
This is a repository copy of PIV studies of coherent structures generated at the end of a 
stack of parallel plates in a standing wave acoustic field.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79741/

Version: Accepted Version

Article:

Mao, X, Yu, Z, Jaworski, AJ et al. (1 more author) (2008) PIV studies of coherent 
structures generated at the end of a stack of parallel plates in a standing wave acoustic 
field. Experiments in Fluids, 45 (5). 833 - 846. ISSN 0723-4864 

https://doi.org/10.1007/s00348-008-0503-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

 1 

PIV studies of coherent structures generated at the end of a 
stack of parallel plates in a standing wave acoustic field 
 
Xiaoan MAO, Zhibin YU, Artur J JAWORSKI1 and David MARX 
School of Mechanical, Aerospace and Civil Engineering 
The University of Manchester 
Sackville Street, PO Box 88, Manchester M60 1QD, UK 

 

Abstract 
 

Oscillating flow near the end of a stack of parallel plates placed in a standing wave 
resonator is investigated using Particle Image Velocimetry (PIV). The Reynolds 
number, Red, based on the plate thickness and the velocity amplitude at the entrance 
to the stack, is controlled by varying the acoustic excitation (so-called drive ratio) and 
by using two configurations of the stacks. As the Reynolds number changes, a range 
of distinct flow patterns is reported for the fluid being ejected from the stack. 
Symmetrical and asymmetrical vortex shedding phenomena are shown and two 
distinct modes of generating “vortex streets” are identified. 
 
1. Introduction 
 

Flow structures generated by steady flows past bluff bodies have been a subject 
of many theoretical and experimental studies, the classic example being formation of 
the von Karman “vortex street” behind circular cylinders (Kovasznay, 1949). This 
class of phenomena is important in many industrial problems including: aerospace 
flows, civil and marine engineering, design of heat exchangers or the behaviour of 
overhead power cables. Somewhat more complex situation arises when steady flows 
are replaced by oscillatory flows (with or without the steady component), the 
fundamental difference being that vortices shed in one half of the cycle impinge on 
the bluff body when the flow reverses and may interact with vortices shed during the 
other half of the cycle. This may lead to interesting “lock-on” effects resulting in an 
interaction between the flow and the structural components within (Chung and Kang, 
2003, Barbi et al, 1986). 

Within the class of purely oscillatory flows, by far the most studied geometrical 
configurations were flows past circular cylinders (Obasaju et al., 1988; Iliadis and 
Anagnostopoulos, 1998) although other geometries have been considered including a 
square cross-section (inclined at various angles to the flow) or a flat plate 
perpendicular to the flow (Bearman et al., 1985, Okajima et al., 1997) and triangular 
and T-shaped geometries (Al-Asmi and Castro, 1992). Other studies investigated the 
effects of the proximity of the external boundaries on the flow (Sumer et al. 1991). As 
well as “external” flows, “internal” oscillatory flows have been investigated. These 
include oscillatory flows in pipes with “wavy” walls (Ralph, 1986), internally placed 
orifices (De Bernardinis et al., 1981) or internally baffled channels (Roberts and 
Mackley, 1996). 

It is widely accepted that the morphology of the flow structures present within 
oscillatory flows is governed by three similarity numbers: the Reynolds number (Re), 
the Keulegan-Carpenter number (KC) and the Stokes number (), although only two 
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out of these are really independent, as Stokes number can be expressed as the ratio of 
Reynolds number to KC number. Tatsuno and Bearman (1990) studied the 
morphology of the flows generated from the oscillatory cylinder as a function of KC 
and  while similar studies were performed by Okajima et al. (1997) for square 
cylinders. These have shown a range of flow regimes ranging from fully attached 
symmetrical pair of vortices through to symmetrical and alternating vortex shedding. 

In all of the experimental studies mentioned above, the typical setup includes 
either the bluff body being oscillated through the stationary fluid, using some form of 
mechanical drive, or an oscillating incompressible fluid within U-tube type of water 
tunnel, with the bluff body being held stationary. However, it should be noted that 
similar flow problems including vortex shedding phenomena also arise in acoustic 
systems when the level of acoustic excitation is relatively high. These include systems 
such as pulse tube refrigerators, standing or travelling wave thermoacoustic devices or 
their components such as jet pumps, Stirling engines and refrigerators and others, 
where high intensity acoustic wave (or oscillatory flows in general) encounter sudden 
discontinuities in the cross-section of an acoustic duct. 

The initial motivation for the current paper came from the need to understand the 
behaviour of the flow in a standing wave thermoacoustic device in the vicinity of the 
so called “thermoacoustic core”. This typically comprises of a stack of parallel plates 
(thermoacoustic stack) sandwiched between two heat exchangers (often also 
constructed as a set of shorter but thicker parallel plates with a somewhat larger pitch). 
The role of the thermoacoustic core is to either produce acoustic power due to the 
temperature gradient imposed by the heat exchangers or to consume externally 
supplied acoustic power in order to facilitate heat pumping from cold to hot heat 
exchanger by virtue of the so-called thermoacoustic effect (Swift, 2002). 

In the high-intensity acoustic field, the flow structures at the end of the stack, or 
the heat exchanger (or in the region in between) are very complex due to the 
discontinuities of the cross section and the oscillatory nature of the flow. Clearly, the 
energy transfer taking place within the thermoacoustic core will be affected by 
“entrance effects”, vortex shedding and generation (or suppression) of turbulence over 
different parts of the acoustic cycle. The existing models to calculate the performance 
of the thermoacoustic systems are based on the linear acoustic models (for example 
DeltaE, as described by Ward and Swift, 2001) with only some corrections being 
made to account for non-linear acoustics effects such as turbulence. The development 
of such codes is hindered by the lack of understanding of the fundamental thermal-
fluid processes. 

Despite being rooted in the area of thermoacoustics, the current investigation 
should be seen on a more general level, namely the fundamental fluid dynamical 
processes of interest to a wider audience. This is the reason why the current research 
covers somewhat larger parameter space than would be expected from the point of 
view of thermoacoustic stacks alone and covers the range characteristic for finned 
heat exchangers and possibly beyond. 

The experimental studies of the above phenomena in the context of 
thermoacoustics are very limited. Gopinath and Harder (2000) studied the heat 
transfer effects from a single circular cylinder placed in an acoustic resonator (with a 
possible application to thermoacoustic heat exchangers). They identified two flow 
regimes: the laminar attached flow regime and the less understood regime where the 
vortex shedding is prevalent with much higher heat transfer coefficients. Blanc-Benon 
et al. (2003) used PIV measurements to investigate the flow field around and vortex 
shedding from a stack of parallel plates for relatively low drive ratios 1.0 – 1.5 % and 
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compared the experimental results to CFD simulations. They have shown the presence 
of symmetrical vortices, which on their two experimental configurations (“thin” and 
“thick” plates) took an “elongated” and “concentrated” form, respectively, but never 
fully detached from the plates. Mao et al. (2005) conducted similar PIV studies using 
a somewhat larger geometrical arrangement and higher drive ratios (up to 3%) and 
showed that at higher drive ratios the symmetrical vortices are replaced by alternately 
shed vortices. The current paper is an extension of this early work by a providing 
more complete experimental data and its more detailed discussion and analysis. 
 
2. Experimental apparatus and procedure 
 

The experimental apparatus used in the current study (Figure 1) was discussed in 
some detail by Marx et al. (2006) and therefore only a brief description is given here. 
Its main part is a 7.4m long transparent Perspex pipe, with the internal cross-section 
134 x 134 mm, and the wall thickness of 8 mm. One end of the pipe (to the left of Fig. 
1) is closed by an “end-cap” with a flush mounted pressure transducer. The other end 
is connected to a relatively large “loudspeaker box” (600 x 600 x 600 mm) through a 
0.3 m long pyramidal section to match the change in cross-sectional dimensions. The 
resonator is filled with air at atmospheric pressure and room temperature. The first 
mode of operation (quarter-wavelength) has a fundamental frequency f = 13.1 Hz.  

The experiments were conducted for two stacks of plates (shown schematically in 
Fig. 2). The length, l, of both stacks was 200 mm, while their width was 132 mm 
(some clearance had to be left between the stack and the internal resonator wall). 
Stack I comprised of 21 Perspex plates of thickness d = 1.1 mm with the plate-to-plate 
spacing D = 5 mm. Stack II was made out of eight Perspex plates with d = 5 mm and 
D = 10 mm. Both stacks were placed in the resonator 4.1 m from the end as 
schematically shown in Fig. 1. The drive ratio in the experiments was varied by 
changing the excitation voltage of the loudspeaker and controlled by measuring the 
amplitude of pressure oscillations recorded by the dynamic pressure transducer 
mounted inside the end-cap of the resonator (Endevco Model 8510B-2). 

Flow field measurements were performed using a PIV system by TSI. The light 
sheet from a dual Nd:YAG laser enters the resonator perpendicular to its axis, is 
reflected by a small mirror and becomes parallel to the resonator axis and normal to 
the surface of the stack plates. The flow is seeded by particles produced by a smoke 
generator using 50-50% mixture of glycerol and water, with typical droplet diameter 
in the range 1–10 microns. Images are taken by a 4 mega-pixel camera (TSI 
POWERVIEW) and post processed using commercial software (TSI INSIGHT). 
Cross correlation is used and the interrogation window is 16 pixels by 16 pixels. 

The flow field measurements are performed at 20 phases within the acoustic cycle 
(i.e. every 18º). Therefore an appropriate phase locking mechanism had to be 
developed. In this study the pressure oscillation measured by the pressure transducer 
mounted at the end cap was used as a reference. The output signal from the pressure 
transducer is connected to an “in-house” made pulse generator, which can generate a 
pulse sequence of the same frequency as the acoustic wave, but with variable time 
delay from the trigger point. The output of the pulse generator is connected to the 
synchroniser (TSI LASERPULSE) that controls the timing of the laser action and 
triggers the frame grabbing of camera. In this way, the captured images can be phase 
locked relative to the pressure oscillation (and by the same token to the velocity 
oscillation, which could be verified independently both by PIV and hot wire 
measurements). Figure 3 illustrates the timing of 20 phases (ĭ1, ĭ2…ĭ20) within the 
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cycle, relative to both velocity and the pressure gradient oscillations. For each of the 
20 phases, 100 pairs of images were taken to derive the phase-averaged velocity field. 
The field of view of the PIV images varied from 25mm×25mm to 60mm×60mm, 
depending on the flow features to be imaged. This corresponds to the resolution of the 
velocity vector field between 0.10 mm and 0.23 mm. 

 

Fig. 1 Sketch of the experimental apparatus 
 

 
Fig. 2 Geometry of the stack (only three plates shown) 

 

 
Fig. 3 Phase-averaged velocity oscillation at point M and corresponding phases at which the PIV 
measurements are taken. dp/dx is the axial gradient of acoustic pressure in an oscillation period. 

(Simple-harmonic oscillation is assumed so that dp/dx is 90 degrees out of phase of velocity 
oscillation.) 

