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Abstract 

 

This paper describes the development of the experimental setup and measurement methodologies to study 

the physics of oscillatory flows in the vicinity of parallel plate stacks by using the particle image 

velocimetry (PIV) techniques. Parallel plate configurations often appear as internal structures in 

thermoacoustic devices and are responsible for the hydrodynamic energy transfer processes. The flow 

around selected stack configurations is induced by a standing acoustic wave, whose amplitude can be 

varied. Depending on the direction of the flow within the acoustic cycle, relative to the stack, it can be 

treated as an entrance flow or a wake flow. The insight into the flow behaviour, its kinematics, dynamics 

and scales of turbulence, is obtained using the classical Reynolds decomposition to separate the 

instantaneous velocity fields into ensemble-averaged mean velocity fields and fluctuations in a set of 

predetermined phases within an oscillation cycle. The mean velocity field and the fluctuation intensity 

distributions are investigated over the acoustic oscillation cycle. The velocity fluctuation is further 

divided into large- and small-scale fluctuation by using Fast Fourier Transform (FFT) spatial filtering 

techniques. 

 

Keywords: oscillatory flow, parallel plate structure, thermoacoustics, turbulence and coherence, spatial 

filtering 

 

1 Introduction 

 

In thermoacoustic devices, an acoustic wave interacts with a stack of tightly spaced plates either to produce 

acoustic power, induced by a temperature gradient on the stack, or to obtain a temperature gradient along the stack, 

induced by an imposed acoustic wave. This is based on the thermoacoustic effect whereby appropriately phased 

pressure and velocity oscillations enable the compressible fluid to undergo a thermodynamic cycle in the vicinity of a 

solid body. These processes have been utilised in thermoacoustic engines and coolers [1], whose main advantages are 

their lack of moving parts and construction simplicity: the conversion between thermal and acoustic energies is realised 

by an oscillating gas, without the need for piston-cylinder arrangements, sliding seals or harmful working fluids. 

Figure 1 shows a schematic of a quarter-wavelength, standing wave device working as a refrigerator thanks to 

the acoustic power input, Wac. Central to the device’s operation is a thermoacoustic stack. This can be imagined as a 
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series of plates forming a set of parallel channels. The gas pressure in the resonator oscillates acoustically at a frequency 

set by the resonance between the gas in the duct and the moving mass of the transducer. The distributions of pressure 

amplitude, |p| and velocity amplitude, |u| illustrate the standing wave present in the resonator. The oscillating gas, within 

a short distance of thermal penetration depth, įȞ from the adjacent solid boundaries, communicates heat with the stack 

(as shown on the right) and heat exchangers, and the acoustics of the system ensure that the timing between the pressure 

and gas displacement is such that heat (the cooling load, Qc) is pumped out of the cold heat exchanger towards the hot 

heat exchanger (and removed to the surroundings as denoted by Qh), using a hydrodynamic energy transfer “cascade” 

enabled by compressing and expanding gas parcels. It is also possible to reverse the operation of such systems to form 

an engine: a high temperature gradient along the stack leads to a spontaneous generation of acoustic power which can 

be converted to electricity by a linear alternator. More complex systems can be built utilising the concept of “travelling 

wave” devices [2] which are not discussed here for simplicity. 

 

 

Figure 1 Schematic of a simple thermoacoustic cooler arrangement. The acoustically induced 

compression and expansion of fluid elements causes heat pumping effects along the stack. 

 

The intensity of acoustic waves used in thermoacoustic applications is usually described by their “drive ratio”μ 

the ratio of the maximum pressure amplitude of the acoustic wave to the mean pressure in the resonator (Dr). It is 

thought that up to drive ratios of about 2-3 % the fluid flow and heat transfer processes can be reliably described by the 

linear acoustic theory developed by Rott [3]. However, practical applications often require drive ratios as high as 10 %, 

in which range the interaction between the acoustic field and the solid boundary is governed by complex thermal-fluid 

processes, which are still not fully understood. Large drive ratios correspond to large fluid displacements and velocity 

amplitudes, which in turn lead to significant nonlinear effects such as local pressure losses caused by the abrupt change 

of the cross section, acoustic streaming, vortex shedding and transition to turbulence. These factors can have a 

significant influence on the overall efficiency of thermoacoustic systems, yet they are still not quantified sufficiently for 

practical thermoacoustic applications. Current paper addresses these issues through developing appropriate 

measurement methodologies which could be applied to “model” thermoacoustic devices in order to study the 

fundamental fluid flow behaviour. As a first step, and an illustration of the measurement capabilities, it focuses on the 

flow at the extremity of the stack of parallel plates. It is thought that the flow behaviour in this region plays an 

important role in heat transfer processes between the stack and the heat exchangers, and so the proposed measurement 

techniques and experimental results are of both fundamental and practical importance. 
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2 Literature review 

 

Particle Image Velocimetry (PIV) has been successfully applied in great many areas of fluid mechanics; it is 

rather impractical to provide a detailed discussion here. Comprehensive reviews are available [4,5], while Measurement 

Science and Technology devoted a series of special issues and “features” to the subject [6-11] with over 70 research 

papers. Nowadays, PIV is considered a mature measurement technique, with many turn-key systems available on the 

market. The research challenge is therefore a continuous improvement of the accuracy and data interpretation methods 

as well as application of the PIV techniques to complex (often non-linear) systems. In the context of thermoacoustic 

engines and refrigerators the two technical challenges are to devise appropriate triggering/data sampling techniques that 

would enable defining reliably the measurement points within the acoustic cycle and data processing methods that 

would allow extracting average features of the resulting flow field and the statistical analysis which would characterise 

the unsteady characteristics of the flow. 

The above mentioned challenges are in some way similar to those of PIV imaging in internal combustion engines 

[12-14], where the flow must be sampled at selected phase angles of the engine cycle, while unsteady flow behaviour 

must be analysed through ensemble averaging over many cycles, rather than by the analysis of temporal signals, as is 

usually the case in steady flows – see the discussion provided by Towers and Towers in [5], pages 354-355, and in [12]. 

However, while measurement phase-locking is relatively straightforward for IC engines (e.g. crank angle), in 

thermoacoustics one needs to rely on the timing of the acoustic excitation to trigger the PIV imaging, which can be 

achieved by several different methods. This adds additional complexity to the measurement as well as potentially some 

measurement uncertainty.  

