in_orientation must be changed. It should be noted that no movement will occur if
the first element of the control vector is 'stop'.

3. Emulation Network Training Using Back Propagation

Emulation network training took place for all the models developed. The approach taken to achieve this
involved the development and refinement of a basic back propagation algorithm to train an emulation
network for the simplest sensor model, and the subsequent refinement of that algorithm and its adaptation to
train networks for the remaining models.

3.1  Basic Algorithm

Network training was based on the minimisation of the cost function

E=d z(ek)l] (3.1

2 | ke ourpur_tayer
where
e, =d, -y, (3.2)
for a network with one hidden layer, using the output functions
¥, = tanh(net,) k € hidden _layer (3.3)
Y, =net, k € output _layer (3.4)

where E is the cost function and d,, ¥, and net, are the desired output, actual output and weighted sum of
the inputs of neuron k respectively, d, being obtained from the relevant model.

The network trained had three inputs, corresponding to the x and y co-ordinates of the centre of the
vehicle's front axle, and its orientation, thirty-four outputs, each corresponding to a vehicle sensor, forty
hidden neurons in a single layer and both a hidden layer and an output layer bias. To make the network easier
to adapt for other applications, the inputs and desired outputs were all scaled to lie between -1 and +1, and
the number of network inputs, outputs and hidden neurons were all pre-defined.

The standard back propagation algorithm which was initially used to train the network is given
below in equation 3.5.

w, (1+1)=w, (1) +learning_rate(1)*

output _ equivalence _error (1)* y; (1) (3.5)

where w,; (1) is the weight of the connection between neuron i and neuron j at time t and
output _equivalence_ error, is given below by equation 3.6 for neurons in the output layer and by
equation 3.7 for neurons in the hidden layer.

output _equivalence_error = —e, (3.6)



output _equivalence_error = —(1— y?)*
2 (output _equivalence_error, *w,,)

keoutput _layer

(3.7)

Random initial weights were generated for the training algorithm from ranges set to avoid initial saturation of
the hidden neurons and keep the cost function reasonably small, and a constant learning rate was set to make
initial weight adjustments small compared to these ranges. Training patterns were generated randomly from
the range of vehicle positions considered to be of interest, and training occurred for each pattern as it was
generated. The resulting algorithm, enlv]1.cpp, was coded to run for a pre-defined number of training cycles
and its performance was assessed by looking at the network root-mean-squared (r.m.s.) output error after
training was completed.

3.2  Modification of Basic Algorithm

The performance of enlvl.cpp was unsatisfactory, and a series of modifications were made, as detailed
below in Table 3.1.

Algorithm Name Modification

enlv2.cpp Algorithm coded to run until an accuracy goal was
achieved and training pattern range restricted.

enlv3.cpp Introduction of training set with number of training

patterns set to approximately ten times the number
of hidden neurons. Training set cycled through
repeatedly throughout training.

enlvd.cpp Introduction of batch training, with entire training
set contributing to calculation of weight adjustment
for each training cycle, initial weight range and

learning rate being adjusted accordingly.

enlv5.cpp Introduction of layer specific learning rates.
enlvb.cpp Introduction of adjustable Jearning rates.
enlv7.cpp Reversal of 'bad' training steps.
enlv8.cpp Introduction of 'momentum'.
enlvlO.cpp Addition of noise to network weights if cost
function local minima suspected.
Table 3.1 Modlfications to Basic Training Algorithm

3.3 Modification of Algorithm to Train Networks for Remaining Models

The basic algorithm was modified to train networks to emulate vehicle sensor readings for a single vehicle in
an L-shaped wall environment, and for two vehicles in both a straight wall and an L-shaped wall
environment, and to emulate vehicle dynamics, giving algorithms en2v1.cpp, en3v1.cpp, endvl .cpp and
dynlvl.cpp respectively. Modification was achieved by altering the number of network inputs and outputs
appropriately, and in the case of the dynamics emulator network, halving the number of hidden neurons, and
by altering the generation of training and test patterns, training pattern cycling, input and output scaling and
desired network outputs accordingly.

4, Results

4.1  Comparison of Training Performance of Algorithms Applied to Sensor

Emulation Training Problem for a Single Vehicle in a Straight Wall Environment
Algorithms enlv4.cpp, enlv5.cpp, enlv6.cpp, enlv7.cpp, enlv8.cpp and enlv10.cpp were run for 10,000
training cycles and their r.m.s. output errors were recorded every 1,000 cycles as a percentage of the desired
output modulus range (enlvl.cpp, enlv2.cpp and enlv3.cpp being omitted due to poor performance, and
enlv9.cpp being omitted since it contained no new training code). The results are shown below in Figure 4.1,
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Figure 4.1

Comparison of Algorithm Training Performance

It should be noted that each training run started with different random weights, but never the less, it would
appear that training improved as the training algorithm was modified.

4.2  Performance of Trained Emulator Networks

The trained emulator networks were each run for ten randomly generated input patterns taken from the same
range as their training patterns. The r.m.s. error for each scaled output was found as a percentage of the
desired scaled output modulus range, and the results are summarised below in Table 4.1. Note that training

continued for several days, and was interrupted when I felt that no further significant improvement was

likely.
Algorithm No. Training Cycles Training Pattern R.M.S. Test Pattern R.M.S. Scaled
Qutput Error QOutput Error
enlv10.cpp 22,661 0.95% 0.94%
en2vl.cpp 65,366 1.53% 9.68%
en3vl.cpp 63,242 11.37% 14.17%
endvl.cpp 54,801 12.72% 12.23%
dynlvl.cpp 118,088 0.33% 0.18%
Table 4.1 Summary of Results for Final Training Algorithms

From the results shown in Table 4.1 it can be seen that the trained emulator networks do give a fair, and in
the more simple situations a very good, approximation to the models developed, although there does appear
to be a significant upward trend in the r.m.s. output errors of the sensor emulator networks as environmental
complexity increases. This is only to be expected, but it may give rise to emulator network accuracy
problems if more complicated environments need to be considered, making it necessary to investigate the
effect on accuracy of an increase in the number of hidden neurons in the emulator networks. However,
comparing the results obtained with those of Biewald, it can be seen that the performance obtained from the
training algorithms and emulator networks should be sufficiently adequate to permit controller training to
take place for all the environments modelled.

3. Conclusions
Models have been successfully developed for simple co-operative mobile robots, or vehicles, covering both
their sensor readings in a selection of environments, and their dynamics. A basic neural network training
algorithm has also been developed, refined and adapted to give a set of algorithms that were successfully
used to train neural networks to emulate both sensor reading models and the vehicle dynamics model,
producing results which can now be used in the training of neural network navigational controllers.

Two main environments were covered, and sensor readings were modelled for each, both in the case
where a vehicle was alone, and in the case where other obstructing vehicles were present. Vehicle dynamics
modelling was based on the motion of the vehicle's front axle.
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Sensor emulator networks were trained for each of the main environments modelled, both in the
presence and in the absence of one obstructing vehicle, giving r.m.s. output errors between 0.94% and
14.17% for randomly generated test sets, with the errors appearing to increase with environmental
complexity, as is to be expected. The dynamics emulator network produced an r.m.s. output error of 0.33%
for its training set, with this error actually reducing to 0.18% for its test set, although this reduction can
probably be put down to a fortuitous selection of test patterns.

Training of additional sensor emulator networks for the main environments in the presence of more
than one obstructing vehicle could easily be accomplished using existing models by making minor
adaptations to the network training algorithm, and it would also be possible to accommodate additional basic
environments with relatively little effort.

The way is now open for the training of neural network navigational controllers for the modelled
vehicles.
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