4.1 m 
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Due to its nature, the PIV technique is not sufficiently “time-resolved” to permit 
measurements of the fluctuating components of velocity. Therefore the investigations 
of the vortex shedding frequencies, to be used in estimating typical Strouhal numbers, 
had to be conducted using standard hot wire methods. Velocity fluctuations were 
measured with SN type hot-wire probe (DANTEC) operated in the constant-
temperature mode using a TSI IFA300 system. The probe is placed normal to the plate, 
while the sensor is normal to the axis of the resonator. The position of the probe is 
schematically shown in Fig. 2. For Stack I, the sensor is placed 2d from the edge of 
the plate, while for Stack II this distance is 4d because the large diameter of the probe 
support prevents the sensor to be closer to the plate end (the distance from the plate is 
denoted in Fig. 2 as hw). A high-pass filter set at 30Hz is used to remove the signal 
component related to the fundamental frequency of 13.1Hz. Both the filtered signal 
and the unfiltered signal are recorded with a sampling frequency of 5000 Hz. 16384 
data points are acquired in a typical experimental condition. 
 

3. Experimental results 
 
3.1 Overview of the experimental parameters and conditions 
 

Table 1 summarises the stack dimensions and the basic acoustic excitation and 
flow conditions. In addition to stack geometry, the table contains porosity, , defined 
as the ratio of the total cross-sectional area of the channels within the stack over the 
cross-sectional area of the resonator. For a stack of evenly spaced plates this can be 
approximated by D/(D+d), assuming that the gaps between the stack and the walls can 
be neglected. Drive ratiorD  is the ratio of the acoustic pressure amplitude at the 

closed end of the resonator, ap ,1 , to the mean pressure in the resonator mp . The 

values of the amplitude of the axial velocity, uM, at point M (Fig. 2) were extracted 
from the phase-averaged velocity field for the 20 phases, by using the least square 
fitting method for a sinusoidal function. ȟ is the displacement amplitude of the 
oscillating gas parcel. It can be calculated from Mu  as ȟ = Mu /Ȧ. 

The Reynolds number used in the current analysis, Red, is based on the axial 
velocity amplitude, uM, and the plate thickness, d, as 

Re M
d

u d


                                                         (1) 

where Ȟ is the kinematic viscosity of air at ambient conditions. However, as will be 
shown later, for convenience of comparisons between different phases within the 
cycle it seems useful to introduce a Reynolds number based on the instantaneous 
value of velocity, *

Mu , at point M (later referred to as “phase Reynolds number”): 
*

*Re M
d

u d


 .                                                        (2) 

Of course,  * sinM Mu u t   , but  could be zero, if one chooses to count the time 

from the moment when 0* Mu . Similarly, although strictly *Red  can be either 

positive or negative (depending on the direction of *
Mu ), it is easy to specify the flow 

as “out of the stack” and “into the stack” to avoid confusion. Of course, the 
relationship between the two Reynolds numbers is 

 *Re Re sind d t   .                                           (3) 
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Table 1: Summary of stack dimensions and experimental conditions 
 

 d 
(mm) 

D 
(mm) 

l 
(mm) 

  
rD  

(%) 
Mu  

(m/s) 

ȟ 
(mm) 

dRe  

Stack I 1.1 5.0 200 0.82 

0.3 0.84 10.2 62 
0.6 1.68 20.4 123 
1.0 2.82 34.3 207 
1.5 4.32 52.5 317 
2.0 5.68 69.0 417 

Stack II 5.0 10.0 200 0.67 

0.3 0.95 11.5 317 
0.6 1.95 23.7 650 
1.0 3.24 39.4 1080 
1.5 5.04 61.2 1680 
2.0 6.90 83.8 2300 

 
It is worth making two comments at this point: Firstly, introducing “phase 

Reynolds numbers” is not an entirely new idea. Yellin (1966) considered flow 
transition in pulsatile flows within blood vessels and used an analogue of *Red  

defined here. Secondly, as will become clearer in later sections (especially 4.2 and 4.3) 
Reynolds number cannot be a unique similarity number defining the oscillatory flow 
behaviour in general. This should be remembered when looking at labelling of the 
experimental data which is made using Reynolds numbers defined by equations (1) 
and (2). 
 
3.2 Oscillatory flow around the end of the stack 
 

Figure 4 represents a typical example of the flow visualisation obtained in the 
oscillatory flow near the end of the stack, shown here to illustrate its main features. 
Here the flow past Stack I was investigated at the drive ratio of 1.0%, giving the 
Reynolds number 207Re d  (other relevant parameters can be found in Table 1). 

The flow features are visualised by using the phase-averaged vorticity field. For 
brevity, only nine most characteristic phases are selected out of the 20 phases 
captured within the cycle. These are shown as a time sequence to illustrate the 
evolution of the flow structures. The phase Reynolds number, *Red , is included in the 

graphs; grey areas indicate the presence of the plates within the imaging domain. 
As can be seen from Fig. 4, the flow can be divided into two main stages: the 

“ejection” stage, when the velocity at point M is toward x>0 (i.e. for phases ĭ1–ĭ10 
as illustrated in Fig. 3) and the “suction” phase, when the velocity at point M is 
toward x<0 (i.e. for phases ĭ11–ĭ20 as illustrated in Fig. 3). As can be seen the 
generation of coherent structures takes place in the “ejection” stage discussed in 
Section 3.2.1. 
 
3.2.1 Ejection stage  

 
In general the ejection stage can be further subdivided into two different 

situations: acceleration stage (phases ĭ1–ĭ5) and deceleration stage (phases ĭ6–
ĭ10). Several characteristic flow phenomena/patterns can be observed: (A) Formation 
of a pair of attached symmetric vortices; (B) Elongated vortex structures; (C) Break-
up of elongated vortices into an asymmetric “vortex street”; (D) Alternate vortex 
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shedding from the end of the plate. The details of these characteristic flow patterns are 
described with reference to Fig. 4 (a-e). 
 
(A) Formation of a pair of attached symmetric vortices: The flow in phase ĭ1 (Fig. 
4a) has a positive velocity and starts to accelerate. Based on the instantaneous velocity 
at point M, the corresponding phase Reynolds number, *Red , is about 47. A pair of 

vortex structures is formed at the end the plate. They are symmetrical relative to the 
centre-line of the plate in the x-y plane. Similarly as in the classic case of the wake 
behind a plate with a square trailing edge (as found in Bachelor, 2000), a recirculation 
region is formed at the end of the plate, where the pair of vortices remains attached. In 
the inner region of the channel formed by two neighbouring plates, there is a pair of 
shear layers with their vorticity in an opposite direction to the vorticity within the 
plate boundary layer. 