Applications of PIV for flow visualization or velocity measurement in acoustic systems were reported by Hann 

and Greated [15,16] who used a double exposure on a single frame and an auto-correlation method. Campbell et al. [17] 

carried out a review of PIV (as well as LDA) methods in sound measurement applications, and focused in particular on 

measurements illustrating streaming effects in acoustic systems using PIV. More recent work by Nabavi et al. [18] 

focused on simultaneous measurement of acoustic and streaming velocities at selected phases of the acoustic cycle , the 

former obtained by cross-correlating two consecutive PIV images, while the latter was obtained by cross-correlating the 

alternative PIV images at the same phase. A good agreement between experiments and theoretical predictions was 

reported. A somewhat similar approach was adopted by Debesse et al. [19] who measured acoustic and streaming 

velocities in a high pressure (7 – 15 bar) standing wave resonator working with nitrogen at a frequency of 22 Hz. Here 

the acoustic excitation was induced by a thermoacoustic engine located at one end of the resonator, while the velocity 

fields were measured at the other end, through a short cylindrical section made out of glass. 

The flow field around internal structures of thermoacoustic systems was perhaps first investigated by Blanc-

Benon et al. [20]. They used a quarter-wavelength thermoacoustic refrigerator configuration, driven by a loudspeaker at 

a frequency of 200 Hz. The experiments were conducted for two stacks: one with plate thickness of 0.15 mm and plate 

spacing of 1.0 mm, the other with plate thickness of 1.0 mm and plate spacing of 2.0 mm. The drive ratios were 

relatively low: 1.5% and 1.0%, respectively. The measurements were locked onto the loudspeaker signal. Vortex 

structures around the edges of stack plates were obtained by averaging of 100 PIV images taken at selected phases of 

the acoustic cycle (altogether 16 phases in an acoustic cycle were investigated). The results showed both concentrated 

and elongated eddies, which nevertheless remained attached to the plates. Further investigations of velocity fields 

generated by the oscillatory flow past the parallel-plate stacks were carried out by Castrejón-Pita et al. [21], Berson and 

Blanc-Benon [22], Berson et al. [23], Mao et al. [24], Aben et al. [25] and Jaworski et al [26]. Generally speaking all 

these works focused on velocity and vorticity fields in order to classify the flow morphology as a function of stack 
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geometries and acoustic excitation levels. Some similarity criteria have also been suggested to find the controlling 

parameters for this type of flow. 

Unfortunately, so far only the mean velocity and vorticity fields obtained by ensemble-averaging were 

investigated. Current work is driven by the interest in the fluid-mechanical aspects of the thermoacoustic systems, in 

particular the turbulence characteristics in the vicinity of the parallel-plate thermoacoustic stack, which may have a 

strong impact on the actual heat transfer intensity. The mean flow field features investigated experimentally [20-26] 

have been successfully replicated by various numerical works (see for example [20, 27-30]). Unfortunately, there is a 

fundamental problem here since CFD typically uses time-dependent solutions of Navier-Stokes equations, which after a 

few cycles converge to numerically stable (i.e. highly repeatable) flow patterns. Unfortunately, the data presented in this 

paper shows that the real flow field is highly unsteady in the sense that the cycle-to-cycle variations are significant. The 

similarity between actual measurements and CFD only arises when ensemble-averaged data is compared to time-

dependent but “numerically stable” results of CFD. In this sense CFD can reproduce well the mean flow field. Neither 

statistical velocity fluctuations nor small-scale eddies contained in the flow field and possibly generated by dissipating 

the large scale vortices were reported. Another difficulty is that the flow conditions investigated by CFD have relatively 

small Reynolds and/or Mach numbers, which rarely promotes the occurrence of turbulence. As a result very little is 

known about the nature of turbulence in oscillatory flows as investigated in the present work, which is hoped to provide 

an important first step for further experimental work and some more advanced numerical studies. 

 

3 Experimental apparatus and measurement techniques 

 

The detailed description of the rig and its linear acoustic model is given in [31], while the PIV measurement 

technique is briefly introduced in [24]. Therefore only essential information is provided to maintain the paper clarity. 

On the other hand, some new information is included in areas such as the analysis of seeding particles or triggering of 

the measurement system due to the specific nature of the journal. 

 

3.1 Resonator and stacks 

 

Figure 2a shows a schematic diagram of the experimental rig with the main components and their dimensions. 

The working gas is air at atmospheric pressure and room temperature. The oscillatory flow is induced by a standing 

acoustic wave generated by a loudspeaker. The coupling of the square duct and the loudspeaker enables the rig to work 

as a quarter-wavelength resonator with the fundamental frequency of 13.1 Hz. Current experiments were carried out at 

drive ratios up to 3%. Construction of the rig described above allows testing arbitrary stack arrangements, at arbitrary 

locations along the resonator. In the current work, two stacks were tested, both of which had the length, l = 200 mm and 

the width to fit the internal resonator width. The first stack (denoted as Stack I) had d = 1.1 mm thick plates, with the 

spacing between plates D = 5.0 mm. The second stack (denoted as Stack II) had d = 5.0 mm thick plates, with the 

spacing between plates D = 10 mm (see Figure 2b for a stack schematic). The fluid particle displacement amplitude is 

normally less than half of the plate length, therefore the flow disturbance from one end of the stack plates is considered 

too far to disturb the flow at the other end of the stack (in other words the plates can be assumed “semi-infinite” in 

length). For both stacks, the distance separating the centre of the stack and the end plate of the resonator was 4.11 m. 
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3.2 Flow seeding and laser illumination 

 

Air in the resonator is seeded with olive oil droplets of sizes typically around 1 ȝm. The particle suspension was 

injected through an opening in the resonator wall, close to the location of the stack, while another opening far from the 

measurement zone allowed maintaining the atmospheric pressure inside the resonator. After the seeding was in place, 

the openings were blocked and a high intensity acoustic wave was used to distribute the particles evenly within the 

measurement zone, after which the actual imaging was undertaken. After the tracer injection a high tracer particle 

density of more than 15 particles in each interrogation spot in average can be obtained, which enables a relatively high 

detection probability of a valid velocity vector [32]. This quality particle suspension lasts typically for a period of a few 

minutes, during which the PIV measurements are undertaken. After a few minutes, the particles tended to settle, adhere 

to the internal surfaces or drifted away most likely due to streaming processes. Subsequently the rig had to be cleaned 

inside and the seeding had to be re-applied before the next set of experiments. 

