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Oscillatory flow at the end of parallel plate stacks – phenomenological and similarity analysis 
 

Xiaoan MAO and Artur J. JAWORSKI 1 
 

School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, 
George Begg Building, Sackville Street, Manchester, M13 9PL, UK 

 
Abstract: This paper addresses the physics of the oscillatory flow in the vicinity of a series of 
parallel plates forming geometrically identical channels. This type of flow is particularly relevant 
to thermoacoustic engines and refrigerators, where a reciprocating flow is responsible for the 
desirable energy transfer, but it is also of interest to general fluid mechanics of oscillatory flows 
past bluff bodies. In this paper the physics of an acoustically induced flow past a series of plates in 
an isothermal condition is studied in detail using the data provided by PIV imaging. Particular 
attention is given to the analysis of the wake flow during the ejection part of the flow cycle, where 
either closed re-circulating vortices or alternating vortex shedding can be observed. This is 
followed by a similarity analysis of the governing Navier-Stokes equations in order to derive the 
similarity criteria governing the wake flow behaviour. To this end, similarity numbers including 
two types of Reynolds number, Keulegan-Carpenter number and a non-dimensional stack 
configuration parameter, d/h are considered and their influence on the phenomena discussed. 

 

1. Introduction and background 
 
In thermoacoustic devices, an acoustic wave interacts with internal solid structures (referred to as thermoacoustic stacks 
or regenerators) either to produce acoustic power, induced by a temperature gradient on the stack (an engine), or to 
obtain a temperature gradient along the stack, induced by an imposed acoustic wave (a cooler). This is based on the 
well-known thermoacoustic effect (Rayleigh, 1894), where appropriately phased pressure and velocity oscillations 
enable the compressible fluid to undergo a thermodynamic cycle in the vicinity of a solid body. Figure 1 shows 
schematically the physics behind generating useful acoustic energy in a standing wave thermoacoustic engine. Detailed 
analysis is provided by Swift (1988). 
 

 
 

Figure 1 Illustration of the oscillatory gas motion coupled with heat transfer to/from the solid. 
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The main advantages of thermoacoustic devices are their simplicity of construction, high reliability, potentially low cost 
and environmental friendliness. The thermodynamic cycle takes place in an environmentally benign oscillating gas (air, 
helium, nitrogen etc) without the need for any timing mechanisms involving moving parts. Thermoacoustic devices are 
an attractive alternative in certain niche applications including electricity generation for spacecraft, low cost electricity 
generators for rural areas, gas liquefaction systems for remote oil rigs, or for utilisation of industrial waste heat. 
However, systems built so far suffer from a poor thermodynamic efficiency compared to the efficiency that is 
theoretically achievable (Paek et al., 2005). It is thought that a better understanding of the thermo-fluid processes within 
the internal components is important to aid the design of thermoacoustic systems of higher efficiency. 
 
It is well known that linear thermoacoustic theory can reliably predict the performance at low amplitudes of acoustic 
pressure (Rott, 1980; Swift, 1988). However at high amplitudes, which are required for such system to operate in 
practical industrial applications, nonlinear effects become significant; these include acoustic streaming as well as vortex 
shedding and turbulence generation, especially at abrupt changes of cross-sectional areas such as the end of 
thermoacoustic stacks. Therefore there is a need for understanding the oscillatory flow processes in the vicinity of such 
internal structures, which potentially can adversely affect the achievable efficiencies of thermoacoustic systems. 
 
In thermoacoustic devices, arrays of tightly spaced parallel plates are often used as stacks or regenerators because of the 
ease of manufacture and their theoretical performance (Backhaus and Swift, 2001). Similarly, some of the popular 
thermoacoustic heat exchangers (fin-and-tube type) are essentially parallel-plate structures that facilitate heat input and 
removal to and from stack/regenerator assemblies. Clearly, the heat transfer efficiencies achieved by thermoacoustic 
heat exchangers are strongly affected by the state of the flow passing through. In the general sense, flows past these 
types of internal structures can be seen as a problem of an oscillatory flow with zero mean past a series of bluff bodies 
(i.e. individual plates or fins), which is the background of present paper. 
 
Over the last century, numerous studies of the flow field behaviour due to steady flows past bluff bodies have been 
conducted, one of the earliest usually cited being work of von Karman on vortex shedding behind a circular cylinder 
(Kovasznay, 1949). However a somewhat more relevant topic to the current work is the oscillatory flow past bluff 
bodies. Majority of such studies have been conducted for circular cylinders due to the practical applications of wind 
engineering, marine and coastal engineering, chemical engineering and heat exchangers – good examples are given by 
Berger and Wille (1972), Bearman et al. (1980) and Bearman (1984). 
 