 

 
Figure 4 Vorticity contour map for the flow around the end of Stack I during one acoustic cycle. 
(a)ĭ1, (b)ĭ5,  (c)ĭ7, (d)ĭ9, (e)ĭ10, (f)ĭ11, (g)ĭ12, (h)ĭ15, (i)ĭ20 (Red = 207, Dr = 1.0%). The 

unit of vorticity legend is s-1 

(f) *Red =46 (e) *Red =18 (d) *Red =81 

(g) *Red =106 (h) *Red =205 (i) *Red =18 

(c) *Red =177 (b) *Red =205 (a) *Red =46 
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Figure 5 Transverse profile of axial velocity taken at x=5 mm. Stack I, drive ratio 1%. (a)ĭ1, (b) 

ĭ5. (Y remains the same as the coordinate system used in Figure 4) 
 

Such a shear flow pattern exhibited in this phase is directly related to the typical 
velocity profile shown in Fig. 5a (taken at x = 5mm according to the coordinate 
system used in Figure 4). The velocity oscillation of the flow in the central region is 
delayed in phase, compared with the flow in the boundary layer region. A peak value 
of velocity appears at some distance from the plate. 
 
(B) Elongated vortex structures: As the velocity increases due to the flow 
acceleration the related phase Reynolds number increases and the flow pattern 
changes accordingly. At first (during phases ĭ2–ĭ4) the attached vortex structures 
remain symmetric but become elongated. However, as the velocity almost reaches its 
peak around phase ĭ5, the very elongated vortex structures in the wake become 
“asymmetric” by exhibiting somewhat wavy pattern (as shown in Fig. 4b), which 
seems to be related to the loss of stability in the subsequent phases. The phase 
Reynolds number *Red  is about 206. Within the channel, the axial velocity profile 

changes significantly between phases ĭ1–ĭ5 by becoming flattened (Fig.5b). The 
flow velocity in the central region catches up with the velocity closer to the channel 
walls, which weakens the vorticity in this central region.  
  
(C) Break-up of elongated vortices into an asymmetric “vortex street”: As 
illustrated in Fig. 3, velocity of the fluid leaving the channels of the stack reaches its 
maximum between ĭ5–ĭ6 and so from then on the fluid enters the deceleration phase. 
Fig. 4c (ĭ7) shows that the pair of elongated vortex structures has broken up into a 
“street” of individual vortices in the plate’s wake, very much resembling the classical 
von Karman street. At phase ĭ7, the corresponding phase Reynolds number *Red  is 

about 177. 
 
(D) Alternate vortex shedding from the end of the plate: Once the elongated vortex 
structures have broken up into the “street” of individual vortices, a different 
mechanism seems to take over, namely the vortices seem to be shed in an alternating 
fashion from the end of the plate in a manner resembling the classical bluff body 
vortex shedding. Figure 4d shows the resulting flow pattern for phase ĭ9 for the 
corresponding phase Reynolds number *Red  around 81. The flow slows down even 

further, and Fig. 4e shows an almost stationary “suspended” vortex pattern just before 
the flow reverses (ĭ10, 18Re* d ). 
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3.2.2 Suction stage 
 

As shown in Fig. 3, the direction of the flow reverses between phase ĭ10 and 
ĭ11. The fluid and the vortex structures generated in the ejection stage are to be 
sucked back into the channels between the plates. Figure 4f (phase ĭ11) shows the 
beginning of such a process. The remains of the vortex street impinge on the end of 
the plate, the individual vortices becoming split into a series of vortices of much 
smaller size. The shear layers close to the channel walls are pushed away (displaced) 
further into the central region of the channel by the continually developing shear 
layers in an opposite direction – see the channels in Fig. 4f. In addition, in the region 
near the end of the plate, the entry flow generates a strong shear region, which pushes 
back (eliminates) the shear layer formed in the ejection stage of the cycle. 

In Fig. 4g (ĭ12), the displaced shear layer (which was originally formed in the 
ejection stage) and the scattered remains of the small vortices finally die out. The 
newly generated shear layer corresponding to the direction of the suction flow grows 
and develops.  

In Fig. 4h (ĭ15), the negative flow velocity is at its peak value. The unsteadiness 
of the shear layer still visible in Fig. 4g and the scattered remains of the weak vortices 
close to the channel centre have disappeared. In general the shear layer next to the 
surface of the plates is quite similar with the developing boundary layer on a flat plate 
in the steady flow.  

Following phase ĭ15 the suction flow starts to decelerate and the negative 
velocity approaches zero at about ĭ20 (see Fig. 4i). The flow direction is about to 
change, when the flow enters the ejection stage of the next cycle. 
 
3.3 Comparisons between flows at various peak Reynolds numbers, Red 
 

To gain further insight into the Reynolds number effects on the flow structure, the 
flow around the end of the stack was studied at four more drive ratios (0.3, 0.6, 1.5 
and 2.0%). In this section, the discussion will focus on the flow structures in the 
ejecting stages for varying drive ratios. 

To save space, the PIV results are shown for a single plate, not an array of plates 
as previously shown in Fig. 4. Figure 6 shows the flow visualisations for five drive 
ratios studied (Fig. 6a through to 6e), however instead of using drive ratios, the 
figures are labelled with the values of Reynolds number, dRe , which is more 

meaningful from fluid mechanics point of view. In each of the figures, the images for 
five selected phases are shown: ĭ2, ĭ4, ĭ6, ĭ7 and ĭ9, each image also being 
labelled with the value of the phase Reynolds number - *Red . 

In the simplest approach, one can compare the evolution of the flow patterns 
during the ejecting stage for different drive ratios (different dRe ) by looking at each 

column in Fig. 6 (i.e. columns a–e). However, one could also imagine a “flow pattern 
evolution” by looking at a selected phase in the cycle (for example ĭ4) and 
comparing the flow patterns for varying drive ratios (i.e. dRe ). To do this one would 

have to inspect each row of Figure 6 (rather than each column). In this way one could 
try to develop a relationship between the flow patterns and the phase Reynolds 
number, *Red . 
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Fig.6 Vorticity field around the end of one plate in Stack I, shown for five drive ratios and five selected phases within the cycle; 
(a) Dr=0.3%; (b) Dr=0.6%; (c) Dr=1.0%; (d) Dr=1.5%; (e) Dr=2.0%; colour scale is the same as for Figure 4. 
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Figure 6a shows the results at drive ratio 0.3% ( 62Re d ). It can be seen that a 

pair of vortex structures remains attached to the end of the plate in each phase and 
remains symmetric relative to the centre line in all phases. The size and strength of the 
vortices clearly increases as the phase Reynolds number increases throughout the 
accelerating stage (see ĭ2 and ĭ4) and increases further in the decelerating flow up 
until phases ĭ6 or ĭ7. As the vorticity fed from the plate boundary layer decreases, 
so does the strength of the vortices (see ĭ9). 

Figure 6b shows the results at drive ratio 0.6% ( 123Re d ). Compared with the 

vortex structures in Fig. 6a, the vortices become more and more elongated in the 
accelerating stage. Eventually (around phase ĭ7), the previously symmetrical 
structures become wavy and this “instability” amplifies in the deceleration phase (see 
the asymmetric wavy structure in phase ĭ9). 

Figure 6c shows the results at drive ratio 1.0% ( 207Re d ). They correspond to 

the results already shown in Fig. 4. From both figures, one can find that the vortex 
structure exhibits asymmetry in phase ĭ5 and ĭ6, that is at an earlier phase than in 
Fig. 6b. The break-up of this wavy pattern into a vortex “street” and subsequent 
shedding from the plate occurs between phase ĭ7 and ĭ9. 

Quite similar results can be seen in Fig. 6d, for drive ratio 1.5% ( 317Re d ). 

The vortex structures become unstable even earlier (ĭ4). Further increase of drive 
ratio, as illustrated in Fig. 6e (2.0%, 417Re d ), leads to even earlier break-up of the  

initial symmetrical structures - by phase ĭ4 a vortex “street” is already in place). 
One could attempt a qualitative analysis by comparing images in Fig. 6 “row by 

row”; that is by looking at increasing drive ratios for a fixed phase. For example, the 
first row of figures shows phase ĭ2. From Fig. 6a to Fig.6e the phase Reynolds 
number increases from 31 to 214. One can find that, the attached pair of vortices 
elongates, but remains symmetric as the phase Reynolds number increases. 

The second row of figures shows the “flow behaviour” for phase ĭ4, as the phase 
Reynolds number increases from 56 to 383. One can clearly see an “evolution” of the 
flow patterns similar to phase-by-phase evolution: a pair of symmetric vortices 
(6a/ĭ4), elongated symmetric vortices (6b/ĭ4 and 6c/ĭ4) unstable/wavy elongated 
structure (6d/ĭ4) and alternate vortex shedding (6e/ĭ4). 

The third, fourth and fifth rows show the flow pattern “evolution” for phases ĭ6, 
ĭ7 and ĭ9, respectively. Similar trends in the “development” of the flow patterns can 
be observed. However, clearly, the vortex shedding pattern is present “earlier” when 
comparing drive ratios left to right.  
 
3.4 Comparisons between flows around Stack I and Stack II 
 

Similar experiments to those described with reference to Stack I were carried out 
for the second configuration: Stack II (see Table 1 for details). The main reason for 
selecting this configuration was a further increase in the Reynolds number (dRe ) and 

a change in the porosity of the stack. The same drive ratios were tested which, given a 
different porosity, resulted in somewhat modified velocities and displacements. The 
Reynolds numbers were increased roughly about five-fold. 

Figure 7 shows the vorticity field around the end of one plate in Stack II (keeping 
the convention of Fig. 6, for Stack I). Results at five phases of the ejection stage are 
presented for the stack at the five drive ratios tested, corresponding to the Reynolds 
number dRe  of 317, 650, 1080, 1680 and 2300. 
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By comparing the flow around the end of plate in Figures 6d and 7a, one can see 
that the value of dRe in both cases is the same: 317. However, instead of an elongated 

vortex structure which breaks-up into a vortex “street” which was the main feature for 
Stack 1, Stack II exhibits a different flow structure, namely a fully attached and 
symmetrical pair of vortices, somewhat similar to what was observed for drive ratio 
0.3% on Stack I. However, for Stack II, the pair of vortices is much less elongated in 
the stream-wise direction (only about 1d in terms of plate thickness). 

 
 

Fig.7 Vorticity field for the flow around the end of Stack II 
 (a) Dr = 0.3%; (b) Dr = 0.6%; (c) Dr=1.0% (d) Dr =1.5% (e) Dr = 2.0% 

 
Increasing dRe  to 650 leads to the vortex structures becoming asymmetric (see 

phase ĭ9 in Fig. 7b). This feature is more pronounced for 1080Re d - see phases 

ĭ6 to ĭ9 in Fig. 7c. Measurements at even higher drive ratios (Figs. 7d and 7e), show 
that the higher dRe , the earlier in the cycle the asymmetric vortex shedding takes 

place. It is interesting to note that for Stack II, the two flow patterns at the ejection 
stage described under (B) and (C) in section 3.2.1 (elongated vortex structures and 
their break-up) are absent. 
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Another interesting flow feature is the appearance of a pair of “counter-rotating” 
vortices, relative to the sense of rotation of the main vortices shed from the plate. The 
initial formation of these vortices is clearly seen for phase ĭ2 in Figs. 7a–7e. These 
“counter-rotating” vortices seem to be convected far away from the plate, preceding 
the dominating von Karman-type of vortices subsequently shed over the ejection stage 
of the cycle. By phase ĭ9, the vorticity of this pair of “counter rotating” vortices is 
practically dissipated. These small vortices seem to originate from the remains of the 
shear layer formed during the suction cycle. Similar feature is indeed present for 
Stack I, but has a much more elongated shape and is far less “concentrated” in terms 
of vorticity levels (see for example phase ĭ4 in Fig. 6d). 

In summary, it seems that the main difference in the flow behaviour on two 
stacks investigated (I and II) is the mode of vortex shedding. While Stack I is 
dominated by elongated shear layers, which then suddenly break up into a “street” of 
individual vortices, Stack II exhibits alternate (bluff-body type) shedding very early 
on within the cycle (as long as the Reynolds number is large enough). This may well 
be responsible for the differences in Strouhal numbers discussed in Section 3.5. 
 
3.5 Frequency of vortex shedding 
 

As illustrated in the previous sections, for both stacks, the vortices will start to 
shed in an alternate fashion for a sufficiently large Reynolds number, dRe . This 

behaviour is similar to vortex shedding from bluff bodies in steady flows. This part of 
the study looked at the dependence of vortex shedding frequency (and thus the 
Strouhal number) on the Reynolds number, dRe , and the geometry of the stack. The 

measurements were performed using standard hot-wire anemometry methods (Section 
2) in order to collect the fluctuating velocity signal behind the stack of plates. 

Typical signal traces of the hot-wire anemometer output are shown in Figs. 8a and 
8c for Stack I and Stack II, respectively. The top signal trace represents the unfiltered 
signal and the bottom one represents the filtered signal. Each “fluctuation burst” in the 
bottom signal trace represents an event of vortex shedding in the ejection stage of the 
acoustic cycle. 

The frequency spectrum of the filtered signal trace is analyzed using Fast Fourier 
Transform (FFT). The signal trace is divided into data blocks, which contain 256 data 
points, starting at the same phase of an acoustic cycle, and including the whole 
“fluctuation burst” event. For each block of data, a frequency spectrum is obtained. 
Subsequently all such frequency spectra, obtained for a given experimental run, are 
ensemble-averaged and a mean frequency spectrum is obtained. This enables 
extracting a characteristic peak frequency. Figs. 8b and 8d show the mean frequency 
spectra of the corresponding signal traces in the left column of Fig. 8. As can be seen 
from the plots, the curve covers a narrow band of frequencies, as opposed to a sharp 
spike which would normally be obtained in steady flows past bluff bodies. This is 
most likely due to variations in the shedding frequency as the instantaneous velocity 
uM changes over the ejection stage, but it may also reflect the fact that vortex 
shedding is “quasi-periodic” with the pattern changing slightly from cycle to cycle. 

The peak frequency is subsequently used to calculate the values of Strouhal 
number, St defined here as fSH d/ Mu . Symbol fSH is used to denote the “shedding 
frequency” (such as depicted in Fig. 8.) and to distinguish it from the rig’s operating 
frequency f=13.1 Hz. Mu is also used to calculate the corresponding values of dRe . 

As shown in Fig.9, for the cases investigated, the Strouhal number is between 0.18 
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and 0.20 for Stack II, and between 0.08 and 0.10 for Stack I. As already mentioned 
this difference between the values of the Strouhal number could be related to different 
phenomena that seem to govern the vortex structure formation: a loss of stability of 
elongated shear layers for Stack I and bluff-body type of shedding for Stack II. 
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Fig.8 Signal trace of hot-wire sensor output close to the stack end, and the frequency spectrum of 
the signal trace; (a, b) Stack I (Dr = 1.0%; Mu  = 2.7m/s; dRe  = 194); (c, d) Stack II (Dr = 2.0%; 

Mu  = 6.5m/s; dRe  = 2165) 
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Fig.9 Strouhal number, St, versus Reynolds number, Red, based on the plate thickness 

 
 

4. Discussion of results and direction of further studies 
 

This discussion section highlights some interesting problems in three areas that 
the current investigation touched upon: the issue of the interaction of the vortex 
structures originating from adjacent channels with each other, the somewhat 
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paradoxical issue of the influence of the Reynolds number on the flow patterns for 
Stack I, and finally the effects of stack geometry. These are discussed in the three sub-
sections below. 
 
4.1 “Mirror” vs. “translational” symmetries between adjacent vortex streets  
 

When inspecting the flow patterns generated by the stack of plates such as those 
shown in Figs. 4d and 4e, it is clear that the resulting vortex “streets” may exhibit 
either “mirror” or “translational” symmetries in relation to the channels’ centrelines. 
For example, looking at Fig. 4d, and counting the channels from the bottom of the 
graph, it is clear that for the first and second channel, the vortex streets have “mirror” 
symmetries, relative to the channel centre-line. However, for the third channel the 
symmetry is “translational” (or there is an “anti-symmetry”) in that the vortex pattern 
shed from the third plate could be overlapped with the vortex pattern shed from the 
fourth plate if the image was simply shifted upwards. It should be noted that similar 
problems are encountered in the steady flows past an array of plates (e.g. Guillaume 
and LaRue, 2002). The future studies should investigate how the spacing between the 
plates within the stack influences this kind of symmetrical or anti-symmetrical 
alignment of vortices, and whether there is some kind of a “lock-on” effect when the 
plates are sufficiently close to one another. This relates to the question of porosity 
values addressed in section 4.3. 
 
4.2 Reynolds number paradox 
 

When Fig. 6 is studied “row-by-row”, that is for different drive ratios, but the 
same phase, one can see that as the phase Reynolds number increases the flow pattern 
“evolves” through the stages that are described as (A)–(D) in section 3.2.1. The latter 
pattern (D) occurs at higher phase Reynolds number than patterns (A) – (C). However, 
when the flow patterns are studied “column-by-column”, that is for different phase 
Reynolds numbers within the same drive ratio, the relationship between the flow 
pattern and the phase Reynolds number is somewhat different. For example in Fig. 6c, 
the flow becomes unstable at ĭ6 ( *Red =200), and the vortex shedding is observed at 

ĭ7 ( *Red =176) and ĭ9 ( *Red =80). This indicates that the flow pattern that usually 

corresponds to a high Reynolds at an earlier phase can take place at a lower Reynolds 
number in the decelerating stage. One can find more examples of this phenomenon in 
Fig. 6. In Fig. 6e *Red  is 214 at ĭ2, and the flow has a pair of elongated symmetric 

vortex structure. On the other hand, in Fig.6b, *Red  equals 48 at ĭ9, and the flow 
shows a pair of elongated wavy vortices. This clearly illustrates that the transition 
between different flow patterns cannot be defined by Reynolds numbers alone. 

There are at least two explanations for this flow behaviour (referred to here for 
brevity as “Reynolds number paradox”). The first factor could be the oscillating 
pressure gradient. It is well known that a favourable pressure gradient (responsible for 
the flow acceleration) tends to suppress flow instabilities, while the adverse pressure 
gradient (responsible for the flow deceleration) tends to amplify them (e.g. Lee and 
Budwig, 1991). This may explain why the vortex structures represented in Fig. 6c 
break up into a vortex street after phase ĭ6. However, an alternative explanation 
could be found for the flows with higher Reynolds numbers (e.g. Figs. 6d and 6e, 
where the break-up occurs in the accelerating phase): namely that the vorticity 
generated on the surface of the plates is too strong to be convected downstream in the 
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form of an elongated vortex structure and breaks-up so that the flow may assume a 
more efficient form (vortex street) to convect the vorticity downstream. It is likely 
that it is the combination of these two factors that decides on the exact nature of the 
transition between the flow patterns. These aspects of the flow could be studied by 
means of a rigorous flow stability analysis, which however is somewhat beyond the 
scope of the current experimental studies. 
 
4.3 Similarity issues – geometry and flow parameters 
 

The geometry of a stack of parallel plates (in the 2D “cross-sectional޵ sense) can 
be described by three parameters: the plate thickness, d, the spacing between plates, D 
and the length of plates, l. In all tests presented here, the displacement amplitude of 
the oscillating gas parcel, ȟ, is much smaller than the length of the plates l. Therefore, 
the effect of the stack length on the flow around the end of the stack can be neglected 
(Swift, 1988). Furthermore, the stack porosity   can be defined as D/(D+d), when the 
plates of the stack are placed evenly. In this case any two of the three parameters, i.e. 
d, D and  , can uniquely define the stack geometry. 

It is also obvious from the current experimental results that changing the 
Reynolds number, dRe , can drastically change the observed flow patterns. However, 

a triad of two geometrical parameters and a velocity related parameter (Reynolds 
number or velocity itself) are not sufficient to define the problem entirely. Indeed a 
large body of literature related to the oscillatory flows past cylinders (Bearman et al. 
1985, Badr et al. 1995, Lin et al. 1996, Iliadis and Anagnostopoulos 1998) suggests 
that frequency of the forcing flow must appear in the problem description in one form 
or another. A widely accepted parameter of this kind is Keulegan-Carpenter number 
(KC), usually defined as (velocity)/(frequency x dimension). It is easy to show that 
this can be expressed here as the ratio of the displacement amplitude to the thickness 
of the plate, ȟ/d. Of course ȟ can be calculated from Mu  as ȟ = Mu /Ȧ, where  = 2f is 
the angular frequency of the acoustic oscillation. 

Unfortunately, the data available in the open literature, related to the geometry 
discussed in this paper (parallel plates), is rather scarce and thus insufficient to 
perform meaningful similarity studies. The already mentioned paper by Blanc-Benon 
et al. (2003) allows extracting two experimental “cases” (which are only for relatively 
small drive ratios). The current work provides a few more “cases”, but there is no 
independent data to verify any similarities for larger drive ratios. It is therefore hoped 
that the current work will motivate other researchers to carry out similar studies in 
flow rigs of different designs. 

 
Table 2 Parameters of stack geometry and oscillating flow 

 
 d 

(mm) 
D 

(mm) 
l 

(mm) 
  Dr 

(%) 
Mu  

(m/s) 

ȟ 
(mm) 

Red KC 

Stack I 1.1 5.0 200.0 0.82 0.3 0.84 10.2 62 9.3 

Stack II 5.0 10.0 200.0 0.67 0.3 0.95 11.5 317 2.3 

Configuration A† 1.0 2.0 25.8 0.67 1.0 1.71 1.4 119 1.4 

Configuration B† 0.15 1.0 24.0 0.87 1.5 2.57 2.1 18 14.0 

† Data adopted from Blanc-Benon et al. (2003) 
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Table 2 attempts to compare the experimental parameters between the current 
study and that of Blanc-Benon et al. (2003) for the situations where the flow 
visualisations in both studies are relatively similar. 

The vorticity field for Stack I and Stack II at the conditions listed in the table is 
shown in Fig.10 (with superimposed black arrows indicating the velocity vector). 
Blanc-Benon et al (2003) used slightly different measurement protocol: only 16 
phases were measured in an acoustic cycle and the phases were counted and labelled 
in a somewhat different way. 

Figures 10a and 10b show phases ĭ7 and ĭ9, which seem to be closest to phases 
t0+7T/16 and t0+9T/16 in Fig. 3 of the paper by Blanc-Benon et al. (2003), related to 
the flow patterns for their Configuration B. In both situations one can see “elongated” 
symmetrical vortex structures. 
 

 ĭ7  ĭ9 

(a) 

 

(b) 

 
 ĭ9  ĭ11 

(c) 

 

(d) 

 

 
Fig.10 Vorticity field (contour) and velocity field (vector) of the flow at the stack end. 

a, b, Stack I (Dr=0.3%); c, d, Stack II (Dr=0.3%). 
 

Figures 10c and 10d show phases ĭ9 and ĭ11, which seem to be closest to 
phases t0+T/4 and t0+3T/8 in Fig. 2 of the paper by Blanc-Benon et al. (2003), related 
to the flow patterns for their Configuration A. In both situations one can see more 
“concentrated” forms of vortices with the length comparable to the plate thickness. 

As can be seen from Table 2, KC number has a value of 9.3 for Stack I when the 
drive ratio, Dr is 0.3% and 14 for Configure B. For these two configurations, the 
vortex structures behind the plates are of a similar elongated form. When the vortex 
structures are concentrated at the end of plates, such as for Stack II and Configuration 
A, KC number has a relatively small value of 2.3 for Stack II and 1.4 for 
Configuration A. Therefore, in addition to the usual choice of the Reynolds number, 
porosity  and KC number seem to be a promising group of non-dimensional numbers 
that could be used to describe the effect of the stack geometry on the flow 
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characteristics when an oscillating flow around the end of a stack of parallel plates is 
considered. Nevertheless further work would be required (especially in experimenting 
with different frequencies and characteristic stack dimensions) to extend this kind of 
comparisons to other flow patterns, especially the alternating shedding that occurs for 
larger displacement amplitudes. 
 

5. Conclusion 
 
In this paper, the flow structures around the end of the stack of parallel plates in 

the oscillatory flow generated by an acoustic standing wave were investigated using 
PIV. The flow around two stack configurations was measured for a series of acoustic 
excitation levels (and thus displacement amplitudes). The resulting flow patterns have 
been documented and described in some detail. The main findings in this respect are 
as follows: 
1. For the relatively small drive ratios the flow structures already identified by Blanc-

Benon et al. (2003) are present within the flow. These include symmetrical and 
attached pairs of vortices which could be either “elongated” or “concentrated”. 
However when the drive ratios are increased, other flow patterns exist which lead 
to alternate type of vortex shedding (similar to von Karman “vortex streets” 
characteristic for flows past bluff bodies) 

2. Two modes of the above mentioned “alternate shedding” were identified on the 
two stacks considered. The first mode seems to be related to an instability of the 
elongated shear layers, which leads to their break-up and “fragmentation” into a 
“vortex street” pattern. The second mode seems to be related to the classical von 
Karman “vortex street” typically found in bluff body vortex shedding in steady 
flows. Interestingly, the two different modes seem to lead to two different values of 
Strouhal number. 

Furthermore, the problem of flow “similarities” was addressed, which was discussed 
in some detail in the context of the “mirror” and “translational” symmetries and the 
“Reynolds number paradox”, the latter related to the appearance of seemingly similar 
flow patterns at different phases of the cycle for different drive ratios on Stack I. It is 
thought that a rigorous stability analysis would be required to explain this flow 
behaviour. 

Finally, the results available in the open literature were compared to some of the 
results of the current work. The comparison showed that, in order to describe the kind 
of oscillations investigated here, other non-dimensional parameters should be 
considered, besides the Reynolds number. In particular, KC number has been pointed 
out as one possible similarity number. The conclusion that a pair of similarity 
numbers: Re and KC would be required for characterising oscillatory flows is not 
surprising given that it is known to appear for oscillatory flows past bluff bodies (e.g. 
the already mentioned works led by Bearman and Graham). However, the current 
work essentially deals with periodic structures present in the oscillatory flows. 
Unfortunately, investigations of such cases are few and far between. Research into the 
flows past multiple (periodic) bluff bodies are nevertheless available for steady (one-
directional) cases (e.g. Auger & Coutanceau 1978, Hayashi et al. 1986, Moretti 1993 
and Le Gal et al. 1996). An additional parameter, to just using a Reynolds number, 
used in such studies is the ratio of pitch-to-diameter. In the present work a similar 
approach is adopted by introducing porosity,  , as an independent similarity number 
(notation D/(D+d) is in effect an inverse of pitch-to-diameter). Therefore, it seems 
reasonable to suggest that the triad of similarity numbers: Re, KC and   could be 
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used as a starting point for characterisation of oscillatory flows past periodic 
structures. Further work to answer some of these important questions is planned. 

An interesting point raised by one of the reviewers was related to finding the right 
scaling parameter for the Strouhal number analysed in section 3.5. In the current work 
it is based on the plate thickness (d), by analogy to bluff body shedding, where 
typically St is based on the transverse dimension of the body. The reviewer pointed 
out that there could be an analogy to jet flows made (the “jet diameter” being the 
spacing between the plates, D). Simple experiments consisting of measuring shedding 
frequencies for stacks which had every other plate removed did not support the 
reviewer’s suggestion. Shedding frequency did not scale with D in the configurations 
studied. Nevertheless, it is possible to imagine that for certain configurations (e.g. 
very thick plates separated by narrow gaps) plate spacing may be more appropriate for 
calculating Strouhal numbers, because there would be very little interaction between 
adjacent “jets”. Selection of the scaling length is somewhat arbitrary (see for example 
comments by Moretti 1993 regarding flows past “arrays of tubes”), and often 
counterintuitive. For example Bunderson and Smith (2005) investigate two planar 
parallel jets, but derive their Strouhal numbers based on the width of the “centre-
body” separating the two jets, not on the width of the jets. Clearly, in the case of 
oscillatory flows past the series of plates such as described in the current paper, a 
much larger body of data would be required before one could make a more informed 
choice regarding the best length scales for non-dimensional studies. 
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