 

 

Figure 2 Schematic of experimental apparatus (a); details of the stack and imaging area (b); and block 

diagram of the triggering mechanism used for phase-locking in PIV measurements (c) 

 

In the PIV measurement of the velocity field, it is the velocity of the particles suspended in the fluid that is 

actually measured. Therefore, it is necessary for the particles to follow the flow faithfully. The unsteady motion of 

dispersed particles suspended in a continuous medium was modelled by Melling [33] (cf. Eq. (2) in [33]). According to 

King [34] there are also additional forces induced by the acoustic radiation pressure (cf. Eq. (76) in [34]) in a standing 

wave. However in the experimental conditions considered, the acoustic radiation pressure on the tracer particle is about 

seven orders of magnitude smaller than the acceleration force according to Stokes’ law and it may be easily neglected 

here. Using the analysis by Melling [33], and considering that, in this case the particle density ȡp and the fluid density ȡ 

differ by three orders of magnitude, one can simplify Melling’s equation to 
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where dp is the particle diameter,  (about 1.81×10-5 kg m-1 s-1 for air at 1atm and 20 °C ) is the dynamic viscosity of the 

fluid, up and u are the instantaneous velocity of the particle and fluid respectively. Of course u is a nonlinear function of 

time in the unsteady flow around the stack plates and the equations of motion become difficult to solve. Relaxation 

time, s could be used to measure the tendency of the particles to follow the fluid velocity, on the assumption that the 

particle velocity approaches the flow velocity exponentially, as described by Eq. (2.3) in [35]. The relaxation time s is 

defined as 
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Assuming that the particles follow the flow if  up/u > 0.99, with no more than 1° phase lag, it can be shown that the 

maximum diameter of the particles should be about 4.0 ȝm for the acoustically driven oscillatory flow of interest (f = 

13.1Hz). Therefore the choice of the smoke generator and the resulting particles used for PIV measurements seem 

reasonable. 

A laser beam from a Nd:YAG pulsed laser (BigSky Laser) was expanded to form a divergent laser sheet in the 

vertical plane (Fig. 2a). It penetrated into the resonator perpendicularly to the resonator axis and was reflected by a 

small rectangular mirror (30 mm × 10 mm) to illuminate the flow into and out of the stack. The mirror was installed 

0.7 m away from the end of the stack, while the laser aperture was about 0.3 m away from the mirror; the imaging area 

was approximately in the beam waist, where the laser sheet is about 1 mm thick, measured by using “paper burn” 

technique. It was confirmed by a preliminary PIV measurement (not shown here) that the presence of the mirror had no 

discernible effect on the oscillatory flow at the stack. 

 

3.3 Details of PIV measurement 

 

Figure 2c shows a block diagram of the PIV triggering mechanism used in the current study. The output signal of 

the pressure transducer shown in Figure 2a is used as a phase reference to generate a TTL pulse sequence by an in-

house made circuitry, at the same frequency as the acoustic excitation provided to the loudspeaker. The TTL signal was 

used to synchronize the laser pulses and the image capturing by a 4MP camera, so that the pictures were phase-locked 

to the pressure oscillation, thus the velocity oscillation in the resonator. The phase of the TTL signal can be shifted so 

that the flow in different phases of the acoustic oscillation can be observed. As schematically shown in Figure 3, 20 

phases (every 18º) were investigated in each acoustic cycle. Here the times when these 20 phases (ĭ1, ĭ2…ĭ20) appear 

is shown relative to the mean ensemble averaged velocity at point M (cf. Fig. 2b). In general, the flow corresponding to 

phases ĭ1 – ĭ10, when the fluid flows out of the stack with a positive velocity, is referred to as the ejection stage, while 

the flow corresponding to phases ĭ11 – ĭ20, when the fluid flows into the stack with a negative velocity, is referred to as 

the suction stage – both explained in more detail in section 4.3. 

To determine the flow velocity in each phase, pairs of singly exposed images were captured. The time difference 

of images in each pair was determined by the laser pulse separation, which was chosen so that the particle 

displacements during the interval were generally not more than 1/4 of the interrogation area used to analyze the 

captured images [36]. Thus, the time separations between laser pulses were varied according to the velocity magnitude 
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at the investigated phase, and the size of the investigated fields. A flow field of smaller size was imaged to reveal the 

velocity gradient in the viscous boundary layer, while a larger size was applied to view the general pattern of the wake 

flow. The measured field size ranged from 25 mm × 25 mm to 60 mm × 60 mm for the investigated two stack 

configurations. 

 

 

Figure 3 Phase-averaged velocity oscillation at point M and corresponding phases at which the PIV 

measurements are taken 

 

The image processing was performed using commercial software (TSI INSIGHTTM). A standard Fast Fourier 

Transform (FFT) cross-correlation algorithm was used and Gaussian peak detection algorithm was applied to identify 

the velocity vectors. The interrogation spots had a size of 32 × 32 pixels, and were recursively reduced to 16 × 16 pixels 

with 50% overlap [37]. A validation was applied on the obtained velocity vector fields to remove spurious vectors. The 

spurious vectors are detected by using a “neighbourhood mean” filter, which removes vectors that are out of the range 

of the mean value +/- three times standard deviation in a window of 3 × 3 vectors. A median value is used rather than 

the mean to exclude any contribution from a spurious vector that may be present in the third row or column in the 3 × 3 

window, in the row-by-row scanning process. 

