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ABSTRACT:  This paper describes the development of an experimental arrangement and the 

application of acetone-based Planar Laser Induced Fluorescence (PLIF) measurement techniques to 

study the unsteady characteristics of heat transfer processes in the parallel-plate heat exchangers of 

thermoacoustic devices. The experimental rig is a quarter-wavelength acoustic resonator where a 

standing wave imposes oscillatory flow conditions. Two mock-up heat exchangers: �hot� and 

�cold�, have their fins kept at constant temperatures by electrical heating and water cooling, 

respectively. A purpose-designed acetone tracer seeding mechanism is used for PLIF temperature 

measurement. Acetone concentration is optimised from the viewpoint of PLIF signal intensity. 

Two-dimensional temperature distributions in the gas surrounding the heat exchanger plates, as a 

function of phase angle in the acoustic cycle, are obtained. Local and global (instantaneous and 

cycle-averaged) heat flux values on the fin surface are estimated and used to obtain the dependence 

of the space-cycle averaged Nusselt vs. Reynolds number. Measurement uncertainties are discussed.  

 

KEYWORDS:  Temperature Field, Planar Laser Induced Fluorescence; Thermoacoustic Systems; 

Oscillatory Flow; Heat Exchangers 

 

1 Introduction 
 

The operation of thermoacoustic devices (engines or refrigerators) relies on very complex fluid flow 

and energy transfer interactions between an oscillatory compressible flow and a solid material. Here, 

imposing a temperature gradient along the solid may lead to spontaneous generation of acoustic 

waves along the body. Conversely, imposing an acoustic field in the vicinity of the solid may create 

a temperature gradient within it due to �heat pumping� phenomena. The key to these so-called 

�thermoacoustic effects� [1,2] is the relative phasing between pressure and velocity oscillations, 

which allows the fluid to undergo a thermodynamic cycle, somewhat similar to the Stirling cycle. 

These phenomena form a basis for constructing thermoacoustic engines, coolers and heat pumps, 

whose main advantages include the simplicity of construction and lack of moving parts. 
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A simplified schematic of a standing-wave thermoacoustic engine is shown in Fig. 1: a �stack� of 

parallel plates and adjacent hot and cold plate heat exchangers are placed in an acoustic resonator. 

In a steady state, having reached the thermoacoustic onset condition, the engine absorbs heat hQ&  at 

a high temperature Th and rejects heat cQ&  at a low temperature Tc, while in the microscopic sense 

the thermal energy is continuously transferred along the stack by a hydrodynamic �cascade� of 

oscillating (and at the same time compressing and expanding) gas parcels as shown on the right. 

The macroscopic effect of gas oscillations is the resulting acoustic wave (acoustic work, W& ), which 

can be transformed into an electrical power output by an electro-acoustic transducer. 

 

 
Figure 1 Schematic of a simple standing-wave thermoacoustic engine. 

 

The quantitative description of the fluid flow and heat transfer physics within the stacks is typically 

based on the linear acoustic theory [1,2], while the design of the heat exchangers is based on 

relatively simple �rules of thumb� that link the length of the heat exchanger to the displacement 

amplitude of the fluid parcels, while the plate-to-plate distance is related to the thermal penetration 

depth: the length-scale that shows the extent of transverse heat transport through the thermal 

boundary layer within one acoustic cycle. The heat transfer rates are simply predicted by means of 

standard engineering handbook correlations which are strictly valid only for steady flows. 

 

Unfortunately, in reality the physics of fluid flow and heat transfer processes is much more complex 

than implied by the simplistic descriptions of the linear acoustic theory and standard steady-flow 

correlations. Mao and Jaworski [3] investigated the use PIV in oscillating flows around 

parallel-plate stacks and showed rather complicated processes of turbulence generation, and 

analyzed the characteristic turbulence length-scales that may be responsible for the heat transfer 

mechanisms near the internals of thermoacoustic devices. However, only isothermal systems were 

considered and so no quantitative description of the heat transfer rates was possible. 

 

Current work aims to develop experimental facilities and procedures to implement the full field of 

view temperature measurement techniques which would become an enabling tool for investigating 

the heat transfer processes in the critical components of thermoacoustic devices, where potentially 
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substantial thermodynamic efficiency gains could be achieved. The rationale behind developing 

such tools is three-fold: Firstly, from the measurement science point of view, to extend the PLIF 

techniques into new and challenging applications such as thermoacoustic devices; secondly, to 

gather a substantial set of experimental results to be used in developing appropriate data processing 

techniques to derive heat transfer rate values, and subsequently to devise reliable heat transfer 

correlations for oscillatory flows of the type encountered in thermoacoustics; and finally, to provide 

reliable experimental data for future CFD simulations that could improve the design capabilities of 

thermoacoustic codes [4]. Using the terminology adopted by MST this work can be classified as 

�the application of existing techniques in novel situations�. 

 

2 Literature review 
 

Previous work on thermal measurements in thermoacoustic/oscillatory systems relied mostly on 

standard thermocouple techniques, capable only of measuring time-averaged values in selected 

points, e.g. specific locations within model channels, stacks or heat exchangers. Leong and Jin [5,6] 

and Jin and Leong [7] investigated heat transfer rates into the channel walls due to an oscillatory 

flow. The flow conditions were imposed by an oscillating piston-cylinder arrangement, while 

aluminium foam was used to enhance fluid-to-wall heat transfer. Gopinath and Harder [8] also used 

thermocouples to investigate the convective heat transfer behaviour from a cylinder in an intense 

acoustic field, representative of a strong zero-mean oscillatory flow. Such methods are relevant to 

thermoacoustic systems where stack plates form individual �channels� where heat transfer 

processes take place, while many heat exchanger designs incorporate various �tube arrangements�. 

Work described in [5-8] led to formulating various Nu vs. Re correlations. Other work by Fu et al. 

[9] and Ozawa et al. [10, 11] is also worth mentioning. 

 

In thermoacoustics, Paek et al. [12] and Nsofor et al. [13] used thermocouple measurements to 

study heat transfer in heat exchangers in the oscillatory flow conditions and proposed some 

correlations involving Nu, Pr and Re numbers. Of course, such studies can only provide 

measurements of the average heat transfer rates by looking at appropriate energy balances within 

control volumes defined by researchers. Thus, only �global� correlations can be obtained, where 

various geometries or flow conditions can be taken into account through comparative studies of a 

large number of experimental cases. Unfortunately, the changes in heat transfer conditions cannot 

be linked to specific flow phenomena as no flow processes are observed. 

 

The shortcomings of the time-averaged and �point-wise� thermocouple measurements can be to 

some extent overcome by cold-wire anemometry, where probes can be traversed within the flow 

domain of interest. Here a �hot-wire� probe, driven in a constant current mode is used to measure a 
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time-dependent temperature signal thanks to a high frequency response of the method. Automated 

traversing and phase-locking techniques can be used to look at temperature profiles across thermal 

boundary layers in various instances of the acoustic cycle to deduce the local, time-dependent heat 

transfer rates (and subsequently the appropriately defined Nusselt numbers). Huelsz and Ramos [14] 

obtained oscillating temperature and the relative phase between temperature and pressure 

oscillations in acoustic waves, while Mao and Jaworski [15] studied the thermal boundary layer in a 

channel of a parallel-plate thermoacoustic stack. However, there are many drawbacks: the probes 

are intrusive and perturb the flow, traversing in the vicinity of internal structures is not easy, while 

the number of measurement locations required for comprehensive temperature maps is prohibitive. 

 

The shortcomings of thermocouple and �cold-wire� anemometry can be overcome by �full field of 

view� methods that could capture the unsteady temperature fields around the internal structures (e.g. 

stacks or heat exchangers) of thermoacoustic devices. However, the only known example seems the 

work by Wetzel and Herman [16-18], who used holographic interferometry combined with 

high-speed cinematography to visualize the full temperature field at the edge of a single stack plate 

placed in an acoustic field. The differences between the heat transfer in oscillatory flows with zero 

mean velocity and in steady flows have been clearly demonstrated. Similarly, the complex heat 

transfer mechanisms between the fluid and solid material at the end of a stack plate due to the 

thermoacoustic effect have been documented. From the measurement science viewpoint, a novel 

evaluation procedure that accounts for the influence of the acoustic pressure variations on the 

refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating 

temperature distributions. Nevertheless, it seems that the complexity of the method developed limits 

its wider practical application as no other works based on the principles described followed. 

 

Current work explores the capabilities of the planar laser-induced fluorescence (PLIF) methods to 

capture the unsteady temperature fields in thermoacoustic devices due to its non-intrusive nature 

and a high spatial and temporal resolution. In addition, its use of molecular markers greatly reduces 

the possibility of the �tracers� lagging behind the fluid (as may be the case in PIV velocity 

measurements). The physics behind PLIF measurements is well known � cf. [19,20]. Different 

studies used a variety of molecular tracers as discussed in references [21-34]. Acetone has been one 

of the popular tracers and gained a wide acceptance after pioneering studies by Thurber et al. 

[19,20,35,36]. Applications of acetone PLIF (often also combined with other measurement 

techniques) are discussed in references [37-42]. 

 

The choice of acetone in the present study was due to its useful properties: (i) acetone fluorescence 

in isobaric, isothermal flows is linear with concentration and laser power [43,44]; (ii) acetone 
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molecules have a broadband excitation spectrum between 225 and 320 nm (flat peak from 270 to 

280 nm), which makes them easily excited by conventional high power UV lasers (of a typical 

wavelength of 266 nm [38]); (iii) depending on the excitation wavelength, the broadband 

fluorescence between 350-550 nm wavelength exhibits a highly versatile sensitivity vs. temperature 

which is fundamental for thermometry application; (iv) acetone molecule stays stable and will not 

disappear below a temperature limit of about 1000 K [45]; (v) acetone molecules have a very high 

saturating vapour pressure (about 180 Torr at 20°C), which allows an easy seeding into low 

temperature flow fields; (vi) emission lifetime is short � less than 4 ns [43], which enables 

�freezing� the temperature images of high-velocity flows; (vii) acetone has low toxicity. 

 

In the context of thermoacoustics, acetone PLIF has an advantage in terms of the dependence of the 

fluorescence signal on pressure, usually quoted as 5% per MPa for a typical 266 nm excitation 

wavelength [46]. Therefore the effects of pressure oscillations can be neglected for relatively large 

acoustic oscillations (e.g. the pressure amplitude of 10 kPa would only result in the maximum 

oscillation of PLIF signal intensity of 0.05%). For a typical experiment, the overall efficiency of the 

collection optics, the collection volume and the laser excitation wavelength are constant. 

Subsequently, at the conditions of constant mole fraction of acetone, the fluorescence signal can be 

expressed solely as a function of temperature based on relatively simple calibration procedures. 

 

Even though acetone PLIF is a well-established method, it poses an array of new challenges in 

thermoacoustic applications. In standard applications such as internal combustion engines or jet 

flows, the temperature fields are investigated within relatively unobstructed imaging domains; and 

although the temperature distributions may have large temperature gradients (cf. reference [31]), the 

main focus is the nature of the temperature distribution, not an accurate estimation of the 

temperature gradient for heat transfer calculations. In the thermoacoustic systems, complex internal 

solid structures (stacks and heat exchangers) form a set of narrow channels, in which the 

temperature gradients in very thin thermal boundary layers have to be accurately estimated in order 

to obtain reliable values of the gas-solid heat transfer rates. Therefore obtaining both a high spatial 

resolution and good temperature accuracy is much more critical, compared to typical PLIF 

measurement applications described in the literature. 

 

3 Experimental apparatus and procedures 
 

The acoustic resonator used is geometrically identical to that described by Mao et al. [47], and Mao 

and Jaworski [3]. However, Perspex sections have been replaced with flanged mild steel sections, 

while the test section with optical access has been made out of aluminium. The changes were 

dictated by the introduction of an electrically heated heat exchanger whose high operating 
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temperatures would render Perspex unsuitable. The use of a heavy metal resonator has also reduced 

the rig vibration at higher acoustic excitations, while the use of metal flanges allowed a more 

reliable seal to contain acetone seeding. 

 

Figure 2 Schematic of the experimental setup. 

 

General schematic of the rig, the seeding arrangement and the PLIF instrumentation are shown in 

Fig. 2. A 7.4 m long resonator with a square internal cross section of 134 mm by 134 mm is joined 

with a cube-shaped loudspeaker box using a suitable contraction section. Acoustic excitation 

(frequency 13.1 Hz in the quarter-wavelength mode) is provided by an 18 inch 600 W loudspeaker 

(Model PD1850). A Brüel & Kjær microphone (Model 4136) is flush mounted at the rigid end of 

the resonator to measure the acoustic pressure amplitude for calculating the drive ratio (ratio of 

oscillating pressure amplitude to the mean pressure in the resonator). The pressure measured by the 

microphone is also used as a reference signal to trigger PLIF imaging, phase locked to the acoustic 

cycle � cf. reference [3]. A 0.25 mm thick latex rubber membrane (600 mm x 600 mm) is placed 

within the loudspeaker box, to separate the loudspeaker from the potentially harmful atmosphere 

containing acetone vapour. Placing a large membrane at the location where the displacement 

amplitude is relatively small even at high excitation levels avoids introducing any significant 

non-linear effects. The mean pressure in the rig is atmospheric. 

 

In the current work the experimental configuration had to be simplified compared to Fig. 1: Firstly, 
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a pair of heat exchangers is located side-by-side, with no stack (similar to the design in reference 

[48]). Alternatively, it could be imagined that one of the heat exchangers plays a role of the end of 

the stack, while the other is treated as an actual heat exchanger. The gas displacement amplitudes 

are sufficiently small compared to the heat exchanger length to permit such treatment. Secondly, it 

would not be practically possible to apply high temperature differentials to generate spontaneous 

acoustic waves (thermoacoustic effect). Instead, the oscillatory flow was imposed by the 

loudspeaker, while the heat exchangers were placed 4.6 m (about 0.17 of the wavelength) from the 

end cap of the resonator to mimic an �engine configuration�. Furthermore the hot and cold heat 

exchangers were placed in contact with each other, to avoid creating a gap between them that at this 

stage could not be illuminated. It should be noted that compared to Fig. 1 above or Fig. 1 in 

reference [3] the configuration in Fig. 2 is neither an �engine� nor a �refrigerator� � it is designed to 

mimic engine-like fluid flow and heat transfer processes. 

 

3.1 Heat exchangers 
 

Figure 3a shows the photograph of the hot heat exchanger (HHX, left) and cold heat exchanger 

(CHX, right) assemblies. Each assembly has ten fins: five are only �dummy plates� (silver-coloured 

aluminium plates) to provide a uniform porosity, and thus flow conditions, across the cross-section 

of the resonator; five are �active plates� (golden-coloured brass plates), i.e. have means of 

controlling their temperature. All plates have a thickness d = 3.2 mm, length l = 35 mm (in the flow 

direction) and width w = 132 mm (in the transverse direction). The plate spacing is 6 mm. 

 

Each �active� fin in the HHX is made out of a brass plate, with a meandering groove machined in it 

to accommodate a 600 mm long and 0.062 inch diameter cable heater (Fig 3b left). After fitting the 

cable heater, a high-temperature epoxy was used to fill in the groove to form a flat surface (not 

shown). The maximum output power of each cable heater is 240 W. Each �active� CHX fin is made 

out of a brass plate with a meandering channel for water circulation and a thin brass plate as a cover 

(Fig. 3b right). The cover is bonded to the fin plate using a soft solder. A water inlet and outlet in 

each fin are connected to two ends of the water circulation channel by steel tubing (not shown). 

 

The plates are held in position using a series of spacers (6 mm x 10 mm x 50 mm) made out of 

ceramic material, the whole assembly secured by �supporting pillars�. At the rear of the heat 

exchanger assembly (not shown in Figs. 3a and c) the pillars penetrate all plates, while the spacers 

are present between all adjacent plates. At the front, the middle channel does not have the ceramic 

spacer to enable PLIF imaging. Somewhat shorter pillars are used to ensure the integrity of the top 

and bottom halves of heat exchanger assemblies. The spacers not only ensure the uniform channel 

height but also prevent thermal distortion of the fins, which was found one of the major problems 
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during the debugging of the experimental setup. 

 

  

      (a)           (b) 

 

       (c) 

Figure 3 (a) Photograph of the HHX and CHX assemblies; (b) Structure of the “active” hot and cold fins; (c) 

Schematic showing the location of thermocouples. 

 

Twelve miniature K-type thermocouples (marked �T01� through to �T12�in Fig. 3c) are placed on 

the surfaces of four heat exchanger fins forming the boundaries of the channel under investigation. 

Their positions in the span-wise direction are in the centre of the fin as indicated in Fig. 2 (also 

cross-section B in Fig. 3b). Four thermocouples: �T01� and �T04� on the CHX fins, and �T09� and 

�T12� on the HHX fins are 3 mm away from the joint between the HHX and CHX. Another four are 

in the middle of the CHX (�T02� and �T05�) and HHX (�T08� and �T11�). The remaining four are 

placed 3 mm away from the �far end� of the CHX (�T03� and �T06�) and the �far end� of the HHX 
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(�T07� and �T10�). One K-type thermocouple of 1 mm diameter was inserted into the investigated 

channel of the HHX in the direction perpendicular to the laser sheet for temperature calibration of 

the PLIF system, in such a way that only the �tip� appeared in the laser sheet. After the PLIF 

calibration (undertaken before every set of experiments) this thermocouple is withdrawn from the 

laser sheet to avoid any disturbance to the flow field. 

 

A PID temperature controller (Omega Model CN8592) is used to accurately control the temperature 

at the reference point (here thermocouple �T07� was chosen) to within ±1°C at a preset value (e.g. 

200°C). However, the present arrangement of the HHX next to the CHX introduces an unwanted 

heat conduction flux between the HHX and CHX fins, which makes the surface temperature on the 

hot and cold fins decrease from left to right. The maximum temperature difference between �T07� 

and �T09� (or between �T10� and �T12�) is around 20°C. Table 1 shows a sample temperature 

distribution on the fins� surfaces obtained from thermocouples. The span-wise temperature 

distribution is estimated by distributing thermocouples in three cross-sections of the hot fin: �A�, 

�B� and �C� as shown in Fig. 3b (an analogous measurement is made on the cold fin). However, it 

is clear from such measurements that the span-wise temperature differences are negligible. 

 
Table 1 Surface temperature of fins measured by twelve thermocouples (gas displacement amplitude 46 mm) 

 

Temperature [°C] 

T10 T11 T12 T04 T05 T06 
200.1 193.7 184.9 44.2 34.4 31 

 

199.7 192.8 179.8 42.5 33.1 30.4 

T07 T08 T09 T01 T02 T03 

 

3.2 PLIF system 

 

Temperature field measurements were performed using a PLIF system by LaVision. The laser sheet is 

generated by an Nd:YAG laser with a UV wavelength of 266nm combined with sheet optics and a 

divergent lens (cf. Fig. 2). The reading from an energy monitor mounted between the sheet optics and 

laser head is used for the correction of fluorescence intensity due to the laser energy variation. The 

averaged laser energy was 54 mJ for a single shot with shot-to-shot energy fluctuations of 0.7%. The 

fluorescence signal intensity is a linear function of laser energy up to 54 mJ for a single shot. 

 

The laser sheet enters the resonator perpendicularly to its axis through one of two quartz glass windows 

with 3 mm thickness, is reflected by one of two UV mirrors and becomes parallel to the resonator axis 

and normal to the surface of the heat exchanger plates. Having two separate laser sheet entry points (to 

the left and to the right of the heat exchangers) avoids fin shadows in PLIF images. The laser can be 

simply shifted between the right position corresponding to UV mirror 1 (see Fig. 2) and the left position 
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corresponding to UV mirror 2 through an automated traversing system. The distance from either of UV 

mirrors to the joint of HHX and CHX is 300 mm, which is considered to be sufficiently far not to 

disturb the flow and temperature fields around the heat exchangers. Quartz glass windows are mounted 

at the locations of the heat exchangers and the two mirrors for taking images of fluorescence, and 

introducing UV light, respectively. The quartz glass is used for its high transmission of over 90% at 266 

nm UV and resulting fluorescence [49]. 

 

The laser sheet is 5 mm inwards from the plane marked by �C� in Fig. 3b. A laser sheet position 

close to the fin end is beneficial from the imaging point of view; the closer it is to the window, the 

higher the precision of identifying the fin surface in PLIF images. A laser sheet position close to the 

middle of the fin would ensure as high flow symmetry as possible (except that the mid-point should 

be avoided due to the flow disturbance from the thermocouples). The chosen sheet position seemed 

a reasonable trade off between these opposing requirements. From the tests of the fin surface 

temperatures described in section 3.1, the temperatures measured by twelve thermocouples are 

considered to represent the surface temperatures of the fins in the laser sheet position. 

 

The PLIF images are captured by an image detection system consisting of LaVision Imager Pro plus 

camera with a 4 mega-pixel CCD sensor, Intensified Relay Optics (IRO), band pass filter (a 

broadband pass spectrum extending from 280 to 480 nm, and with flat peak from 350 to 360 nm) 

for PLIF and macro 105 mm lens with f 2.8. The 2 x 2 hardware �binning� in the camera setup is 

used for increasing the ratio of PLIF signal to noise. Here, �binning� specifies the collection of a 

certain number of pixels to a super pixel. Thus, the effective pixels of the CCD sensor become 1024 

x 1024 pixels. Images are post processed using LaVision DaVis 7.2 software package. The field of 

view of the PLIF images for CCD is 65 mm x 65 mm, and the spatial resolution is 0.063 mm per 

pixel. However, the effective circular view area in IRO is only 56.7% of CCD, which corresponds 

to around 55 mm in diameter. Therefore, to obtain a full view of temperature field within and 

around the heat exchangers, three separate views were recorded using an appropriate traversing 

mechanism, and subsequently �stitched� together in the post-processing stage. 

 

3.3 Acetone seeding system and the optimal concentration 
 

Prior to PLIF measurements, the resonator is homogeneously �seeded� with acetone vapour of a 

predefined concentration, using a purpose-built seeding system (cf. Fig. 2). It consists of a nitrogen 

bottle, a gas pump, a syringe (with marked volumes to measure the acetone liquid level), two glass 

flasks and six valves, all components connected using flexible nylon tubing. A weak acid electrolyte 

oxygen senor (Envinsci Model Maxtec Max-250) is mounted in the test section to monitor the 

oxygen concentration. The oxygen sensor output voltage is linear with respect to the oxygen 
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volumetric concentration. The sensor output varies from about 12.5 mV at 20.9% of oxygen 

(atmospheric air) to 0.3 mV at 0.5% oxygen concentration. 

 

At standard temperature and pressure (STP) acetone vapour/air mixtures are flammable in the range 

from 2.6% to 12.8% of acetone vapour by volume [50]. At these conditions, the oxygen 

concentration in the air-acetone mixture is (1-0.026) x 20.9%=20.4% and (1-0.128) x 20.9%=18.2%, 

respectively. The ratio of oxygen to acetone vapour is therefore between 1.42 (18.2%/12.8%) and 

7.85 (20.4%/2.6%). Therefore, purging the experimental volume with nitrogen until the oxygen 

percentage drops below 1% (to remove the likelihood of ignition) will allow any acetone vapour 

concentration above 1%. Detailed operating procedures for the rig are described by Shi et al. [51]. 

 

The concentration of acetone vapour is critical for obtaining as high PLIF signal intensity as 

possible in order to increase the measurement precision [46]. The PLIF signal is proportional to the 

concentration of acetone vapour (as well as the laser intensity). This means that the high 

concentration of acetone vapour has a positive effect on obtaining the high PLIF signal intensity. 

However, while the laser light travels through the fluid a fraction of its energy will also be absorbed 

by the acetone molecules before reaching the measurement area near the heat exchangers [46]. High 

concentration of acetone vapour will cause a strong absorption of the laser light. This results in a 

gradual extinction of the laser beam according to Lambert-Beer�s law [46], i.e. an exponential 

decay of the signal intensity assuming LIF in the linear regime: 

 cxeIxI α−= 0)( . (1) 

I(x) and I0 are the local LIF intensities at an arbitrary position x and x = 0, respectively, Į is the 

molar extinction coefficient while c is the acetone concentration. For the fixed position x, one needs 

an optimal acetone concentration to achieve maximum PLIF signal. Figure 4 shows the relation 

between the intensity of PLIF signal at point �M� in Fig. 3c and the acetone concentration obtained 

for the particular experimental arrangement implemented in the current work. The PLIF signal, 

acquired with the laser energy at 54 mJ for a single shot, was post-processed following procedures 

described in Section 3.5. The peak intensity corresponds to the optimal acetone concentration of 2%, 

which was chosen for the PLIF measurements described in this paper. 

 

3.4 Temperature calibration 
 

In acetone-based PLIF the temperature measurement depends on the initial calibration of the LIF 

signal intensity obtained from PLIF images against the absolute value of temperature obtained for 

example from a reference thermocouple (cf. section 3.1). During calibration the gas was stationary 

(no acoustic excitation). For each temperature level (varied from room temperature up to 200ºC) the 
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setup was allowed to reach a steady state (judged by the thermocouple readings becoming 

stationary). This approach was chosen to ensure that there are no significant temperature gradients 

or convective currents in the vicinity of the reference thermocouple. Figure 5 shows the relation 

between the temperature and true PLIF signal obtained for a sample calibration procedure. Here the 

curve fitting procedure yielded the following relationship: 

 TeI 0056.015.464 −= . (2) 

In Fig. 5, the error bars are obtained from the standard deviation of the signal intensity of 100 PLIF 

images obtained for each temperature point (further described in section 5). It should be noted that 

in order to obtain a true fluorescence signal for the calibration curve from raw PLIF images, there 

are relatively involved PLIF image processing procedures required (described in Section 3.5). 

 

Figure 4 PLIF signal intensity vs. acetone vapour concentration. 

 

Figure 5 Temperature calibration curve. 

For a digital imaging system such as used here, the dominant sources of signal noise are:  �shot 
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noise� (shot-to-shot fluctuation), and �read noise�. The latter is also known as the intrinsic camera 

noise, and consists mainly of dark-current shot noise, �reset noise� and output amplifier noise [52]. 

The intrinsic camera noise is typically 5 counts (RMS) per pixel for the CCD used. Assuming that 

the noise sources are uncorrelated, the SNR of a single image can be modelled by [53]: 

 ( ) 2122SNR campppp NGNGN += κηη . (3) 

In the numerator is the signal (in unit of e
−
), Se = ȘNppG obtained from the CCD. Npp is the number 

of photons reaching a single pixel, Ș is the quantum efficiency of the photodetector and G is the 

overall electron gain of the intensifier. A gain of 64 was used in the measurements. In the 

temperature calibration (shown in Fig. 5), the LIF signal recorded is around 400 counts at 20 ºC, 

and around 150 counts at 200 ºC. The A/D conversion factor of the camera is 0.2 counts/e
−
. Thus, 

the signal given by the CCD, ȘNppG is around 2000 e
−
/pixel at 20 ºC, and around 750 e

−
/pixel at 

200 ºC. In the denominator of SNR, the shot noise, Nshot is: 

 ( ) 21

ppshot NGN ηκ= . (4) 

Here, ț is the total noise factor to quantify the noise induced through the overall gain process 

between the photocathode and the CCD. It is gain dependent, but normally varies from 1.5 to 2.5. 

To estimate the maximal shot noise, ț is taken as 2.5. Thus, Nshot is estimated to be between 566 

e
−
/pixel at 20 ºC and 346 e

−
/pixel at 200 ºC. Ncam is the intrinsic camera noise. It is known that Ncam 

is 25 e
−
/pixel for the CCD used. Therefore, SNR of a singe image is between 2.2 at 200 ºC and 3.5 

at 20 ºC. If M images (e.g. M = 100) are used for averaging, the SNR of the averaged image is 

improved by M . Therefore, the SNR of the averaged image of 100 images is between 22 at 200 

ºC and 35 at 20 ºC. It can be seen that among these sources of noise, the shot noise is much larger 

than the noise of camera. By increasing the gain of the intensifier, the signal as well as the first 

noise term is increased. Overall, the SNR is improved till it reaches the limit, ( ) 21κη ppN , when 

22
campp NGN >>ηκ . 

 

3.5 Experimental images post-processing and presentation 
 

Figures 4 and 5 show true fluorescence signal after image post-processing procedures from raw 

PLIF images. These procedures include: (i) �Background subtraction�: each image has an offset 

from the camera�s dark current and potentially from the surrounding scattered light. The 

background signal must be subtracted; (ii) �Sheet image correction�: all lasers have a certain spatial 

profile perpendicular to the beam axis when the laser light is formed into a sheet. All these local 

laser sheet inhomogeneities will decrease the accuracy of the results. