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Abstract

A neural architecture, fuzzy ARTMAP (Carpenter et al, 1992), is considered here as
an alternative to standard feedforward networks for noisy mapping tasks. It is one of
a series of architectures based upon adaptive resonance theory or ART (Carpenter et
al, 1991a; 1991b; 1992). Like other ART based systems, fuzzy ARTMAP has
advantages over feedforward networks and is especially suited to classification-type
problems . Here it is used to approximate a noisy mapping. Results show that
properties which confer useful advantages for classification problems do not
necessarily confer similar advantages for noisy mapping problems. One particular
Jfeature, match-tracking, is found to cause over-learning of the data. A modified
variant is proposed, without match-tracking, which stores probability information in
the map field. This information is subsequently used to compute output estimates.
The proposed fuzzy ARTMAP variant is found to outperform fuzzy ARTMAP in a

mapping task.

1. Introduction

Mapping approximation is an important area of research which has widespread
application in many fields. While the use of standard curve-fitting techniques
continues, investigations into the automation of approximation methods contribute to
such fields as those of autonomous decision support and adaptive control. Any
adaptive system operating within an information environment has to be capable of
interpreting aspects of that environment in order to respond appropriately.

Artificial neural networks offer a possible approach to this interpretation problem in
that they provide a means of approximating noisy mappings. There is a body of work
relating to the ability of feedforward networks to learn arbitrary mappings (Cybenko,
1989; Funahashi, 1989; Hornik ef al, 1989; Girosi and Poggio, 1990, Park and
Sandberg, 1991; Cardaliaguet and Euvrard, 1992; Ito, 1992; Hornik, 1993). Both
Cybenko (1989) and Funahashi (1989) provide proofs that a layered feedforward
network consisting of one hidden layer is capable of approximating any continuous
function under some mild conditions. These fundamental results have been bunlt upon_
and extended by various authors (e.g. Ito, 1992; Hornik, 1993). ol (T o



Although indicating the capabilities of feedforward neural networks, these theoretical
results give rise to practical problems such as the determination of the number of
nodes in the hidden layer(s) (Fujita, 1992) and increasing the network information
capacity during operation. Both of these problems stem from the nature of the
feedforward architecture which distributes information pertaining to the mapping
throughout the network. The global architecture, coupled with localised error-
correcting learning mechanisms, does not allow new information to be incorporated
into the network following training. If further data is added to the original training set
then re-training with the augmented data set is required. Ascertaining the optimum
network configuration from the outset is an empirical process and, once established,
the network size is fixed (Fujita, 1992).

Another cause of inaccuracy in feedforward networks is the problem of local minima
of the error function (Baba, 1989, Lippmann, 1987). As the network state vector
follows a learning trajectory through error-weight space it can become trapped in
states which are stable but are not the global minimum for the cost function. These
states, or local minima, constitute undesirable solutions of the mapping approximation
problem. Without a priori information it is impossible to distinguish between these
local minima and the desired global minimum.

The commonly used learning algorithm for feedforward networks is the gradient
descent or error back propagation algorithm (Rumelhart ef al, 1986) which attempts
to minimise the mean square error energy function by adjusting the network weight
vector according to the method of steepest descent. The main problems of this method
are the inability to predict convergence in advance and, assuming convergence,
whether the resultant approximation is sufficiently accurate (Cardaliaguet and Euvrard,
1992; Van Ooyen and Nienhuis, 1992).

This paper considers an alternative architecture, fuzzy ARTMAP (Carpenter ef al,
1992), which has inherent properties that offer a possible solution to some of the
problems encountered by conventional feedforward networks. Modifications to the
original architecture are also proposed in the form of a variant which is identified as
PROBART to distinguish it. The performance of both the original architecture and its
proposed variant are assessed in a complex mapping task.

Fuzzy ARTMARP is one of a class of neural network architectures developed by
Carpenter, Grossberg and co-workers based upon adaptive resonance theory (ART)
(Grossberg, 1980; Carpenter and Grossberg, 1987a, 1987b, 1989; Carpenter et al,
1991a, 1991b, 1992). It is capable of mapping subsets of R™ to subsets of R",
accepting both binary and analogue inputs in the form of pattern pairs. It is also
possible to code inputs according to their degree of fuzzy set membership.

As an extension of ARTMAP (Carpenter et al 1991a), fuzzy ARTMAP (Carpenter et
al, 1992) makes use the operations of fuzzy set theory ( Zadeh, 1965; Kosko, 1992),
instead of those of classical set theory to govern the dynamics of ARTMAP. ART-
based systems offer certain advantages over other neural network architectures, such
as multilayer feedforward networks. These include the dynamic allocation of nodes
without network disruption, fewer training cycles required to reach acceptable levels of
predictive accuracy and guaranteed convergence (Carpenter ef al, 1991,1992). The
latter property results from the use of monotonically decreasing weights which also
ensures stable learning.



The fuzzy ARTMAP system is especially suited to classification problems (Fu, 1994)
and is capable of learning autonomously in a non-stationary environment. On-line
learning is possible with a distinction being made between rare but significant events
and more common associations. The representation of pattern associations by
individual nodes facilitates rule extraction in the form of if-then relations (Carpenter
and Tan, 1993). Another property of fuzzy ARTMAP is its ability to resolve sub-
classes by dynamically increasing the stringency of class membership conditions when
mis-classification occurs.

An important area of concern encountered in conjunction with autonomous learning
systems is that of the stability-plasticity dilemma (Carpenter and Grossberg, 1987a).
This term is given to the fundamental conflict between plasticity, which enables a
system to learn new associations, and stability, which buffers the system against
continuous recoding by establishing stable states. ART-based systems attempt to
resolve this dilemma by maintaining a balance between familiar and novel input
patterns. Responsiveness to novel inputs can become problematic when dealing with
noisy function/mapping approximations because of inherent uncertainty as to what
constitutes novelty, i.e. could a conflicting association be a rare event or simply
transient noise? There is no easy solution to this problem and compromises abound in
the field of neural networks which range between the two extremes of conservatism
and responsiveness. In this context neural networks can be seen as filters which can do
little to reduce the effects of noisy disturbances if responsiveness to novel inputs is
high or fail to register significant rapidly changing events if responsiveness is lowered
in order to avoid the network being swamped by noise. This is an on-going problem
likely to be faced by developers and users of neural network architectures.

The modifications to the fuzzy ARTMAP system arose from investigations into the
performance of fuzzy ARTMAP with noisy input data. PROBART is based around
the concept of building up probabilistic information regarding inter-layer node
associations. The probabilistic information can be used either to generate a predicted
output in the form of an expected value (e.g. weighted average) or to generate the
most likely value based upon the frequency of inter-layer node associations. By
combining output information in this way PROBART offers a solution to the
noise/novelty problem encountered by fuzzy ARTMAP when used to approximate
mappings, while it still retains many of the attractive properties of fuzzy ARTMAP
such as stable category generation and rule representation.

Both fuzzy ARTMAP and PROBART consist of two self-organising fuzzy ART
modules (Carpenter ef al, 1991b) linked by a layer of nodes called the map field. The
essential differences between the two architectures result from different inter-module
linkage dynamics mediated by the map field.

Section 2 of this paper describes the fuzzy ART architecture, its dynamics, and
considers some of the motivations behind its features. The combination of two fuzzy
ART modules to form fuzzy ARTMAP is discussed in Section 3 as background and
the modifications are introduced. Finally, a comparison of fuzzy ARTMAP and
PROBART performance is described in Section 5 followed by a discussion of points
arising from the investigation.



2. Fuzzy ART

To allow comparison between PROBART and fuzzy ARTMAP and to make the paper
self-contained, the following description of the fuzzy ARTMAP architecture is
included here.

Each fuzzy ART module consists of three fields, or layers, of nodes: an input field, a
matching field and a choice field. A schematic outline of a fuzzy ART module is
shown in Figure 1. The input field, F, stores the current input vector and transmits it
to the matching field, F, which also receives top-down input from the choice field F;;
this latter field representing the active category assignment of the input data.
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Figure 1. The fuzzy ART module. This illustrates the Relationship
between long term memory (LTM) and short term memory (STM).

TheF, activity vector is denoted by I=(/,,...,1,,), I,€[0,1]eR,Vi=1,.., M.
The F, and F, activity vectors are denoted by x =(x,,...x,,) and, y =(y,...,yy)
respectively.

Each F, node represents a class or category of inputs grouped together around an

exemplar or prototype generated during the self-organising activity of the fuzzy ART
module. Furthermore, each F; category node, j has its own set of adaptive weights
stored in the form of a vector w, = (W, W,,...,W,,), Vji=1... N.

These weights represent the long term memory (LTM) traces which evolve during
network operation. The initial weight vector values are given
byw,(0)=1, Vj=1...N Vi=l.. .M

Unlike ARTMAP sub-systems (ART1 modules), the fuzzy ARTMAP components
(fuzzy ART modules) differ in that the weight matrix [w ;] includes both top-down and

bottom-up weight information.



With no categories being allocated to F, nodes at this stage, the nodes are said to be
uncommitted (Carpenter ef al, 1992). Once a category node is chosen to represent a
category it then becomes committed. The parameters which govern Fuzzy ART
dynamics are:

i) o, a choice parameter, where ¢ =0,
ii) B, a learning rate parameter, where B €[0,1] and
iii) p, a vigilance parameter, where p €[0,1].

These parameters will be introduced and described in the relevant contexts below.

2.1. Choice field activity.

The choice field (F,) nodes operate with winner-takes-all dynamics modelled by the F,
output function (choice function)

__ll/\w}l 5
T.(I)—a+|wj|, Vie[0,1]7, (D)

where I is the given input vector, w, is the j*F, node weight vector,

(pAq). =min,(p,,q,), is the fuzzy AND operator, and the L' norm || is defined by
M
Ipl=2.I]
The overall F, winner, node J, is selected by 7, = max {7 :j=1,..., N} to represent a

J
category choice for a given input vector I .

T () reflects the degree of match between the current input, I and the LTM of the j &
lprd
g
LX)
o

node, w,.. The ratio, 0< <1, gives a measure of the fuzzy subsethood of q

with respect to p. The limit, =1 indicates that q is a fuzzy subset of p.

. C|IAw, ) )
Specifically, if |—-l-;7|"—| =1, which occurs when |I AW jl = |w JA|,then w is a fuzzy
subset of 1. The greatest degree of match between input and weight vectors, for
lIAwJ.|>lIAw,| _ ll/\wjl [TAw,]|

competing nodes, ensures selection as !
w,| = Iw

thus, 7.(I) > 7, (T) as desired.

The learning rate parameter, o breaks the deadlock between competing nodes when
w, and w, are both fuzzy subsets of I, by selecting the node j such that lw jl >|w,.



This is because 7(I) is monotonically increasing so that, II AW j| = |w J.I giving

T(1)= wfl . Thus for Iw1|>|wk‘, T,(1)> 7,(1).
o+ wJ.|

In the case that 7, = T, for some j,k < N, such that T, T, > T Vi#j,k

the node with the lowest index is chosen.

2.2. Matching field activity
The F, layer activity is governed both by bottom-up F; layer and top-down F; layer
activity according to
I if F, isinactive
- {I/\wJ if the J” F, node is active.

If node J is active, w , represents an expected pattern or template fed down from F;;
this template is combined with the input vector present across F; to produce a
resultant vector. The ratio of the magnitude of the resultant vector to the magnitude
of the input vector gives the degree of match. This ratio, or match function, is denoted
Inw
o 12!

1

'I—‘l"]f—'z P, @).

and must fulfil the criterion

to ensure that the input vector belongs to the chosen category. This state is known as
resonance and allows learning to occur in the relevant section of the LTM weight
matrix. The parameter p is the vigilance parameter.

Irw.
The situation where I—ﬂ—’—l <p, known as mismatch, causes the system to reset and

inhibits the winning node (7, = 0) which is, thus, unable to re-enter the competition
from which a new winner is selected. The cycle continues with multiple re-
presentations of the input vector until the input is either assigned to an existing
category or becomes the exemplar for a newly created category.

This approach, with individual nodes representing categories, allows for dynamic
adjustment of network size without disrupting previously acquired information as
happens with, for example, feedforward networks. Extra nodes are simply assigned as
and when required to represent new categories or pattern clusters. Both the fuzzy
ARTMAP and the PROBART implementations discussed in this paper use dynamic
node allocation. However a fixed number of nodes can be allocated at the outset if
desired.



2.3. Learning

Following a successful search, LTM changes are made according to

wi™ = BIAWS ) +(1-Bw™ (3)
for the winning F,, node, J. These changes correspond to the notion of learning.

The learning rate parameter, B, with 0 <P <1 ensures that the new weight vector w
is a convex combination of the resultant vector across F; and the F;, layer expectation
template. For B = 1, known as Fast-Commit-Fast-Recode (FCFR), F, resultant
vectors directly replace the present category exemplars.

An option, Fast-Commit-Slow-Recode(FCSR) , allows for initial fast learning prior to
the convex combination learning rule of equation (3) by setting =1 for uncommitted
nodes only. Thus, w$ =T initially.

2.4. Complement coding

According to Carpenter ef al, (1991a, 1991b, 1992) normalisation of the input vectors
is required to prevent category proliferation. In Carpenter et al, (1991) it is proved
geometrically that, without complement coding, the monotonically decreasing weight
components would eventually result in many categories clustering near to the origin
with others being created to replace them. For example, on the real line, when all
categories to the left of an input value are inhibited, the first category to the right will
be selected as any categories further to the right will result in a smaller activation value
for the function 7(/). Furthermore, the condition of equation (2) is always fulfilled as

. |raw,| N
I<w, gives ———=—==12p
’ L

An alternative proof, illustrating category proliferation in the real line will be found in
Appendix B.

Normalisation is represented by |l1 =y, VIe[0,1]" for some y>0. To achieve this
for arbitrary 1 [0,1]" take I=(a,a°) €[0,1]"* where a €[0, 17 is the original input
and 2° =1-a where 1=(1,1,...,1), and, [1| = M.

Thus, the new F, layer input vector , I is complement coded and of dimension 2M
with [I| =M, VIe[0,1]".

3. Fuzzy ARTMAP

For heteroassociative tasks, two connected fuzzy ART modules are required with each
module receiving either the input (stimulus) or output (response) component of each
pattern pair to be associated. Thus, the input and output spaces are organised into
distinct categorised sets during processing. The heteroassociative network discussed
here is fuzzy ARTMAP which uses a layer of nodes, called the map field, to link the
two fuzzy ART modules. This configuration is illustrated in Figure 2. The main
function of the map field is to associate compressed representations of the original
pattern pair components.
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Figure 2. The fuzzy ARTMAP system.

The two fuzzy ART modules, referred to as ARTa and ARTb, accept inputs in
complement coded form denoted by I, =(a,a“) and I, =(b,b") respectively.

Following the convention of Carpenter et al (1992), the ARTa F, and F, layers are
denoted by F° and F} respectively, with output vectors x” =(x/,...,x;,, ) and
¥ =(¥),...,y5, ) respectively. Let, wj =(wj,,wj,,...,w},,, ) denote the j™ ARTa
weight vector.

Similarly, the F? and F? output vectors are denoted by x” =(x,...,;,,) and

Y’ =(F,..., %, ) respectively, and wj = (w}, ,Wi2,.--; Wiy, ) denotes the k™ ARTD
weight vector.

The map field is denoted by F* with output vector x* = (x/*,...,x7’ ) and weight
vector w® = (W%, wp,...,wsy, ) for the j*  F node to F*.

fae

Activity vectors are reset to zero between data presentations.



3.1. Map field activation
Map field activation is governed by both F;’ and F} activity in the following way:

(y* Aw® if the J* F; node is active and F,’ is active,

. w? if the J* F,' node is active and F, is inactive, @
y’ if F; is inactive and F,’ is active,
0 if Fy isinactive and F, is inactive.

The four cases will be considered in order below.
i) F active and F; active:

This corresponds to a pattern pair (I,,1,) being present. I, elicits an ARTa category
selection with, say, the J* E; node winning the competition. This index, J will
correspond to a weight vector, w5’ in the map field which links the F}’ node with a
predicted F layer activation. This predicted F’ node represents the ARTb category
associated with the presently active ARTa category.

Simultaneously, the ARTb input, I, has excited a category represented by the F
output y* =(...,0,1,0,...) with a 1 in the k" position indicating node k is active.

The fuzzy AND operation, y* Aw? ensures that the map field activity is non-zero only
if the predicted and actual ARTb categories coincide (the kth category being predicted
by ARTa) or if node J is uncommitted; all components of w7 being equal to unity in
the latter case.

ii) F; active and F, inactive.

This corresponds to prediction with w*? representing the ARTb category associated
with the currently active ARTa category. Heteroassociative mapping is achieved by
working backwards within the ARTb module; the fuzzy ARTb weight vector
associated with the predicted F,’ node represents the expectation template fed down
from F? to F?; this corresponds to the current exemplar for that ARTb category and,
thus, the predicted output.

i) F7 inactive and F; active.

In this case only an ARTb input is present; thus, the map field activation represents the
active ARTb category via the one-to-one relationship between the map field and
ARTb.

iv) The final case represents the network in a quiescent state with no inputs impinging
upon it.



3.2. Match tracking

The concept of vigilance is extended in fuzzy ARTMAP by allowing the ARTa
vigilance parameter, p, to vary whilst the ARTDb vigilance parameter is fixed for a
given training cycle. When an input is first presented, p, is set to its baseline value,p, .

The map field vigilance parameter, p, governs matching between ARTa and ARTb
x|
Iv
results in an incorrect prediction, a mismatch occurs which sets off match tracking
I Aw)

IL|
of the J* F” node. Then the ARTa search cycle is carried out once more to select a
new ARTa category which correctly predicts the current ARTb category. One of three
conditions must occur to end the match tracking cycle: a matching ARTa category is
selected from those already learned by ARTa, a new category is created (during
training) or the condition p, > 1 occurs which leads to shutdown of F;’ until a new
ARTa input becomes active.

categories through the condition {— 2 p_,. If this is not fulfilled, i.e. the ARTa category

activity. This consists in increasing p, such that p, > to prevent reselection

3.3. Pattern pair association

Pattern pairs are associated via their compressed representations or category nodes.
LTM information regarding inter-module F, node linkages is stored in the map field

weight matrix which assigns a vector to each ARTa node reflecting the associated
ARTD node.

Initially, w2(0)=1, Vj=1,..,N,, Vk=1..,N,.

When resonance occurs, in which the J”* ARTa category becomes active, w? is set
equal to x*.

A clearer idea of heteroassociative learning and prediction under FCSR is gained by
considering the operation of fuzzy ARTMAP when presented with a previously unseen
pattern pair which does not belong to any of the current categories. The pattern pair
(1,,I,) causes new categories J and K to be created in ARTa and ARTb respectively.

The map field activation is given by x® = y* A w7 =y* (K"vector entry =1 only)

as the J” ARTa node is uncommitted (all entries =1). Map field learning requires
w¥™ = x*® which gives w =y’

If I_ is presented alone, the J* ARTa node is selected which predicts the X ARTb
category through the J" map field weight vector.

10



4. PROBART

PROBART is the result of modifications to the fuzzy ARTMAP system motivated by
empirical findings to determine the operational characteristics of fuzzy ARTMAP
under certain conditions; a comparative analysis of fuzzy ARTMAP and PROBART
operation is presented below. First, the fuzzy ARTMAP modifications incorporated
into PROBART are described together with a description of its operation.

As with fuzzy ARTMAP, PROBART uses a pair of fuzzy ART modules linked by a
map field; this is where the similarity ends owing to different map field dynamics. The
inputs are again accepted in complement coded form. The notation introduced above
in the sections describing fuzzy ARTMAP is retained in the description of PROBART
Exceptions are described where appropriate.

4.1. Map field activation
In PROBART equation (4) is replaced by

[y +w? if the J* F? node s active and F is active,
w_ W7 if the J” F;" node is active and F is inactive,
g y’ if F;" isinactive and F; is active,
0 if F;" is inactive and F; is inactive.

in which the fuzzy AND operation (A) is replaced by vector addition (+). As will
become apparent, this allows the nodal association frequency counts maintained in
LTM to be incremented.

Before interpreting equation (5) it is important to realise that the map field weight
matrix now contains information about the frequency with which pairs of ARTa and
ARTD categories are associated e.g. w;‘f = f, Jf €N, where N is the set of natural

numbers. This indicates that the j” ARTa node has been associated with the k” ARTb
node f times during the training phase.

Initial map field weight values are given by
we(0)=0 VYj=1..N, Vk=1..N,

The four cases of equation (5) are analogous to those given in equation (4) .

i) F active and F; active:

As with fuzzy ARTMAP, the pattern pair (I,,1,) results in selection of the J* ARTa
category and the K™ ARTD category. The vector y” is, again, a unit vector with the
K" entry equal to one. The vector x* now represents the updated frequency
distribution of node associations between the J* ARTa node and nodes in the ARTb
F; layer; the map field weight matrix entry w’, being incremented by one, reflecting
the new association.

ii) F active and F, inactive.

11



Analogous to fuzzy ARTMAP, this corresponds to prediction but care has to be taken
to determine in which sense the prediction is made. The implementation of PROBART
discussed in this paper uses a weighted average given by

Ze w2 m=1,...,2M, (6)
IwJ ws] =
where 1, is the expected value (mean) of the m” component of the predicted output
pattern associated with the J* ARTa node, |wj"| is the total number of associations of

ARTb nodes with the J* ARTa node, €, is the m" component of the n” ARTb
category exemplar and w?, is the frequency of association between the n™ ARTb node

and the J* ARTa node. Other possible prediction measures can be used. These
include: choosing the exemplar with the highest frequency, giving relative association
frequency information, and using alternative higher order moments. The predicted
ARTD output vector is denoted by |, = (K ;,.-,H 0, )-

Note that only the first A, components which are not complement coded are

meaningful and correspond to the original pattern pair data, with b=p , being an
estimate of the true output b associated with input pattern a.

Nb
Equation (6) can also be written as |, = Z B P

m=1

where p,, is the empirically estimated probability of association between the J” ARTa

node and the n” ARTb node given by p,, I abl

Conditions iii) and iv) are identical to those in fuzzy ARTMAP.

4.2. Learning

As with fuzzy ARTMAP w5™ =x but note that there is now no match tracking.
The ARTa vigilance parameter, p,, is held constant to maintain fixed category sizes.
This is to prevent corruption of frequency information as will become apparent from
the fuzzy ARTMAP and PROBART comparisons discussed below. Thus, during
training, supervised associations are not judged to be correct or incorrect but recorded
as they occur. More frequent associations are more heavily weighted in prediction
mode. Note that the map field vigilance parameter,p,, is not required for PROBART.

Although not investigated below, as with fuzzy ARTMAP, it is possible for
PROBART to be operated in an on-line mode and in a non-stationary information
environment. In the latter case, node association frequencies would change
concomitantly with changes in underlying trends.

12



5. The mapping task

A continuous non-linear signal was used for comparison of fuzzy ARTMAP and
PROBART performance:

f[0,1]cR —>[0,1]cR with,

£ (x)=(sin(10x) +sin(20x) + sin(30x) + sin(40x) + sin(50x) +sin(60x) + sin(70x) +10) / 20,
and x in radians. See Figure 3.

0.8

0.6}

Settenase

tenasensaenss.

0.4

0.2F

. L i N L "
0 02 0.4 06 08 1

Figure 3. Noise-free test signal.

The range of the test function /. R — R is [0.2295, 0.7705] for the input domain
[0,1]. Gaussian noise, derived from a zero mean source with unit variance, is added to
the signal with a scale factor of 0.02. Thus, the corrupted output signal for pattern
pair p is given by y, =y(p) = S (x,)+0.02¢ ,, where €, ~ N(0,1) is the Gaussian
noise, for the pth pattern pair and x, is the x-coordinate of this pair. The x-
coordinates were randomly chosen from a uniformly distributed source.

The training and testing files were generated with different sets of x-coordinates unless

otherwise stated The testing sets being noise-free coordinates, or pattern pairs,
(x,,y,) chosen at random from the test curve, f(x).

For all experiments the choice parameter, o = 0.001 and the learning mode chosen was
FCFR unless otherwise stated.

5.1, Performance measures

Performance is judged by both the root mean square error (RMSE) and maximum
absolute error (MAXAE) measures. The RMSE value is computed by

RMSE = %iud, -v|

p=l

where d, is the desired output for pattern p, y, is the actual output and N is the
number of patterns used for training or testing.

13



In the following tables, TR denotes the noisy training set, TE(NF) denotes the noise-
free test set using the same x-coordinates as the noisy training set, and TE denotes the
noise-free test set selected using a different x-coordinate sample. The purpose of TE is
to test the generalisation of the mapping.

Mean results are based upon a sample size of 5 RMSE or MAXAE values from
separate runs which are averaged to give an indication of performance. Maximum and
minimum values are included to indicate the range of variation between runs.

As a further illustration of network performance, the error profile is plotted below the
actual network output signal. RMSE and MAXAE error measures alone are very
coarse indicators of network performance, especially when applied over the whole
curve. Error profiles provide more detailed information in a visual form

For the simulations described below, a more comprehensive set of results will be found
in Appendix A.

Simulation 1

Fuzzy ARTMAP was trained on both noise-free and noisy data. Its parameters were
set as follows: o0 =0.001,p, =0.99,p, =0.99 and p_, =0.9. Both the training and test
sets consisted of 1,000 data pairs.

For the training signal without noise:

ical results:
Categories.
ARTa ARTb | RMSE MAXAE
312 33 0.0074 0.01

For the typical results, only a single training epoch was required for fuzzy ARTMAP
to acquire an internal representation of the test mapping signal with the RMSE ranging
between approximately 1% of the input signal at its maximum point to approximately
3% at its minimum point. This is shown in Figure 4.
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Figure 4. Fuzzy ARTMAP performance with noise-free data.

Note the uniformity of the error profile which attains an absolute maximum range of
only 4.4% to 1.3% of the test signal at its maximum and minimum points respectively.

The effect of match-tracking on the fuzzy ARTa module is immediately apparent from
the distribution of category numbers between the two modules in Table 1. Taking the
ratio of the total input signal range (1.0) to the total output signal range (0.541)
predicts a category ratio of approximately 2:1 for the ARTa and ARTb modules
respectively. This ratio assumes that both modules have the same vigilance parameters
and, hence, the same input resolution or category sizes. At the beginning of each
training pattern pair presentation the condition p, = p, is fulfilled. For the typical
results of Table 1, match-tracking has increased the ratio to about 6:1 by reducing
category sizes through increased vigilance in order to resolve sub-categories. Data
compression of approximately 3.3 data points per category node is achieved.

For the training signal with noise:

le 2. Typical I
Categories RMSE MAXAE
ARTa ARTb | TR TENNF) | TE TR TE(NF) | TE
806 61 0.0137 |0.0302 |0.0302 | 0.0878 ] 0.0678 | 0.0679

When fuzzy ARTMAP is trained with the same typical input signal as above but
distorted by noise, two training epochs are required to obtain the lowest training
RMSE value. Both training epochs consist of presenting the pattern pairs and
adjusting the network weights after each individual presentation on the basis of
erroneous predictions. A single training epoch requires that the whole training file be
processed in this way. Following training, the training file is used purely as a test file
(with the learning mode disabled) to assess the current learning progress. The
disabling action prevents further learning from taking during testing. The typical
results are illustrated in figure 5.
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Figure 5. Fuzzy ARTMAP performance with noisy data.

The error profile, coupled with the number of ARTa categories, indicates that each
disturbance is being faithfully recorded on an almost individual basis. Its
characteristics do not vary across the input domain. Thus, it appears that the source of
error has not been effectively filtered or altered.

FCFR results (B =1) are quoted as both the RMSE and MAXAE measures did not
vary greatly for various values of B in the range 0.1 to 1. Variation of B, using FCSR,
did not appear to effect noise suppression through equation (3) with the maximum
measured difference between training RMSE values for this data set being
approximately 4% of the lowest value. This apparent insensitivity to B was
consistently observed and was the result of the high vigilance values confining
categories within narrow ranges. This situation is depicted graphically in Figure 6.
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Figure 6. Plot of RMSE against  for two different runs with p, =p, =0.99
illustrating the lack of effectiveness of P in reducing noise.

Note the significant increase, when comparing Tables 1 and 2, in the number of ARTa
categories required to represent the noisy mapping while the number of ARTb
categories did not increase unduly The latter increase reflects an extended ARTb input
range as a consequence of noise. The large number of ARTa categories did not reduce
when B was varied using FCSR. The mean ratio of approximately 1.25 data points per
ARTa category (Appendix A. Table Al.4) indicates that fuzzy ARTMAP appears to
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be learning the noisy signal in contrast with the underlying mapping. This observation
is further confirmed by the RMSE results for the training data set, with the mean noise-
free testing RMSE value (TE(NF)) being greater than twice that of the mean noisy
training RMSE (TR) (Appendix. Table A1.4) after training fuzzy ARTMAP on noisy
data.

However, this example must not be taken to indicate poor performance by the network
in general. The data here is highly disorganised, having no clusters, while fuzzy
ARTMAP performs best with clustered data. Match tracking allows sub-clusters to be
resolved in classification problems by varying the ARTa vigilance parameter during
learning, but this enhanced performance mechanism becomes a disadvantage in highly
disorganised data sets such as those used here. To understand the operation of match
tracking under these circumstances, refer to Figure 7(a) where, for clustered data, the
category delimited by p,, maps to an ARTa node and via the map field to, say, ARTb
category 1 (class 1). If data is found within the ARTa node category which does not
map to category 1, match tracking increases ARTa vigilance to p;, > P, which leads
to the activation or formation of a sub-category capable of being associated with
ARTD category 2. This mechanism is suited to classification problems. Thus, sub-
categories are formed which allow learning of infrequent but perhaps significant

features which may be ignored or averaged out by other architectures including
PROBART.

(a) Clustered data (classification). (b) Unclustered data (Estimation).
T Output
g Class 1 P
o Class 2.
..... @ .- ARTb F2 nodes.
. ¥4
via
map fiel
.......... ARTa F2 nodes. g
? ) ARTa F2 nodes.
-I"U'D'U-|'0°°'°+D'D—D‘l—>lnput } . } & Input
P space. 5 x X x+3 x Space.
< Pa 2

Figure 7. Comparison of classification and estimation modes.

With unclustered data deviations in ARTD values are treated as novel features and new
ARTa sub-categories are created individually to encompass many of the data points
(see Figure 7(b)). Thus, a small subset of the input space may be mapped to a larger
range of output space determined by the noise which is treated as a multitude of
predicted output classes. Ideally, the range of output space would be transformed to
provide an estimated output which the given input range x+ dr would map to, but this
does not happen. In other words, fuzzy ARTMAP does not map an input belonging to
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the 8 —neighbourhood of x to an estimate y,. It creates a sub-category for such
inputs and individually maps them to the noisy outputs with which they are associated
during training.

Simulation 2

PROBART was trained on the same sets of noisy and noise-free data used in
simulation 1. The parameters: o =0.001,p, =0.99,p, =0.99 are set identically to
those in the previous experiment wherever possible. The map field vigilance does not
exist in PROBART as match tracking has been removed.

For the training signal without noise:

Table 3. Typical results
Categories.
ARTa | ARTb | RMSE MAXAE
110 53 0.0169 0.0755

Figure 8 illustrates the performance of PROBART with noise-free data after a single
epoch (typical results).
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Figure 8. PROBART performance with noise-free data.

Note the different error profile when Figure 8 is compared with Figure 4. The former
is not uniform, exhibits structural properties and is considerably larger in magnitude at
some points, notably where large increases in signal slope occur. As will become
apparent, this is a consequence of the trade-off between plasticity and stability. When
match tracking is removed, sensitivity to rapidly fluctuating noise signals is greatly
reduced as ARTa sub-categories are not created to represent the noisy associations.
However, this fixed quantization of the input domain leads to inaccuracies in signal
representation. The relative importance of these inaccuracies, compared to overall
noise reduction with noisy signals and increased generalisation, depends upon the
application.
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For the training signal with noise:

_Table 4 Tvpical results:
Categories RMSE MAXAE
ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE
112 61 0.0322 | 0.0189 |0.0202 |0.1057 | 0.0769 | 0.0905

Figure 9 shows the typical results of this simulation after a single epoch.

0.8t

061

ARTH output,

0.2

T TN e -

- .
-
"=

- - ~-
B Y

(=]
T

02t 1

i

0 0.2 0

4 0.6 08 1
ARTa input.

Figure 9. PROBART performance with noisy data.

Fast learn results are, again, quoted with only a 5% maximum variation from the
lowest training RMSE value for 0.1<B<1.

The predicted category ratio of 2:1 for the number of ARTa nodes compared to the
number of ARTb nodes is reflected in both Table 3 and Table 4. Again, the increase in
ARTD nodes is a consequence of output range extension by the additive Gaussian
noise.

The mean ratio of 9.0 data points per ARTa category indicates that PROBART uses a
coarser partitioning of the input space than that generated by fuzzy ARTMAP to
represent the function/mapping domain. This reduction in categories results from the
use of a fixed ARTa vigilance which, unlike fuzzy ARTMAP, does not allow
subdivision of existing categories. In mapping problems this data compression is
desirable to prevent the network from degenerating into a 'look-up' table and, thus,
being incapable of generalisation.

Observe in Table A2 4. of Appendix A that the mean noise-free test RMSE value
(TE(NF))is lower than the mean noisy training RMSE value (TR) (both sets of data
used as test data following training with noisy data). As expected, this indicates that
the opposite effect to that observed in fuzzy ARTMAP simulations is taking place.
PROBART tends to learn the underlying signal which is, of course, the objective of
this work.
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The larger mean RMSE of PROBART (Table A2.1. in Appendix A) for the noise-free
training/testing data set compared to that exhibited by fuzzy ARTMAP(Table Al.1. in
Appendix A) results from the fixed vigilance which limits the input domain
partitioning. The reduction in resolution in rapidly changing signal regions (increasing
gradient) is apparent from Figures 8 and 9 both in the actual output signals and the
error profiles. Thus, prediction errors are increased in those subsets of the input
domain where small ARTa inter-category distances give rise to larger ARTb inter-
category distances in the function range. These errors, unrelated to noise, account for
a sizeable proportion of the RMSE value in PROBART simulations trained with a
noisy data set.

Comparison of Tables A2.4 and A1.4 in Appendix A reveals that PROBART reduces
the mean RMSE value for the noise-free test set to 67% of the value for fuzzy
ARTMAP. This gain in performance is considerably enhanced when comparing the
number of ARTa categories generated by both systems. PROBART has achieved
generalisation, using approximately one seventh of the number of ARTa category
nodes required by fuzzy ARTMAP.

To investigate the gradient/error relationship further, an experiment was performed
using a straight line as the training function, where the gradient was varied in the range
1-10 for a fixed vigilance of 0.99 at fixed intercepts The results of a single experiment
consisting of 5 runs of the same noise-free training file using different gradients is
shown in Figure 10. The test file used was identical to the training file to eliminate the
introduction of errors related to the use of different x-coordinate values.

Gradient

Figure 10. Plot of maximum absolute error vs. gradient.

Note the linear relationship between the maximum absolute error and the gradient
confirming that, as expected, rapidly changing signal regions decrease predictive
accuracy. This linearity was consistently observed. Thus, signal quantization,
resulting from the use of fixed vigilance parameters, introduces inaccuracies which can
only be removed by increasing system vigilance to provide finer coverage of the input
(stimulus) space and output (response) space. Reduction of the quantization interval
size is used to compensate for the removal of match-tracking. The effect of increasing
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both the ARTa and ARTDb vigilance parameters to increase signal resolution was
investigated in the following simulations.

Simulation 3

PROBART was trained using the same noise-free data and value of o but with
increased vigilance parameters: p, =0.999,p, =0.999.

Again, the test file was identical to the noise-free training file and consisted of 1,000
coordinate pairs.

ical results:
Categories.
ARTa | ARTb | RMSE MAXAE
499 243 0.0016 0.0084

The results are illustrated in Figure 11.
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Figure 11. PROBART performance with noise-free data and increased vigilance

Note the improvement in the error profile over that of Figure 8. Disturbances in the
profile in areas of rapid signal change have been greatly reduced.

Compared with the mean noise-free results of simulation 2 (Appendix A, Table A2.1),
both the ARTa and the ARTb modules have shown an approximately five-fold increase
in the mean number of category nodes (Appendix A, Table A3.1). These increases are
reflected in the reduction of both mean error measures to about 10% of the previous
values. Thus, the signal has been represented more accurately but at the expense of an
increase in overall network size. Again, varying B made very little difference,
producing less than 10% maximum variation in the range of RMSE values for the
typical results quoted.

However, the benefits of simply increasing input/output space resolution are not
realised when noisy training data is used as the following simulation illustrates.
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Simulation 4

PROBART was trained with the noisy data set used previously in simulations 1 and 2
with parameters set as for simulation 3.

_Table 6 Typical results:

Categories RMSE MAXAE

ARTa | ARTb | TR TE(NF) | TE TR TE(NF) | TE
504 277 0.0208 ]0.0196 |0.0192 |0.0527 |0.0544 | 0.0545

Results of a typical run are illustrated in Figure 12.
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Figure 12. PROBART performance with noisy data and increased vigilance.

The error profile bears some similarity to that of Figure 5 and reflects the increased
vigilance leading to reduced category sizes and poorer generalisation.

Comparing the mean results (Appendix A, Table A4.1) with the second mean set of
simulation 2 (Appendix A, Table A2 .4), it is apparent that a five-fold increase in the
number of ARTa nodes has resulted in a 40% decrease in training RMSE (TR) and
negligible change in both testing RMSE values. The mean MAXAE has been reduced
in all three cases with a 50% reduction in mean training error (TR). Thus, although
the testing RMSE values, TE(NF) and TE, are comparable, comparison of Figures 9
and 12 gives a clearer indication of what is happening.

This altered performance is explained by considering the ratio of approximately 2 data
points per ARTa node which gives small samples for averaging to give an estimated
output value. Thus, estimates are based on smaller sample sizes and are
correspondingly less accurate.

Simulation §

Increasing the number of training data points to 10,000 and using similar parameters
gives the following results:
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Table 7. Typical results

Categories RMSE MAXAE
ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE
1145 618 0.0265 | 0.0096 |0.0114 | 0.0785 | 0.0255 | 0.0472

Note that the mean RMSE value for the test set (TE) (Appendix A, Table 4.4) after
training on a noisy data file of 10,000 points has been reduced to about 56% of its
previous value for 1,000 data points (Appendix A, Table 4.1). There is also an
additional two-fold increase in ARTa category nodes. This latter increase is explained
by the increased number of uniformly distributed x-coordinates causing the packing
density of ARTa nodes to rise, restricted only by the vigilance parameter.

The following graph, Figure 13, illustrates the variation in test RMSE for ARTa and
ARTD Vigilance in the range 0.99-0.999 for the typical data set used throughout. The
general trend appears to indicate a reduction in RMSE for increased vigilance as
expected.
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Figure 13. Plot of test (TE) RMSE vs. vigilance for the typical data mentioned above.

The upturn for a vigilance value of 0.999 further confirms the hypothesis that high
vigilance values lead to smaller sample sizes and, thus, less accurate estimates of
output values. There is a fundamental conflict between providing an adequate
partitioning of the ARTa input space and adequate sample sizes for calculating the
expected output value

Figure 14 illustrates the effect of increasing the size of the noisy training file for the
typical data.
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Figure 14. PROBART performance when trained on 10,000 point noisy data file.
For p, =p, =0.998, the following results were obtained:

Table 8 Typical results,

Categories RMSE MAXAE
ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE
608 341 0.0276 | 0.0079 |0.0084 |0.0779 | 0.0219 | 0.0269

Which gives a further reduction of the test set RMSE (TE)over and above the typical
value obtained in simulation 5 to 44% of that obtained with a 1,000 point training file

(Table 6).
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Figure 15 Plot of RMSE value against increasing data set size for a fixed vigilance.

Figure 15 illustrates the stability of RMSE values for increasing training data size. The
slight improvement for the larger amounts of data is explained by the increased cover
density of the input and output spaces by exemplars and their category zones.

Changes in RMSE values are directly affected by changes in the vigilance parameters.
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Increasing the amount of data only serves to pack the existing categories and create
new categories limited by the vigilance values.

6. General discussion

Both fuzzy ARTMAP and PROBART perform effectively with noise-free data,
requiring only one pass through the training file ( one epoch) for optimum learning in
the RMSE sense (lowest error energy). In contrast with fuzzy ARTMAP, PROBART
carries out a single epoch for all training and testing as match-tracking has been
removed. This prevents distortion of the computed probabilities (frequency count/
total pattern pairs). For example, for a fixed vigilance, an output, y, has the
conditional probability given the interval I, of p(y,!1, ) for an interval /, based
around an exemplar x,. Were the interval partitioned into two sub-intervals I, and
I, , by increasing vigilance (formation of a sub-category), there is no method of
allocating the current frequency count based upon interval I, tointervals I, and I,
individually. Thus, p(y!1, ) and p(y,ll,u) cannot be derived from pyl1, ). Also,

feedback via match tracking alters the frequency of inter-ART node associations by
assessing current inputs on the basis of previous data and not by recording raw
frequencies. This situation cannot reflect a true empirical frequency distribution upon
which the estimated outputs or pattern association probabilities are based.

Fuzzy ARTMAP extremely good at classification problems but match tracking tends to
cause the allocation of many nodes for noisy mappings with the noisy disturbances
seen as novel features. The dynamics expressed in equation (3) do not act as an
effective filter at high vigilance levels (2 0.9) using FCSR. This is a consequence of
LTM exemplar weights being very near to the noisy input values which fall into their
categories. The convex combination of equation (7) gives LTM weight values close to
the original exemplar values.

It is difficult to classify neural networks as good or bad on the basis of raw results
alone. Overall performance also depends upon the problem to which the network or
algonithm is applied. Another factor is the degree of specialisation of the network.
Enhanced performance is often obtained at the expense of decreasing generality, i.e.
the architecture moves away from being general purpose and becomes oriented
towards a particular problem or problem schema. This specialisation frequently
requires the incorporation of a priori information or structure into the neural network
and its dynamics and, thus, restricts its range of applicability.

To a certain extent, PROBART is a trade-off between performance and generality in
that better performance could no doubt be obtained using a more specialised network
architecture but it does not require a priori information about the mapping to be
learned.

Given that PROBART deviates significantly from fuzzy ARTMAP, it begs the
question why use fuzzy ARTMAP at all? The answer lies in the known attractive
properties of ART, in particular, their stability. Other clustering algorithms based, say,
on Euclidean distance are known to have stability problems under some circumstances.
Moore (1989) cites the Cluster Euclidean algorithm which chooses the node coding
for the nearest exemplar to the input vector in the Euclidean distance sense.
Incorporating equation (7) to give the Cluster Unidirectional algorithm (Moore, 1989)
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removes the endless cycling of weight vectors but suffers from the category
proliferation problem countered by the use of complement coding in fuzzy ART.

7. Multidimensional mappings

As stated in the introduction, fuzzy ARTMAP is capable of mapping subsets of R” to
R”. PROBART is also capable of such mappings. A visual illustration of this

capability is included here in the form of a continuous non-linear mapping from R* to
R which is shown in Figure 16.
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Figure 16. Non-linear test signal [0,1]’ € R* —=[0,1]e K.

Again, Gaussian noise, derived from a zero mean source with unit variance, is added to
the signal with a scale factor of 0.02. Conditions and performance measures are
similar to those used in the previous single variable mapping but are generalised for the
present multivariable mapping.

Simulation 6

Fuzzy ARTMAP was trained on noisy data. Its parameters were set as follows:
a=0.001,p, =0.99,p, =0.99 and p,, =0.9. Both the training and test sets consisted
of 1,000 data pairs.

For the training signal with noise:

_Jable 9. Typical results.

| Categories RMSE MAXAE
ARTa |ARTb | TR TE(NF) | TE TR TE(NF) | TE
955 63 0.0075 - 0.0235 | 0.01 - 0.077
The network output and error profile are shown in Figures 17(a) and 17(b)
respectively.
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Figure 17(a). Fuzzy ARTMAP output for the noisy non-linear signal with training and
testing files consisting of 1,000 data points.

ARTD output.
o
»
i

o
n
i

o
i

5

ARTa input2.

ARTa input1.
Figure 17(b). Error profile for the above simulation.

Fuzzy ARTMAP requires almost one node per data item. Thus, it acts as a look-up
table by storing and retrieving individual pattern pairs. The error profile reproduces
the original errors almost faithfully as nearly all individual errors are recorded. It is
also apparent from Table 9, as with the single variable examples, fuzzy ARTMAP has
learnt the noisy signal.

Changing the learning parameter, B made very little difference. Using values of 0.5
and 0.9 gave testing RMSE values of 0.0236 and 0.0235 respectively. The numbers of
ARTa categories were 955 and 950 respectively. The high vigilance parameters for
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ARTa and ARTD prevented the occurrence of large changes in RMSE values during

training.

Increasing the number of training data points to 5,000 and using similar parameters
(FCFR) gives the following results:

Simulation 7

_Table 10. Typical Results.
Categories RMSE MAXAE
ARTa | ARTb | TR TE(NF) | TE TR TE(NF) | TE
4528 101 0.0076 - 0.0307 | 0.01 - 0.0743

These results are illustrated in Figures 18(a) and 18(b).
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Figure 18(a). Fuzzy ARTMAP output for noisy non-linear signal when trained on
5,000 data points. Test set remains at 1,000 data points.
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Figure 18(b). Error profile for the 5,000 data point run.

Note the number of ARTa categories which indicate that, as expected, little
generalisation has occurred.
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Simulation 8

PROBART was trained on the same sets of noisy and noise-free data used in
simulation 6. The parameters are set identically to those in that simulation except for
the map field vigilance which is not required.

For the training signal with noise:

_Table 11, Tvpical results,
Categories RMSE MAXAE
ARTa_ | ARTb | TR TE(NF) | TE TR TE(NF) | TE
739 63 0.0163 - 0.0196 | 0.0497 - 0.0775

These results are illustrated in Figures 19(a) and 19(b).

ARTD output.

ARTa input2. ARTa input1.

Figure 19(a). PROBART output for noisy non-linear signal. Training and testing files
both consisted of 1,000 data points.
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Figure 19(b). Error profile for PROBART run illustrated in Figure 19(a).

29



Note that, compared to simulation 6, approximately 23% fewer ARTa nodes are
required to represent the mapping for a comparable value of testing RMSE.

The following simulation illustrates further reductions in the number ofARTa nodes for
PROBART relative to fuzzy ARTMAP.

Simulation 9

Table 12 Typical Results.

Categories RMSE MAXAE
ARTa | ARTb | TR TE(NF) | TE TR TE(NF) | TE
2283 101 0.0232 - 0.0216 | 0.065 - 0.067

These results are illustrated in Figures 20(a) and 20(b).

ARTb output.

ARTa input2. ARTa input1.

Figure 20(a). PROBART output for noisy non-linear signal when trained on 5,000
data points. Test set remains at 1,000 data points.
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Figure 20(b). Error profile for the 5,000 data point run.
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Comparing Table 12 with Table 10 shows a reduction of approximately 50% in the
number of ARTa nodes required to represent the mapping. This reduction is not at the
expense of testing RMSE (TE) which has been reduced by 30%. This indicates the
improved performance offered by PROBART when dealing with larger data sets.

8. Conclusions

It goes without saying that some neural networks do better at certain tasks than others.
Often, a specialised network will outperform its more general counterpart but suffers
from the disadvantage of requiring a priori information pertaining to the learning task.
Thus, autonomy is reduced as operator knowledge is built into the network to guide
learning. ART-based systems are self-organising and so reduce the need for
intervention. They exhibit attractive properties such as the ability to operate in non-
stationary environments and to learn continuously new associations following training,
without disrupting previous learning. However, the independence of nodes, as in fuzzy
ARTMAP, leads to over learning and reduced generalisation as noisy associations are
treated as novel associations in noisy mapping problems The mechanism of match-
tracking which allows sub-categories to be resolved in classification problems causes
categories to proliferate when noisy mapping approximations are carried out.
PROBART goes some way to rectifying this by using probability information,
combined from various nodes, to estimate output values.

The benefits of using PROBART when dealing with noisy mappings include a
reduction in RMSE values, an improved error profile, a sizeable reduction in the
number of ARTa category nodes and increased generalisation.
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Appendix A

Simulation 1

Fuzzy ARTMAP trained with a noise-free training signal:

Table ALl Mean results.
ARTa ARTb RMSE MAXAE
298 52 0.0074 0.01
Table A1.2 Worst case results:
RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0076 3.31% - 0.99% 0.01 4.36% - 1.3%
Table A1.3 Best case results:
RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0073 3.18% - 0.95% 0.01 4.36% - 1.3%
Training signal distorted by noise:
| 4 results:
Categories RMSE MAXAE
ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE
798 62 0.0131 0.291 0.293 0.0871 0.0717 | 0.0679
_Table Al,S, Worst case results.
RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0304 13.25% - 3.95% 0.0698 30.41% - 9.06%
JTable A1.6 Best case results.
RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0278 12.11% - 3.61% 0.0648 28.24% - 8.41%

Simulation 2

PROBART trained with a noise-free training signal

Table A2.1.Mean results:
ARTa ARTD RMSE MAXAE
113 53 0.0175 0.0783
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Table A2.2. Worst case results,

RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0185 8.06% - 2.4% 0.085 37.04% - 11.03%
Table A2.3 Best case results:

RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0169 7.36% - 2.19% 0.0729 31.76% - 9.46%
For the training signal distorted by noise:

Table A2.4 Mean results:

Categories RMSE MAXAE

ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE
111 62 0.0316 | 0.195 0.0206 |0.1005 | 0.0815 | 0.0839
Table A2.5. Wor results:

RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0228 9.93% - 2.96% 0.0974 42.44% - 12.64%
Jable A2 6. Best case results:

RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0196 8.54% - 2.54% 0.0729 31.76% - 9.46%

Simulation 3

PROBART trained with noise-free data and increased vigilance.

Table A3.1. Mean results:

ARTa | ARTb | RMSE MAXAE

509 243 0.0015 0.0073
Table A3.2 Worst case results,
RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0016 0.7% - 0.21% 0.0084 3.66% - 1.09%
Table A3.3 Best case results:
RMSE (TE) | Error range. MAXAE (TE) | Error range.
0.0015 0.65% - 0.19% 0.0061 2.65% - 0.79%
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Simulation 4
PROBART trained with noisy data and increased vigilance.
Table A4.1 Mean results.

Categories RMSE MAXAE

ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE

513 279 0.0193 | 0.0199 |[0.0197 |0.0541 | 0.057 0.0566

Table A42. Worst case results:

RMSE (TE) | Error range. MAXAE (TE) | Error range.

0.0206 8.98% -2.67% 0.0648 28.24% - 8.41%

Table A4.3 Best case results.

RMSE (TE) | Error range. MAXAE (TE) | Error range.

0.0189 8.23% -2.45% 0.0498 21.7% - 6.46%

Table A4.4 Mean results:

Categories RMSE MAXAE

ARTa ARTb TR TE(NF) | TE TR TE(NF) | TE
{1131 620 0.0265 | 0.0089 | 0.011 0.0814 | 0.0225 | 0.0426

Table A4 5 Worst case results:

RMSE (TE) | Error range. MAXAE (TE) | Error range.

00117 5.1% -1.52% 0.0472 20.57% - 6.13%

Table A4.6, Best case results:

RMSE (TE) | Error range. MAXAE (TE) | Error range.

0.0103 4.49% - 1.52% 0.0388 16.91% - 5.04%
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Appendix B

This appendix illustrates the proliferation of categories by fuzzy ARTMAP on the real
line when complement coding is not applied. This derivation differs from that given in
Carpenter et al (1991b) by applying real analysis to adjacent categories to establish
choice regions and category movement rather than the geometric interpretation.
Carpenter et al (1992) gives a geometric interpretation of the effect of complement
coding in reducing the proliferation of categories.

Let w,_, and w, denote the exemplars for nodes s-1 and s respectively where
w

_1»wW, €[0,1] c R. Without loss of generality, assume

0w, <w, <1 (A1)
and that for all inputs, I considered here

w,_, <I<w, (A2)

for some s—1,se€ N. See Figure Al.

-
L

& W,
1 |
T ]

Figure A1. Two adjacent categories in the real line.
Any input, I, can be parameterised in the range
IA)=w_ +A(w,—w,) (A3)
where 0 <A <1. Henceforth, /(A) will be denoted by I .

In this case, the choice function of equation (1) gives

wx—l

T (I)= 4
:—1( ) a+w,-l (A )
and,

w_ +A(w. —w,_ )
T - =1 5 1 !
(=== (AS)

Consider the effect of the parameter A. Three cases naturally arise, viz:-
)L =0,

A =1,

)0 <A <L
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For A =0, from equation (A3), I =w,_,, and from equation (A5) T,(I) = E%L'
W

5

w.r—l

Alsos 1:—1(1) =
o+

by equation (A4).

5-1

Now, from equation (A1), w, >w,_, which implies that T,_, (/) > T,(/), and node s-1
wins as expected.

w.l'

el and T,(1) = ——
o+w, a+w

5=l z

ForA=1,I=w, T, (I)=

So, by the monotonic property of T(1), w,(I)>w,_ (I) gives T,(I)>T,_,(I)

and node s wins as expected.

For 0 <A <1 a question naturally arises as to where the decision boundary for adjacent

exemplars is.

= w.r—] +l(ws - ws—l)
o+w,

Equating T,_, (/) and T,(I) gives a:)H and solving for A gives
W

=1

W
: A6
a+w,_, (A6)

A, =

where A, is the boundary value of A.

Thus, A, is slightly less than one and depends upon .. This means that all inputs in the

range given by equation (A2) map to node s-1 unless they are within a small distance
of node s. This is proved in the following theorem:

Theorem:

VI suchthat w_, <I<w_ +A,(w,—-w_),w,_ >0,
where A, is given by equation (A6), I

maps to the s-1 th category.

Proof:

Let A=y, 0<y<l,

ie. 0<A <A,, as required, so that,

ws—]

T .(I)= 2

:-l( ) 01+w,_1

and,

Ty =2t e (W~ o)

a+w,
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Now,

w,>w, .

Multiplication of both sides by (1-7) and further application of the algebra of
inequalities leads to,

w,_ (@+w,)>w,_ (a+yw,)+(1-y)w,

and,
wl-l > wr-l (a+wr-l)+yw.r——l(w: _wl-l)
a+w, (a+w, N a+w,)

= w:—l i 'Y)’b (w.r 5= w:—l)
(a+w,)

giving, T, (1) > T,(I)

for0<y<l.

The condition T,_, (1) > T,(I)

requires

w:—l S Wi + A'('Ws — ws—l)
o+w, a+w,
giving

w,_, >Aa+w,))

which leads to
w:—l

A< )
a+w,

Also,A >0 and a > 0 finally giving

wa'—l

O<A< <l

o+w,_,

Therefore,
T, (I(A\))>T.(I(L)), for A in the above range. @

Thus, all inputs between exemplars w,_, and w, map to category s-1 except for those
in a small exclusion zone (w,_, +A, (w, —=w,_,),w,) determined by a.
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w_) 1
i |
T 1

4=

Figure A2. Two adjacent categories in the real line illustrating
exclusion zone near to category s.

Note that the above only determines the winning node through T (/) and not category

membership which depends upon the match criterion .

Match Criterion

Equation (2) states the match criterion

IAw|

2p,
|

which gives w _, = pIfor node s-1.

W _, . 3
Thus, 7 £—=L is required for a match to occur.

Category Proliferation

Consider what happens when

W, <w_ <I<w <w <

s+

ws— 1

By previous results, T,_,(/)>T.(I), but, I > ensures that node s-1 is inhibited.

Again,T,_,(I)> T (I), by previous results, but / > % causes inhibition of node s-2.

Thus, all nodes,/ <5 -1 are inhibited.

Now,
I
I,()= Vkzs
oa+w,
giving
TS (DN>T ()>...as w, <w,, <w,, <....

So, by the above, all nodes, / with exemplars w, <w_, [<s, are inhibited so node s

>

for an uncommitted node.
o+w, o+l

is selected giving T.(]) =
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This means that the next available node is selected which has its exemplar w, replaced

Inw
by I as the match criterion gives l—A—-Il = L =1>p for p <1, regardless of the
Y 24 ] p (Y g

I
distance between I andw .

Thus, as I<w_., exemplars drift towards the origin as their magnitudes are reduced.

This causes the creation of more categories in areas of input space made devoid of
exemplars by this drifting effect.

Although stable by the monotonic decreasing of weights, the network suffers from

proliferation of category nodes unless complement coding is used.
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