 

4 Results and discussion 

 

4.1 Validation of velocity measurement 

 

PIV is an absolute method of velocity measurement, which relies on the displacement of tracer particles as 

captured by two consecutive images with known time separation. Nevertheless it seemed useful to validate the velocity 

measurement in two ways. Firstly, an acoustic wave was established in an empty resonator. Given that the pressure 

amplitude at the end of the resonator is known, it is easy to predict analytically the oscillatory velocity field in the 

centre of the resonator (at any axial location, for example in the location where the stack would normally reside). These 

measurements simply confirmed that the measurement and data acquisition setup was working correctly. The absolute 

values of discrepancy between the predicted and measured velocity values at different phases were typically less than 

3.6% of the velocity amplitude. 
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Figure 4 Velocity profiles for 10 phases in the cycle: solid lines – theoretical predictions; symbols – ensemble 

averaged measurements. Data shown for Stack II at 2.4D from the channel entry and Dr of 0.3%; arrows 

indicate the discrepancy between measured and theoretical profiles for ĭ11 and ĭ13; error bars for ĭ5 and 

ĭ15 show the standard deviation based on averaging of 100 PIV measurements 

 

Secondly, ensemble averaged velocity measurements were carried out within a selected channel between two 

stack plates and compared to theoretical predictions. It is known that the flow velocity in the stack channel at a 

relatively low drive ratio can be predicted accurately by the linear thermoacoustics theory [1]. Figure 4 shows the 

velocity distribution of the U component of the velocity for 10 selected phases, obtained by PIV measurements of the 

flow around the end of Stack II, along with the profiles predicted by linear thermoacoustics. The measured velocity 

profiles were obtained at the distance of 2.4D into the channel. The y coordinate is normalized by the channel width D 

shown in Fig. 2. The selected case was measured at Dr = 0.3%, which corresponds to the velocity amplitude of about 

1.05 m/s. It can be seen that the measured mean velocity profiles reproduce very well the double boundary layers 

typically found in the oscillatory flows and the velocity magnitudes, except for ĭ11 and ĭ13 (see arrows in Fig. 4). The 

differences between measured and predicted velocities in these phases are caused by the entrance effects, which occur 

during the suction phase of the oscillatory flow [26]. Velocity profiles for ĭ5 and ĭ15 have also “error bars” 

corresponding to the standard deviation of velocity values obtained on the basis of averaging 100 measurements. 

Generally, the standard deviation is less than 2% of the mean velocity amplitude in the central region of the channel. A 

higher fluctuation level in the boundary layer is probably caused by the wall-drag effect on the seeding particles in the 

vicinity of the solid boundary, which is well known to be highly nonlinear [38, 39]. Since the distance to the wall of any 

seeding particle position is a random variable, the strong nonlinearity leads to high fluctuations in velocity as inferred 

by the FFT/cross-correlation algorithm. 

The velocity profiles of the oscillatory flow in a channel between two parallel plates are conceptually similar to 

those for the oscillatory flow in a circular pore, which is also often referred to as the Womersley profiles due to his 

pioneering work [40]. Nevertheless the analytical expressions for the velocity profiles in the oscillatory flow in pores of 
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a range of different geometries, such as square, circular and triangular shapes, as well as a channel between two parallel 

planes are available from Arnott [41]. 

 

4.2 Ensemble averaging of velocity field 

 

For a typical experimental run, an arbitrary number, N, of instantaneous flow fields can be obtained for each of 

the 20 phases. Therefore the data set obtained for each case consists of 20 × N instantaneous flow fields. Each 

instantaneous flow field provides two velocity components u(x, y, ĭ, i) and v(x, y, ĭ, i) in a spatial point (x, y), at phase 

ĭ of each acoustic oscillation cycle i. 

The classical Reynolds decomposition is used to separate the instantaneous flow fields into mean (ensemble-

averaged) flow fields and their fluctuations, based on the assumption that the mean velocity fields are the same at any 

time corresponding to the same phase in the acoustic cycle [42]. Therefore, from a group of instantaneous flow fields of 

the same phase, the corresponding mean velocities U(x, y, ĭ) and V(x, y, ĭ), and the RMS values (standard deviation) 

of the velocity fluctuations, u'(x, y, ĭ) and v'(x, y, ĭ), for each phase ĭ can be calculated as follows: 
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where the summation is over i = 1, …, N images taken at phase ĭ, and the prime indicates the fluctuation of a variable. 

Of course the RMS values of velocity fluctuations will contain both the uncertainty introduced by the measurement and 

the effects of the flow behaviour. Judging from the results shown in section 4.1 (and the results shown in later sections 

4.3 and 4.4), the measurement uncertainty is relatively low compared to the component corresponding to true flow 

unsteadiness (1-2% vs. tens of % – cf. Figs. 9-12). Therefore, by using the traditional Reynolds decomposition one 

could separate the mean and fluctuating components of the instantaneous flow velocity, the latter containing all the 

unsteady features of the velocity field behaviour. 

Of course it should be noted that turbulence is a three-dimensional phenomenon. However due to the limitations 

of the measurement (2D system) as well as the practicalities of the physical setup and access, the current study only 

focused on the plane parallel to the resonator axis. Nevertheless, for reference purposes, some measurements were 

performed to estimate the fluctuations of the third “out-of-plane” velocity component (typically denoted by w'). Here, 

the laser sheet was aligned perpendicular to the resonator axis (5 mm from the end of Stack II  where the fluctuations 

were found to be the highest), while the camera recorded the image reflected in the mirror shown in Figure 2. The 

maximum measured values of w'/Ua were about 12%, compared to 40% in (u'2+v'2)0.5/Ua, 29% in u'/Ua and 28% in 
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v'/Ua, Ua being the amplitude of the mean velocity in x direction. This occurred when the fluid is moving out of the 

channel with the velocity magnitude near to its amplitude. Although the “out-of-plane” fluctuations are clearly much 

lower than those in u and v, the results emphasise that in order to model the flow behaviour correctly any future CFD 

modelling aiming to capture the turbulence physics correctly may have to be fully three-dimensional – this point being 

an addition to the discussion at the end of Section 2. 

 

 

Figure 5 Effect of the number of instantaneous measurements, N, on the computation of the flow statistics at 

point P (a) and point Q (b). Note: units of vertical axes are in m/s for all variables. Index N indicates the number 

of PIV images taken to calculate a given statistic: either mean velocity or velocity fluctuation. 