The oscillatory flow around stacks of plates of finite thickness and square edges has received some attention both 
numerically (Worlikar et al., 1996, Worlikar and Knio, 1996) and experimentally, for example by Mao et al. (2005), 
Mao et al. (2008), Aben et al. (2009) and most recently Shi at al. (2009). Some important flow features such as 
symmetrical concentrated vortex pairs attached to the plate ends or the elongated vortex pairs which break up into 
“vortex-street” type of structures were observed (Mao et al., 2008). In various experimental papers of this kind the stack 
plates used have a relatively large range of thickness: from 0.15 mm to a few millimetres and as a result, the flow 
behaviour at the stack end differs dramatically from one case to another. For example, as reported by Mao et al. (2008), 
flow features at the end of a 5.0 mm thick stack plates resemble von Karman vortex shedding, while, in nearly the same 
conditions, flow features at the end of 1.1 mm thick plates include long shear layers that lose their stability and break up 
into discrete vortices. However, the purpose of the work by Mao et al. (2008) was to study the development of the flow 
structures (patterns), formed around the stack end during the oscillation cycle, as a function of the flow oscillation 
amplitude (described by the drive ratio) varying within a certain range. Thus the flow behaviour was essentially studied 
as a function of the “phase Reynolds number”, as well as the “peak Reynolds number”. In the statement of future work, 
it was noted that a more comprehensive similarity analysis should be carried out in future and it has been hypothesised 
that the appropriate similarity numbers such as Reynolds number, Keulegan-Carpenter number (KC) and a geometrical 
parameter such as for example stack porosity could be used for characterization of the oscillatory flow past parallel 
plate stacks. 
 
In practical thermoacoustic devices the plate thickness is often of the order of 0.1 mm, while heat exchanger fins can be 
significantly thicker, e.g. in the range of 2.0 mm to ensure good heat removal properties – e.g. see Hofler (1986) or 
Backhaus and Swift (2001). Therefore it is practically important to understand the flow behaviour at the stack end for a 
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wide range of stack geometries, the controlling parameters and their critical values to distinguish the different flow 
regimes. Current work explores further the ideas put forward in the previous work by Mao at al. (2008) in order to study 
the similarity of the oscillating flow around parallel-plate stacks, and attempt to map the flow conditions in a non-
dimensional parameter space. In this paper, the common features of the oscillatory flow at the stack end are presented 
first, based on the PIV measurements of velocity and vorticity fields near parallel-plate stacks in an isothermal condition 
(i.e. neglecting heat transfer effects). Then a set of non-dimensional parameters is proposed by normalising the 
governing Navier-Stokes equations to describe the oscillatory flow around an array of rectangular plates, followed by 
further analysis and discussion. 
 

2. Experimental apparatus and method 
 
The experimental apparatus used in the current study has been described in detail by Marx et al. (2006) while the details 
of the Particle Image Velocimetry (PIV) measurement system implemented within the rig were given by Mao et al. 
(2008). Therefore only the essential information will be repeated in this paper. As illustrated in Figure 2, the rig is 
essentially a standing wave resonator made out of transparent duct with 136 mm × 136 mm cross section, operating at 
13.1 Hz, and filled with air at atmospheric conditions. Within the resonator, two different stacks of plates (1.1 and 
5.0 mm thick plates with spacing between plates of 5.0 and 10.0 mm, respectively) were subjected to acoustic 
excitation, which in turn creates oscillatory flow conditions in the vicinity of the stack. Several levels of acoustic 
excitation, expressed in terms of the so-called drive ratio, Dr , the ratio of the maximum acoustic pressure amplitude (as 
indicated by the microphone shown in Figure 2) to the mean pressure, were used for each stack configuration. In this 
way the dependence of the flow characteristics on the displacement and velocity amplitudes of the oscillatory flow 
could be studied. 
 
The oscillatory flow at the stack end, in the plane perpendicular to the stack plates but along the resonator axis, was 
recorded using the phase-locked PIV measurement. 20 phases in each acoustic cycle (every 18 degrees) were 
investigated. For each phase, 100 instantaneous velocity fields were obtained and the ensemble-averaged (mean) 
velocity fields were further used to obtain the vorticity fields, ȍ, used in subsequent figures. 
 

 
 

Figure 2 Schematic illustration of the experimental rig. 

 
3. Physics of the oscillatory flow: linear theory versus experimental observations 
 

3.1. Linear theory approximation 
 
When the flow inside a channel formed by parallel plates is not affected by the “entrance effect” caused by the 
discontinuity of the solid boundary condition at the plate end, and the amplitude of the flow oscillation is sufficiently 
small for the flow to remain laminar, the profile of the longitudinal velocity component, u, across the channel can be 
well described by the following equation written in complex notation (Arnott 1991, Swift 2001): 
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with the continuity of the volume flow rate considered in the stack. Subscript ‘1’ indicates that the velocity is an 
acoustic variable that has the frequency of the acoustic oscillation; the peak acoustic pressure amplitude, pA, is measured 

at the nearest pressure antinode; x is the location of the stack in the resonator relative to the pressure antinode, and  is 
the porosity of the stack, defined as the ratio of the void cross sectional area of the stack to its total area; y is the 
distance from the centreline of the channel of width of 2y0, and įȞ = (2Ȟ/Ȧ)1/2 is the viscous penetration depth, Ȟ = ȝ/ȡ 
being the kinematic viscosity; c is the speed of sound. It can be seen that the time dependent velocity is defined by the 

product of three terms. The first term: pA sin (kx)/ȡc, which can also be denoted by u1,x, is defined as an amplitude of 

the cross-sectional average velocity (over y) of the flow in the stack. It can be calculated from the linear acoustic field in 
a resonator, as if the stack was absent, however the porosity in the denominator provides the correct scaling to account 
for the stack presence. eiȦt = cos(Ȧt) + isin(Ȧt) indicates the time dependence of the velocity. The term in the square 
bracket defines the spatial distribution of the velocity in the parallel channels formed by the plates, introduced by the 
viscous effects. 
 
The viscous effects are normally limited to a thin boundary layer close to the plate surface. In the flow channels formed 
between parallel plates, this boundary layer limit is approached at about five times įȞ from the solid body. Therefore, for 
a flow channel with 2y0 > 10įȞ, the flow in the central region of the channel is practically unaffected by the boundary 
conditions, which means that the velocity profiles are relatively flat in the central region. In this case, the presence of 
neighbouring plates has negligible effects on the velocity profiles around the plate under consideration, except that it 
does change the average velocity amplitude in the stack of plates due to the reduction of the cross-sectional area 
(compared to an empty resonator). 
 
It should also be noted that in the boundary layer the velocity profiles often exhibit an "annular effect” which is a 
common feature of oscillatory flows: with the increasing distance from the wall, the velocity values often increase to 
reach a local maximum, before they decrease further away from the wall. This name follows the terminology first 
introduced in studies of the oscillatory flow in pipes, where it was more appropriate. The “annular effect” essentially 
promotes a double shear layer structure on each side of the plate. The “inner” shear layer (closer to the plate surface), 
however, seems always dominant because of the larger strain, while the shear layer further away from the plate surface 
is weaker, although still discernible. The “inner” shear layer is essentially limited to a region of about 2įȞ from the plate 
surface. 
 

 
 

Figure 3 Schematic of velocity profiles in the resonator and inside the stack channels, in the half cycle when the 
flow direction is from left to right. Only parts of three plates are shown. 

 
Figure 3 shows schematically the velocity profiles in two locations when the flow is generally from left to right: one 
inside the stack and the other outside the stack, both being sufficiently far away from the stack end not to be affected by 
one another. In the stack channel the velocity profile affected by the viscous effects extends from the plate surface. 
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Within the resonator the viscous effects are only limited to a relatively short distance from the resonator wall – the flow 
in most of the cross sectional area of the resonator behaves as an inviscid plug flow with a flat velocity profile. 
 

3.2. Experimental observations at the end of stack 
 
Of course, in practical systems the description provided by the linear theory is invalid close to the abrupt changes in the 
resonator cross section, where the velocity profiles need to “adjust” themselves to the discontinuities. Figure 4 is a 
representative illustration of the velocity field (black arrows), superimposed on the vorticity field (colour contours) 
related to the flow induced at the end of 1.1 mm thick plate at Dr = 0.3% for phases ĭ1 to ĭ8. The arrows on the 
streamlines indicate the flow in this part of the acoustic cycle is from left to right. The position of each phase in the 
acoustic cycle is represented on the plot of acoustic velocity versus time in the right bottom corner of Figure 4. 
 

 
Figure 4 Mean velocity field (black arrows) superimposed on vorticity field (colour contour) in phases ĭ1 to ĭ8, 
for Dr = 0.3%. The streamlines indicate the flow is from left to right. Plate thickness is 1.1mm and plate spacing 
is 5.0 mm. The positions of the phases corresponding to the acoustic cycle are shown in the bottom right corner. 

 
Close to the end of the sharp-edged plate, the flow separation occurs at the trailing edges, during the phases when the 
flow is out of the stack into the open area of the resonator. When the amplitude of the flow velocity oscillation is small, 
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a distinct symmetric closed near-wake (i.e. a recirculation region) is formed, as illustrated by the streamlines in Figure 
4. This flow field around the stack end could be divided into several characteristic regions as schematically shown in 
Figure 5, based on the observation of the results of measurements. The shear layers originating from the stack channel 
extend downstream and join each other forming a shear layer wake. At a position nearest to the plate end, the shear 
layers meet at the end of the near-wake at a confluence point, where the longitudinal velocity component is zero. 
 

 
 

Figure 5 Structure of the flow at the end of a stack of sharp-edged plates of finite thickness. 
   

 

 
 

Figure 6 Distribution of the longitudinal velocity, u, along the plate centreline for eight phases (a); Illustration of 
the regions in the wake (b); Data for stack with d = 1.1 mm and h = 5.0 mm, at Dr = 0.3%. 
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The closed near-wake normally consists of two counter-rotating eddies, whose lateral distance is normally limited by 
the plate thickness. The longitudinal size of the closed near-wake, from the plate end to the confluence point, can be 
estimated from the velocity distribution along the centreline of the stack plate. The velocity profiles along the plate 
centreline are shown in Figure 6a for phases between ĭ1 and ĭ8. From phase ĭ1 to ĭ5, the flow in the stack channel 
and the “free-stream” outside of the stack is in an acceleration stage and the velocity of the flow increases 
monotonically with the distance from the plate end, except for the closed near-wake. In phase ĭ1, the flow velocity at 
about 2.2 mm downstream from the plate end is about 0.28 m/s and it is constant further downstream for there is little 
effect from the flow separation at the plate end. At this phase, the closed near-wake around the plate end is not formed 
yet, because there is no reversing flow of a negative velocity. In phases from ĭ2 to ĭ5, the velocity of the flow outside 
the stack increases. The closed near-wake gradually forms and extends further downstream; at the same time a reversing 
flow begins to appear. 
 
From phase ĭ6, the flow starts to decelerate (due to the decreasing mean flow velocity), while the direction of the flow 
remains from left to right. It is interesting to see that the closed near-wake continues to extend and this can also be 
clearly observed in ĭ6 – ĭ8 in Figure 4, judging from the size of the vortex structure. The maximum velocity of the re-
circulating flow is comparable to that of the “free stream” in the deceleration phase ĭ7 and ĭ8. The confluence point is 
located where the velocity is zero as illustrated by Figure 6b. It is about 0.55 mm away from the plate end in phase ĭ3, 
i.e. about half of the plate thickness. The shear layer wake region extends from the confluence point to the location 
where the longitudinal velocity on the plate centreline is comparable to “free stream”; in the example shown in Figure 
6b – about 4 times the plate thickness. By looking at phases from ĭ1 to ĭ4, it is clear that the size of the shear layer 
wake also increases with time (see the vorticity contour in Figure 4). It is uncertain from this plot, however, whether the 
development of the shear layer wake would continue in the decelerating stage. 
 

 
Figure 7 Variation of recirculation region length with consecutive phases in an acoustic cycle, for stack of plates 

of 1.1 mm thickness. 
 
The longitudinal size of the closed near-wake (the recirculation region) versus the phase in the acoustic cycle is plotted 
for Dr = 0.3% in Figure 7, together with analogous plots for Dr = 0.6%, when the shear layer wake remains 
symmetrical, and Dr = 1.0% when the shear layers eventually break up and form a sequence of vortices in the wake. For 
drive ratios 0.3% and 0.6%, the length of the recirculation region increases monotonically with time, the growth being 
faster for higher drive ratios. However, this behaviour changes for Dr = 1.0% after phase ĭ5. The increase of the 
recirculation region length is interrupted by the instability of the shear layer wake, as seen in Figure 8. The wake made 
up of a pair of free shear layers is no longer symmetrical after phase ĭ4, but becomes unstable and a lateral oscillation 
commences at the confluence point, as illustrated by the decrease of the recirculation region length in Figure 7. 
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Figure 8 Mean velocity field (black arrows) superimposed on the vorticity field (colour contours) for phases from 
ĭ4 to ĭ8 at Dr = 1.0%. The streamlines indicate the flow is from left to right. Stack plates are 1.1 mm thick with 

5.0 mm gap between plates. Results in the left column are obtained with a higher spatial resolution, while the 
right column has a lower spatial resolution but a larger investigated area. 

 

 
Figure 9 Mean velocity field (black arrows) superimposed on the vorticity field (colour contours) for phase ĭ7 at 

(a) Dr = 0.3% (a close view) and (b) Dr = 1.5% (a zoom-out view). Stack plates are 5.0 mm thick with 10.0 mm 
gap between plates. 
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For the case of 5 mm thick plates, the evolution of coherent structures forming due to the separation processes is 
somewhat different in qualitative terms from the case of 1.1 mm thick plates. At relatively small acoustic excitation 
levels (e.g. Dr = 0.3%, as shown in Figure 9a), the vortex structures formed at the end of each plate are a pair of 
concentrated eddies that are symmetrical about the centreline of the plate. The length of these symmetrical vortex 
structures at the plate end is quite short compared to the plate thickness, unlike the very elongated vortex structures 
around the thin plates of 1.1 mm thickness. When the oscillation amplitude of the flow around the plate stack increases 
(e.g. Dr = 1.0%, as shown in Figure 9b), the shear layers start to roll up into discrete vortices in an alternate fashion, as 
soon as the symmetric wake is no longer maintained. The elongated vortex structures characteristic for the thin plates, 
and their further breaking-up into a “vortex street” is not observed here – see for example Mao et al. (2008). These 
distinct flow features, occurring as a consequence of having thin vs. thick plates or low vs. high drive ratios, should be 
reflected in the non-dimensional parameter space, as long as the right similarity parameters can be found. The following 
section will focus on defining suitable similarity numbers to characterise the types of flow discussed here. 
 

4. Non-dimensional parameters controlling oscillatory flows at stack end 
 
For a typical oscillatory fluid flow induced by a one-dimensional plane acoustic wave around a stack of evenly spaced 
parallel plates discussed in this paper, there are three groups of parameters that determine the flow behaviour. The first 
one includes the properties of the fluid, such as density, ȡ and dynamic viscosity, ȝ. The second includes the geometry 
of the stack of parallel plates: the plate length, l, the plate thickness, d and the channel height between plates, h. The 
span-wise dimension of the stack of plates is not considered if the flow around it is treated as a two-dimensional 
problem. The third group should include the operating conditions of the acoustic wave such as its angular frequency, 
Ȧ (= 2ʌf), and the local longitudinal velocity amplitude of the flow, ua. However there are only three independent 
fundamental physical quantities that describe the seven parameters listed above; these are “length”, “time” and “mass”. 
Therefore, according to the Buckingham-Pi theorem, four independent non-dimensional parameter groups could 
determine the characteristics of the oscillatory flow around the plates. However, the stack length, l, is eliminated in the 
discussions to follow to simplify the analysis, on the basis that the fluid displacement is usually much smaller than the 
stack length and thus the number of non-dimensional parameter groups drops to three. Of course it is well known that 
the selection of non-dimensional parameters is non-unique and the analysis presented below will show two alternative 
“sets of three”. A more general analysis, including for example the stack length, as well as other alternative sets of three 
non-dimensional parameters are possible based on the analogous procedures to those described. 
 

4.1. Normalisation 
 
It is assumed that the fluid is incompressible (which is valid only when the amplitude of the acoustic pressure 
oscillation is small) and that it has a constant viscosity, ȝ. The viscous force due to the fluid expansion can be ignored. 
The motion of a Newtonian fluid can be described by the Navier–Stokes equations, which in a simplified differential 
form can be written as 
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when the body forces (e.g. gravity) on unit mass of fluid can be neglected. 
 
As mentioned above, the plate length, l, is assumed large enough for the flow disturbance caused by one end of the plate 
not to have an effect on the flow at the other end of the plate. The amplitude of the velocity oscillation at the stack 
position in an empty resonator, ua, the plate thickness, d, and the inverse of the angular frequency of the acoustic 
oscillation, 1/Ȧ are chosen as the characteristic scales of velocity, length and time respectively. ȡcua is chosen as the 
characteristic scale of pressure, ȡc being the characteristic impedance of the fluid and c the speed of sound. The non-
dimensional variables can then be written accordingly as 
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The superscript * denotes a non-dimensional variable. Of course, these are arbitrary choices of characteristic scales; 
other alternative approaches are possible.  
 
The “thermodynamic” pressure p in Eq. (2) can be considered as a sum of three parts: the static pressure (or the mean 
pressure), the acoustic pressure originating from the propagation of the acoustic oscillation, and the dynamic pressure. 
The mean pressure in a thermoacoustic system is not dependent on either x or y in the resonator, so its spatial gradient is 
zero. The acoustic pressure is much larger than the dynamic pressure in a typical acoustic field where the particle 
velocity is much smaller than the sound speed (ua << c). Therefore, ȡcua is chosen as the pressure reference scale in this 
case.  
 
Substituting Eq. (3) into Eq. (2), the normalized momentum equation can be written as follows 
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In the above equations, four non-dimensional parameter groups are defined. ReȦ = Ȧd2/Ȟ is defined as the kinematic 
Reynolds number, following Worlikar and Knio (1996). It is also sometimes referred to as the Valensi number 
(Richardson, 1963 and Choi et al., 2004), or the non-dimensional frequency parameter (Berger and Wille, 1972). In 
thermoacoustics, the viscous penetration depth, įȞ, is often used as an alternative indication of the acoustic oscillation 
frequency. Therefore, the kinematic Reynolds number can be rewritten as ReȦ = 2(d/įȞ)2: a ratio of the plate thickness to 
the viscous penetration depth. The conventional Reynolds number, Red = uad/Ȟ is simply defined based on the amplitude 
of velocity oscillation, ua, and the plate thickness, d.  
 
The third non-dimensional parameter, d/h, the ratio of the plate thickness to the channel height, takes into account the 
effect of the existence of neighbouring plates in the stack. The channel height has an effect on the flow in two respects. 
Firstly, the blockage effect of the plates on the flow in the resonator has to be considered when the plate thickness is 
comparable with the channel height. The velocity amplitudes inside the stack differ significantly from the velocity in the 

empty resonator, ua due to the blockage effect. d/h is equivalent to 1/-1,  being the porosity of the stack that is defined 

as  = h/(h+d) when the plates are arranged evenly. Secondly, the flow behaviour inside each channel has to be 

considered when the channel height, h is comparable to the thickness of the viscous boundary layer. It is clearly 
demonstrated that the oscillatory flow in a circular pipe remains laminar if the internal diameter of the pipe is less than 
approximately ten times the viscous penetration depth until the Reynolds number based on the internal diameter is over 
1000 (Ohmi and Iguchi, 1982). 
 
Although it may appear form equation (4) that the acoustic Mach number (Ma = ua/c) defined as the ratio of the local 
acoustic velocity amplitude to the sound speed is a fourth non-dimensional parameter, in reality c being constant and the 
flow being assumed incompressible, it has merely a meaning of velocity amplitude. It is often much smaller than unity 
in an acoustic field encountered in thermoacoustic applications. With the assumption of an incompressible flow, the 
ratio Red/Ma is in effect a constant. 
 
The amplitude of the acoustic oscillation may also be indicated by the displacement amplitude, ȟa = ua/Ȧ. The 
Keulegan-Carpenter number, KC (= ȟa/d), defined as the ratio of the acoustic displacement amplitude to the plate 
thickness, can be introduced to indicate the flow oscillation amplitude. It is often used to describe the flow 
characteristics, drag/lift force or pressure distribution in the problems of bluff bodies at rest in oscillatory flow, or 
oscillating bluff bodies in quiescent fluid (Bearman and Graham 1980, Guilmineau and Queutey 2002), where KC is 
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defined as ua/fd, a ratio of the flow orbit to a body characteristic length, with f being the frequency of flow oscillation. 
For a circular cylinder in an oscillating flow, the oscillating flow can be classified into different flow regimes, such as 
the flow that remains attached and symmetrical, the separating flow which remains symmetrical, asymmetric shedding 
of vortices and so forth, depending mainly on KC and weakly on the Reynolds number Red (Guilmineau and Queutey, 
2002).  
 
It is worth noting that another non-dimension number, the Strouhal number (St = fd/ua) could be used, in the place of 
KC, to describe the oscillating flow characteristics (this is effectively the inverse of KC). It should be noted that f is the 
frequency of the acoustic oscillation (i.e. oscillatory flow forcing), not the frequency of the vortex shedding often 
investigated in steady flows past bluff bodies. This “forcing” Strouhal number has already been used such as in the 
study of the oscillatory flow around a circular cylinder (Badr et al., 1995). 

 
The Reynolds number, Red can then be expressed as the product of KC number and the kinematic Reynolds number, 
Red = KC ∙ ReȦ. Accordingly, equation (4) can be re-written as 
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 (5) 

 

 
It is clear that out of the three non-dimensional numbers, Red, ReȦ and KC, only two are independent, one of which 
could include the frequency, Ȧ and the other the amplitude of the acoustic oscillation, either ua or ȟa. Equations (4) and 
(5) reveal that for a given non-dimensional oscillation amplitude of the flow (Red or KC), the relative importance of the 
unsteady acceleration term and the viscous term in an oscillatory flow, could be loosely described by the kinematic 
Reynolds number, ReȦ. Similarly, for a given kinematic Reynolds number, ReȦ, the Reynolds number, Red describes 
the relative importance of the contributions from the convective acceleration term and the viscous term, and the 
Keulegan-Carpenter number, KC describes the relative importance of the contributions from the unsteady acceleration 
term, compared with the convective acceleration term. The four force terms in Eq. (4) or (5) clearly indicate that an 
individual non-dimensional number could not fully describe the equilibrium of the forces. In general, if ReȦ>>1, 
meaning the unsteady acceleration term is much larger than the viscous term, the effect of the viscosity on the 
oscillatory flow will be limited to a thinner viscous boundary layer around the solid. This is also indicated by the 
definition of ReȦ as 2(d/įȞ)2 – for a given plate thickness d, a larger ReȦ gives smaller įȞ, the viscous penetration depth. 
For a flow having a large Red (>>1), the convective acceleration term become larger than the viscous term, which could 
indicate that the flow being unsteady may undergo a transition to turbulence. KC, considered as the ratio of the flow 

displacement amplitude to the characteristic length scale (e.g. the plate thickness), could also be considered as ua/d. 

For KC>>1 the flow displacement amplitude is much greater than the plate thickness. In other words, the flow velocity 
amplitude is much greater or the frequency of the flow oscillation is much smaller for a given plate thickness. The effect 
of having KC >> 1 is to make the unsteady acceleration term much smaller than the convective acceleration term, and 
the behaviour of the oscillatory flow around the bluff  bodies becomes less affected by the unsteady acceleration and in 
any instant of the oscillation the oscillatory flow acts more like a unidirectional steady flow (as if the unsteady 
acceleration term was dropped).  
 
In summary, for the oscillatory flow induced by a one-dimensional plane acoustic wave around a stack of parallel 
plates, it involves density, ȡ and dynamic viscosity, ȝ of the fluid, the geometry of the stack described by l, d, and h and 
the operating condition, ua and the frequency. When the fluid is considered incompressible, isothermal and having a 
constant viscosity, the similarity of the fluid mechanics around a series of parallel plates in an acoustic field could be 
evaluated by the non-dimensional parameters groups (ReȦ, Red and d/h) or (ReȦ, KC and d/h), when the plate length is 
considered to be large enough.  
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4.2. Illustration of non-dimensional parameters concept through experimental results 
 
Following the choice of the non-dimensional parameters to describe the behaviour of the oscillatory flow around the 
end of the stack of plates, the operating conditions of the oscillatory flow in the present study are shown using (ReȦ 
versus Red) and (ReȦ versus KC) planes, as illustrated in Figure 10. Also shown are the data points collected from the 

work conducted numerically by Worlikar and Knio (1996) and experimentally by Shi et al. (2009). The porosity,  of 
the stacks studied is between 0.5 and 0.8, and d/h is between 0.25 and 0.5. 
 
By visually inspecting the available data related to the development of the wake flow around the end of the stack, in 
particular with regard to the flow features presented and discussed in previous sections, it is possible to divide either of 
the two spaces, (ReȦ and Red) or (ReȦ and KC), into several characteristic regions. This is illustrated by the dashed lines 
drawn in Figure 10. These separate regions are characterised by different behaviour of the wake flow as discussed later 
in this section. Both the oblique and vertical dashed lines are simple straight lines in the log-log (ReȦ vs. Red) and (ReȦ 
vs. KC) planes. The oblique line can be expressed as Red = 44.0ReȦ

0.538 in (ReȦ vs. Red) plane and KC = 44.0ReȦ
0.438 in 

(ReȦ vs. KC) plane. The vertical line corresponds to ReȦ = 8, when the plate thickness is equivalent to 2įȞ. However, 
clearly the dashed lines indicating the “transitions” of the flow patterns between these regions can only be sketched 
approximately (similar procedures are well known in defining “transitions” in multiphase flows).  
 

 
Figure 10 Operating conditions of oscillatory flow around stack of plates in non-dimensional parameter groups 

(ReȦ vs. Red) and (ReȦ vs. KC) 
 



 

Page  of  

 

In general, the state of the flow below the dashed oblique line is often symmetric about the plate centreline, even though 
the symmetric vortex structure may have a larger longitudinal length compared with the plate thickness when ReȦ is 
smaller than 8, while the vortex structure often takes the form of much concentrated eddies when ReȦ is larger than 8. 
On the other hand, the flow behind the end of the plates in the region above this line is often asymmetric. Complicated 
flow patterns, such as the shear layers in the wake breaking up into “vortex street” type structure or the shear layers 
rolling up into vortices and shedding in an alternate fashion, may start to appear. 
 
The region above the dashed oblique line can be further separated into two sub-regions by the vertical dashed line.  The 
flow in the conditions that fall into the left region can often develop into an elongated shear layer structures in the end 
of the plate. Then this elongated shear layer becomes asymmetric possibly due to the instability of the shear layers, and 
eventually breaks up into discrete vortices. On the right hand side of the vertical dashed line, the flow at the end of the 
plate often exhibits vortex shedding before the elongated shear layer structure can be formed, and leads to a pattern 
similar to the von Karman vortex street. However, admittedly the flow in both regions could develop into much more 
complicated flow patterns when Red or KC increase further, as shown by Shi et al. (2009). 
 
The flow conditions of the four cases discussed in Section 3 are indicated by the arrows in Figure 10. The flow pattern 
of each of these two cases below the oblique line (i.e. Fig.4 and Fig.9a) clearly represents the state of the flow behind 
the plate stack. It is interesting to see that the flow conditions that all fall into the same region as that for Fig.9a are 
collected from the numerical work by Worlikar and Knio (1996), who adopted similar geometrical configurations of 
plate stacks to that used by Atchley et al. (1990) in an experimental study of acoustically generated temperature gradient 
due to thermoacoustic effect. The behaviour of the flow in each sub-region above the oblique line can be illustrated by 
Fig.8 and Fig.9b when the values of Red and KC are not too far from the line. 
 
The presence of the neighbouring plates around the plate studied could have an effect on the gradient of the velocity 
profile in the shear layer wake and thus the ability of the wake flow to remain symmetric. However, it is still rather 
difficult at this stage to identify the effect of the channel width on the flow based on the available experimental and 

numerical data. Therefore the effect of the non-dimensional number, d/h or the porosity,  , on the flow behaviour is not 
distinguishable in these graphs. 
 

5. Discussion and conclusion 
 
This paper investigates the behaviour of the oscillatory flow past a stack of parallel plates when the fluid moves out of 
the stack (so-called “ejection stage” of the cycle). It can be seen that during this part of the acoustic cycle the flow 
exhibits some similarities to the wake flow of a unidirectional steady flow past a bluff body, such as a circular cylinder 
(Zdravkovich, 1997). Essentially, the wake flow is made up of two shear layers with vorticity of opposite signs that are 
fed from the stack channel. There may be a recirculation region formed next to the plate end, and surrounded by the 
shear layers. The size of the recirculation region increases while the flow speeds up in the initial stage of the “ejection”; 
then continues to grow even in the deceleration phases of the “ejecting” flow. The flow in the recirculation region 
finally joins with the flow that reverses its direction and starts to move into the stack. 
  
The oscillating flow at the end of plate also shows interesting behaviour when the velocity amplitude varies. At small 
amplitudes the shear layers in the wake may remain symmetric and produce attached symmetrical vortex structures. 
However for larger velocity amplitudes the flow may lose its symmetry and stability, resulting in such flow patterns as 
“break-up” of the shear layers and alternate vortex shedding. It is shown that the break-up of the shear layers may 
undergo a transition to the alternate shedding, however the alternate shedding may also start in the first place without 
such a transition taking place. It seems plausible that both the lateral and longitudinal dimensions of the shear layers in 
the wake define the flow patterns and their development. 
 
From the normalization of the governing equations of the oscillatory flow motion around a parallel plate, groups of non-
dimensional parameters are proposed. Each set of non-dimensional parameters essentially consists of:  (i) one kinematic 
parameter, i.e. the kinematic Reynolds number ReȦ, (ii ) one dynamic parameter, i.e. the Reynolds number Red or KC, or 



 

Page  of  

more indirectly the drive ratio, Dr, and (iii ) a stack configuration parameter, d/h, or the porosity . Alternatively, the 
Womersley number (Womersley 1955), Wo = h/įȞ could be used as the stack configuration parameter, for it is simply 
equivalent to h/d(Red/2KC)1/2. As indicated in Eq. (1), Wo number could be used to describe the interaction of the 
viscous boundary layers on the neighbouring plates. Therefore, the non-dimensional parameters groups (ReȦ, Red and 
Wo) or (ReȦ, KC and Wo) could be used in place of the non-dimensional parameters groups (ReȦ, Red and d/h) or (ReȦ, 
KC and d/h). 
 
An additional parameter – the non-dimensional stack length, i.e. the aspect ratio l/d, may need to be considered when 
the displacement amplitude of the fluid oscillation is comparable to the stack length so that the assumption that the flow 
disturbance at one end of the stack has no effect on the flow at the other end of the stack is no longer valid. Figure 10 
demonstrates how the data collected from the current study and the data from other studies that can be found in the 
existing literature can be gathered in a single plot and divided into regions of distinct flow behaviour – in a similar way 
as known flow regime maps in other areas of fluid mechanics. 
 
In order to further understand the relationship between the non-dimensional governing parameters and the flow 
behaviour, experimental data from much more diverse experimental conditions than these obtained as part of the current 
study will be required. In particular, the critical values of the non-dimensional parameters, which correspond to the 
transition from symmetric to asymmetric wake flows, need to be studied. Similarly, the effects of the channel width on 
the flow pattern should be investigated. 
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