 

An important step in developing the measurement methodologies for characterising oscillatory flows is to 

establish the number of instantaneous images for a reliable determination of mean flow features. Some studies [43] 

indicate that to reliably measure turbulence characteristics 1000 frames had to be used, while others rely on 

substantially smaller number of frames: Cenedese et al. [44] used only 40 frames for extracting the steady mean flow 

features. In somewhat conceptually similar studies of average helicity and energy dissipation in a turbulent swirling jet, 

Regunath et al. [45] argued that 500 frames was sufficient for their analysis. The effect of the number of instantaneous 

measurements pictures, N, on the flow statistics in the present measurement has been assessed by computing the 

statistics using up to 1000 frames. The 1000 frames were taken for Stack II , at phase ĭ4. The result is shown in Fig. 5, 

corresponding respectively to point P which is along the centreline of the plate, and point Q in Fig. 2b (Q is located 9 

mm above P). It is observed that a very good convergence is obtained for 1000 frames. For only 100 frames, the 

convergence is not rigorously reached, yet is judged sufficient to obtain a good representation of the flow over the 

whole flow field, and a reasonable representative of the convergent statistics. This was the reason for using N = 100 

frames in the current study, and this choice seemed also a reasonable trade off between the accuracy and the storage 

capacity and data processing power available. 

 

4.3 Comparison between the instantaneous and averaged flow features 

 

The detailed flow physics of the oscillatory flow in the experimental setup discussed in this paper has already 

been given in reference [24], based on the averaged flow field analysis. It will not be repeated here. It is perhaps 

important to note that there are two main stages in the oscillatory flow around a stack of plates: The first is the 
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“ejection” stage, where the flow is in the positive direction (cf. Fig. 2) and the fluid emerges from the channels (phases 

ĭ1- ĭ10). Here typically the flow separates at the edges of the plates, and various types of vortical structures are rolled 

up. These may be shed into the flow if the drive ratio is large enough, or may remain in the plate vicinity for small drive 

ratios. Figures 6d and 7d, discussed later give a general idea about the type of vortex shedding occurring in the 

experiments. The patterns may resemble the classical von Karman vortex street, although there are clear differences in 

that the flow is not steady and is accelerated and decelerated in the half cycle discussed here. The exact features of the 

vortex shedding depend on the flow forcing and the geometry of the stack; although various similarity numbers have 

been suggested in [24]. The second stage of the flow is the “suction” stage, where the flow is in the negative direction 

(phases ĭ11- ĭ20, also cf. Fig. 2). During this period all the vortex structures generated in the “ejection” stage (or their 

remains if they had time to dissipate) impinge back on the stack plates. Figure 8d discussed later illustrates the 

impingement of vortex structures onto the stack. 

It is thought that these alternate processes of vortex shedding, flow reversal and vortex “re-impingement” are 

critical to the understanding of the heat transfer modes between the stack and the heat exchangers (not studied in the 

current work). Previous work devoted to analysing flow patterns in the oscillatory flow past a stack of plates [20-26] 

has focussed on the mean flow features and tacitly assumed that by taking a sufficient amount of instantaneous images 

for ensemble averaging any variability of the flow between cycles would be smoothed out. However this approach may 

be questionable especially if the instantaneous flow features are very different from the averaged ones, which may in 

turn have implications on the heat transfer predictions. So far no attempt has been made to quantify that cycle-to-cycle 

flow variability or to estimate to what extent are the instantaneous flow features different from the averaged ones. For 

ease of the following discussion, the flow field data will be presented in terms of vorticity maps, rather than velocity 

field. 

Figure 6 shows an example of comparisons between the instantaneous vorticity field (three images have been 

selected at random from a string of 100 and shown as Figs. 6a – 6c) and the averaged vorticity field (Fig. 6d) for Stack 

II. Here the drive ratio is relatively lowμ 0.6 %; the selected phase is ĭ6. In the references mentioned above, this type of 

flow pattern is referred to as symmetrical attached vortices on the basis of the averaged vorticity filed. However it is 

clear from the instantaneous images that the main vortices shed from the plate behave in a somewhat unsteady manner: 

they assume different shapes, strengths and spatial locations. In the ensemble-averaged vorticity field these features are 

simply filtered out, as are some of the small-scale vortex structures, present in the flow field. 

Figure 7 shows similar comparison between the instantaneous and averaged vorticity fields for Stack II at a 

significantly higher drive ratio of 2.0%, for a selected phase angle ĭ8 (note that this is a “zoomed-out” view compared 

to Fig. 6). It can be seen that while the instantaneous images show a degree of chaotic behaviour and a multitude of 

vortex scales, the ensemble-averaged image in Fig. 7d still brings out an orderly von Karman-like vortex pattern, albeit 

with somewhat smaller vorticity magnitudes and spatially “smoothed out”. Figure 8 shows similar comparisons between 

instantaneous and ensemble averaged flow fields for Stack I and Dr = 1.0%, except that phase ĭ12 has been chosen, in 

order to illustrate the impingement of vortex structures back onto the stack, taking place in the suction phase of the 

cycle. 

The vorticity maps shown in this section clearly show that vortex shedding processes are stochastic in the sense 

that vortex strength, size and location are random and could be classed as quasi-periodic in nature (unlike the well 

known von Karman vortex shedding). The latter is particularly clear when analysing the Fourier transforms of point-

wise hot-wire measurements in the wake of the plate as already shown in reference [24]. Unfortunately, this feature 

could not be brought out in the current PIV study because the system repetition rate is too low to look at a single cycle 

at high temporal resolution. 
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Figure 6 Illustration of the variability between vortex structures in three instantaneous images of the vorticity 

field (a, b and c). The average vorticity field resulting from ensemble averaging of 100 instantaneous images (d). 

Stack II, Dr = 0.6%, phase ĭ6. 

 

Figure 7 Illustration of the variability between vortex structures in three instantaneous images of the vorticity 

field (a, b and c). The average vorticity field resulting from ensemble averaging of 100 instantaneous images (d). 

Stack II, Dr = 2.0%, phase ĭ8. 
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Figure 8 Illustration of the variability between vortex structures in three instantaneous images of the vorticity 

field (a, b and c). The average vorticity field resulting from ensemble averaging of 100 instantaneous images (d). 

Stack I, Dr = 1.0%, phase ĭ12. 

 

4.4 Turbulence vs. “total fluctuation” intensity - spatial distribution 

 

As already mentioned in Section 4.2, for the cyclic flows as discussed in our paper, calculation of the time-series 

statistics (even if high speed PIV was available) makes little sense due to the time dependence of the underlying mean 

flow. Therefore it is usually assumed that the processes are ergodic and the data is collected at a fixed instant (phase) 

for a set of different cycles in order to calculate the flow statistics at that selected phase. In the classical description of 

turbulent flows, the RMS values of velocity fluctuations as defined by equations (5) and (6) lead to the concept of 

“turbulence intensity” using an appropriately selected reference velocity from the mean flow. However, as discussed 

below, such calculations tend to take into account the unsteadiness introduced by the large scale coherent structures 

together with the contributions from small scale vortex structures usually understood as “turbulence”. This distinction 

may be important from the point of view of heat transfer modelling that may be the ultimate objective in the 

thermoacoustic context. 

Therefore for the purpose of this paper it is proposed to use somewhat different terminology: the velocity 

fluctuations described by equations (5) and (6) would give rise to a “fluctuation intensity”. This is denoted as T (with 

appropriate indices as necessary) and calculated using the classical concepts of “turbulence intensity”. On the other 

hand, appropriately spatially filtered velocity fields (as described later in section 4.5) would give rise to “small-scale 

turbulence intensity” (denoted as ș), understood as the contribution from vortex structures smaller than a certain cut-off 

length-scale. 

In view of the instantaneous and averaged PIV images discussed in the previous section, this section attempts to 

present a statistical description of the unsteady processes of vortex shedding occurring in the oscillatory flows, using the 

concept of the abovementioned “fluctuation intensity”. Using the approach proposed by Pai [46] (for the classical 

turbulence intensity) the “fluctuation intensity” could be similarly defined as: 

 

*2 /UuTx  ; *2 /UvTy  ; *2 /UwTz  ;     (7) 
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where the over-bar indicates a temporal mean function and U* is a suitably chosen reference velocity. However, an 

alternative definition (also given by Pai [46]) suggests that the “fluctuation intensity” could also be defined as a sum of 

components in all directions according to the following formula: 

 

*222

3
1

UwvuT 




  .      (8) 

 

Discussion in this section is limited to only a two-dimensional velocity field (u and v) acquired from the 2-D PIV 

measurements. To enable the comparison of the level of velocity fluctuations for different velocity amplitudes and 

various stacks, the “fluctuation intensities” in x and y directions: Tx and Ty can be used (Eq. 7), where the reference 

velocity is simply the amplitude of the mean velocity in x direction, Ua (i.e. the acoustic velocity amplitude). However, 

it is perhaps somewhat easier to look at the combined quantity (total fluctuation intensity), by analogy to Eq. 8, which 

takes into account the velocity fluctuations in both x and y directions, namely: 

 

 aUyxvyxuT ),,(),,( 22  .      (9) 

 

Figure 9, shows the results of calculating the spatial distribution of x and y components of the fluctuation 

intensity within the PIV field of view for a selected case of Stack II, drive ratio Dr = 2.0% and phase ĭ8 (i.e. the case 

presented in Fig. 7). In the example presented, it can be clearly seen that the level of velocity fluctuations in the y 

direction (Fig. 9b) reaches around 50% level, which is relatively high and comparable to total fluctuation intensities that 

may occur in strong vortex wakes and highly reversed flows. However, as indicated at the beginning of this section, the 

interpretation of plots such as in Fig.9b (or 9a) is not straightforward. It needs to be remembered that this particular type 

of flow contains a mixture of large-scale coherent structures (discrete eddies) and smaller scale structures (which one 

would normally refer to as “turbulence”). It seems reasonable to assume that the large variation of velocity from one 

instantaneous image to the next may well be caused by the variation in the position of the large vortices, not the 

intensity of small-scale velocity fluctuations. Furthermore, it can be hypothesised that a high level of the fluctuation 

intensity in Fig. 9b corresponds to relatively high lateral displacements of vortex structures from cycle to cycle, while 

somewhat smaller turbulence intensities appearing in Fig. 9a may indicate relatively lower level of longitudinal (stream-

wise) variation in the position of discrete eddies from one cycle to another. However, the spatial distribution of x and y 

fluctuation intensities is relatively similar – therefore to simplify the results’ presentation in what is to follow, the total 

fluctuation intensity levels (Eq. 9) will be presented. For example graphs 9a and 9b become “combined” within the total 

fluctuation level T shown in graph 11d. 

 

 

 
Figure 9 Distribution of x and y components of fluctuation intensity: Tx and Ty,; Stack II, Dr = 2.0%, phase ĭ8. 
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Figure 10 shows the total fluctuation intensity distribution for six representative phases in the acoustic cycle for 

the case of Stack II and drive ratio Dr = 0.6% (cf. Fig. 6), while Fig. 11 shows the total fluctuation intensity for six 

representative phases for the case of Stack II and drive ratio Dr = 2.0% (cf. Fig. 7). Finally, Fig. 12 shows the total 

fluctuation intensity for six representative phases for the case of Stack I and drive ratio Dr = 1.0%. 

 

 

 
Figure 10 Distribution of the total fluctuation intensity, T; Stack II, Dr = 0.6%. 

 
 

 
 

Figure 11 Distribution of the total fluctuation intensity, T; Stack II, Dr = 2.0%. 
 
 

 
 

Figure 12 Distribution of the total fluctuation intensity, T; Stack I, Dr = 1.0%. 
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It is clear that the statistics of the velocity fluctuations in the oscillatory flow around the end of the parallel-plate 

stack is closely related to the main flow features discussed in section 4.3 and in particular mirrors the behaviour (and 

unsteadiness) of the coherent structures that are present in the mean flow. The high velocity fluctuations occur during 

the ejection stage and are located outside of the stack; the peak values generated usually between phases ĭ6 and ĭ10, 

i.e. in the deceleration phases of the ejection cycle. It can also be easily seen by inspecting figures similar to Figs. 10 – 

12 obtained for all experimental cases that the level of fluctuations grows with the drive ratio however there must be 

differences between absolute values of T and its spatial distribution for the two stacks tested here. 

To have some overall measure of flow unsteadiness, the turbulence kinetic energy, defined as 

 

)(
2

1 222 wvuk          (10) 

 
can be analysed (w component is simply taken as zero in two-dimensional analysis). Strictly speaking this may have to 

be re-defined as “fluctuation kinetic energy” to follow the logic of “fluctuation intensities” described earlier. However it 

is not thought to be necessary for the purpose of this paper. An integral of k was calculated over an area corresponding 

to one plate segment, and extending from the plate’s end 48.6 mm out of the stack (this was the maximum field of view 

that was obtained in the experiments for Stack I), and then normalised by the area. Such approach is often used in 

meteorological studies such as [47] and [48]. Figure 13a illustrates schematically the integration area. For Stack I it is 

6.1 mm wide, for Stack II it is 15 mm wide. The spatially averaged turbulence kinetic energy can be written as follows: 

 

 
A

A dAyxk
A

k ),,(
1

.       (11) 

 
Figure 13b shows the plots of kA for all experimental cases as a function of phase in the cycle. As expected the 

energy is low for cases when the oscillation is weak (drive ratios 0.3% and 0.6% for both stacks), but becomes 

appreciable for higher drive ratios. It is also clear that its magnitude is higher for Stack II than for Stack I. This is again 

not surprising due to the fact that the separations on relatively thicker plates generally produce stronger concentrated 

vortices that contribute more strongly to fluctuation intensities. Finally it is possible to integrate the curves such as those 

shown in Fig. 13b over the oscillation cycle to obtain an area and cycle averaged turbulent kinetic energy (denoted kA,T), 

which is illustrated in Fig. 14. It is possible to interpret this graph as an indication of the total energy contained in the 

flow related to velocity fluctuations due to coherent structures and small scale turbulence. 

 

 (a)  
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(b)  

Figure 13 Illustration of the integration area for calculating averaged turbulent kinetic energy kA over a sample 

area A (a); plot of kA as a function of phase in the cycle for all experimental configurations (b). 

 

Figure 14 Area and cycle averaged turbulent kinetic energy kA,T as a function of drive ratio. 

 

4.5 Separation of fluctuation intensity with regard to length-scales: small-scale turbulence 

intensity. 

 

In the existing literature there have been many studies undertaken to investigate the effects of the turbulence 

intensity on heat transfer from solid bodies, such as circular cylinder [49,50], elliptical cylinder [50], and sphere [51] 

etc. For example, Kondjoyan and Daudin [50] studied the effect of the free stream turbulence intensity on the heat 

transfer coefficient on a circular cylinder and an elliptical cylinder when Reynolds number was between 5,000 and 

30,000. The heat transfer coefficient, Nu, when the turbulence intensity is 40%, has a value of about two times its value 

when the turbulence intensity is 1.5%, which suggests that it is the small-scale turbulence (as opposed to large coherent 

structures) that is a major contributor to the heat transfer mechanisms. References [52,53] also investigated the effects 

that the integral length scale, which characterises the dimension of eddies in the flow, may have on the heat transfer. 
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Sak et al. [53] observed a decrease in the heat transfer coefficient, Nu, with the increase of the relative turbulence length 

scale from 0.5 to 1.47, when the relative turbulence intensity of the flow towards a circular cylinder is kept constant at 

about 6.7%. Since the turbulence scale may be an important contributor to the intensity of the heat transfer and the 

current study is intended as a precursor to turbulence characterisation in oscillatory flows, it seems appropriate to 

develop tools that could distinguish between the turbulence intensities contributed by various turbulence length scales 

present within the flow.  

The instantaneous velocity u and v, following Reynolds decomposition and the definition in Eq. (3) – (6), are 

divided into the ensemble-averaged velocity and the fluctuation from the ensemble-averaged velocity: 

 

),,,(),,(),,,( iyxuyxUiyxu  ; ),,,(),,(),,,( iyxvyxViyxv     (12) 

 

The idea behind the data processing described below is that it should be possible to further divide the fluctuation 

component into large- and small-scale fluctuations according to a specified cut-off length Ȝ related to the size of the 

eddies present in the flow: 

 

     ),,,,(),,,,(),,(),,,(  iyxuiyxuyxUiyxu sl       

),,,,(),,,,(),,(),,,(  iyxviyxvyxViyxv sl       (13) 

 

where lu , lv , su  and sv  indicate the large-scale fluctuations and small-scale fluctuations of velocity components u and 

v, respectively. 

The RMS value of the large-scale fluctuation (lu  and lv ) and small-scale fluctuation (su and sv ) would 

quantify the amount of the variation of each component at each phase at position (x, y) with cut-off length Ȝ: 
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Thus, a combined quantity to denote the amount of variation of velocity fluctuation at large-scale and small-scale can be 

respectively described by armslrmsl Uvu 2
,

2
,   and armssrmss Uvu 2

,
2
,   (the latter according to the nomenclature introduced 

in section 4.4 could be denoted as ș). Their values are normalized by the amplitude of the mean velocity to indicate the 

relative strength. 

In order to separate the small-scale and large-scale fluctuations of the flow, a two-dimensional spatial Fast 

Fourier Transform (FFT) technique has been designed, and the essence of the calculation algorithm is illustrated in 

Figure 15. The ensemble-averaged velocity field was first subtracted from the instantaneous two-dimensional velocity 

field to obtain the fluctuating velocity fields containing components u'(x, y, ĭ, i) and v'(x, y, ĭ, i). Such “instantaneous 

fluctuating velocity fields” were then separated into u and v components and each was separately transformed using the 

FFT into the spatial-frequency domain. Figure 16 shows the 2D amplitude spectra computed from the instantaneous 

fluctuation (u’, v’) using 2D spatial FFT for the velocity field which is depicted in Figure 7c. Interestingly, the high 

intensity “peaks” in the centre form relatively regular patterns and it is thought that they correspond to large scale (low 

“wave-number”) coherent structures. Similar behaviour of the FFT was also observed by Piirto et al. [54] for vortex 
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shedding in steady flows. The rather random distribution of much lower amplitudes around the centre is thought to 

originate from the smaller scale (higher “wave-number”) eddies responsible for what was defined in section 4.4 as 

“small-scale turbulence”. 

Subsequently, low-pass filtering was carried out by setting to zero all the Fourier coefficients below the desired 

cut-off characteristic length Ȝ. The instantaneous low-pass filtered fluctuation velocity fields in the space domain were 

obtained by an inverse Fourier transform of the velocity data in the spatial-frequency domain. The high-pass filtered 

fluctuation velocity field for each instant was obtained by subtracting the low-pass filtered fluctuation velocity field and 

the ensemble-averaged velocity field from the instantaneous velocity field. Of course, the cut-off spatial-frequency or 

cut-off length Ȝ is a critical parameter in the process of spatial filtering in order to separate the contribution of small-

scale fluctuations from large-scale fluctuations. However, the determination of its value is rather arbitrary in this case 

and is partly limited by the spatial resolution of the velocity field from 2D PIV results. 

 

Figure 15 Schematic of the spatial filtering algorithm based on 2D FFT, for separating instantaneous velocity 

fields according to the length-scales of eddies present in the flow 

 

Figure 17 (again based on the results shown in Figure 7c) shows the decomposition of an instantaneous velocity 

field into two parts: the large-scale velocity fluctuation field (top row) and the small-scale velocity fluctuation field 

(bottom row), based on the original ensemble average field shown in Figure 7d and the instantaneous field shown in 7c. 

The vorticity fields shown in Figure 17 are simply reconstructed using the fluctuation component of velocity to 

visualise the different vorticity scales. The cut-off length Ȝ was set as 1.9 mm (left column) and 3.9 mm (right column) 

respectively. A substantial part of the flow structures formed at the plate ends is included in the large-scale fluctuations, 

and they are essentially different in strength, size and location from instant to instant, otherwise they would have been 

included in the ensemble-averaged flow field. The reconstructed vorticity field below the cut-off length scales reveals 
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randomly distributed small scale eddies that would be responsible for “small scale turbulence” as described in Section 

4.4. 

 

Figure 16 2D amplitude spectrum maps computed from the instantaneous fluctuation u’ (a) and v’ (b) using 2D 

spatial FFT, fxǻx and fyǻy being the spatial-frequency in respective directions. An arbitrary scale is used for 

comparisons. 

 

Figure 17 Velocity and vorticity fields obtained from spatial filtering of data shown in Figure 7c, using the cut-

off length of 1.9 mm (a and b) and 3.9 mm (c and d). The top row shows large scale vortex structures obtained 

from instantaneous velocity fluctuation after low-pass filtering, while the bottom row corresponds to high-pass 

filtering. Stack II, Dr = 2.0%, phase ĭ8. 
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The distributions of the combined RMS value of large-scale fluctuation and small-scale fluctuation (turbulence 

intensity) are shown in Fig. 18 and Fig. 19 respectively, for the case of Stack II at Dr = 2.0%, and the cut-off length 

chosen as 3.9 mm. The regions in the flow field affected by the large- and small-scale fluctuation are somewhat similar 

at each individual phase, although small-scale fluctuation tends to be stronger in an area closer to the plate end. It is 

interesting to see that the combined RMS value of large-scale fluctuation can reach about 50% of the mean velocity 

amplitude, while the combined RMS value of small-scale fluctuation is rarely more than 20% of the mean velocity 

amplitude. Compared with the distribution of the total fluctuation intensity shown by Fig. 11, the distribution of the 

combined RMS value of large-scale fluctuation reveals that it contributes a large part to the evaluated total fluctuation 

intensity at least at this test condition. 

 

 

Figure 18 Distribution of the relative large-scale fluctuation; Stack II, Dr = 2.0%, Ȝ = 3.9mm 

 

Figure 19 Distribution of the relative small-scale fluctuation; Stack II, Dr = 2.0%, Ȝ = 3.9mm 

 

5 Conclusion and future work 

 

This paper addresses the need for understanding turbulence characteristics of oscillatory flows past a stack of 

parallel plates. This particular configuration is important in the context of thermoacoustic engines and refrigerators, 

where an oscillatory flow is responsible for hydrodynamic energy transport along the stack, but also facilitates heat 

transfer between the stack and adjacent heat exchangers. The focus of this work is the development of PIV 

measurement techniques and methods of data processing and representation for characterisation of turbulent flows at the 

end of the parallel plate stack. 

A typical focus of previous work was the flow pattern characterisation of the fluid motion out of the stack (i.e. 

ejection stage) based on the ensemble averaging of a large number of phase-locked PIV images. However, the presented 
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results indicate that such a description is relatively simplistic. The cycle-to-cycle variability of the flow field can be 

very significant, and to the authors’ knowledge this aspect has not gained a sufficient recognition. Results presented in 

this paper show that it is possible to describe the unsteady/turbulent flow behaviour using classical Reynolds 

decomposition and subsequently analyse the fluctuation intensity “maps”. Furthermore, it has been suggested that 

simplified parameters such as area-averaged or area-cycle-averaged turbulent kinetic energy can be used to compare the 

flow unsteadiness generated by different stack configurations and flow forcing. It is hoped that such data could help the 

modelling efforts on predicting the heat transfer rates between stacks and heat exchangers. However, in addition to the 

classical approach of calculating the fluctuation intensities a new methodology was proposed for spatial filtering of 

instantaneous fluctuation velocity fields in order to separate the contributions from large- and small-scale flow 

structures to the overall fluctuation intensity. It has been suggested that the term “turbulence intensity” should only be 

associated with the small scale vortex structures, which are more likely to control the heat transfer processes. 

However, the work presented is only a first step in developing a deeper understanding of energy transfer 

processes in thermoacoustic systems. There are two clear shortcomings of current approach: Firstly, the configuration is 

simplified to enable the evaluation of measurement methodologies – in reality the stack will be coupled to a heat 

exchanger and so the flow field will be much more complicated, especially as the two structures would effectively be in 

each other’s wakes. Secondly, the arrangement studied is isothermal, and so there is no opportunity to study the actual 

heat transfer processes. Therefore a further improvement would be to impose appropriate thermal boundary conditions 

on the structures studied and combine PIV with temperature field measurement, for example by Planar Laser Induced 

Fluorescence (PLIF). These will be the directions of future experimental work. Finally, based on such experimental 

results, significant research effort is needed on performing similarity analysis on a wide range of geometrical 

configurations to formulate criterial equations describing the energy transfer mechanisms. 
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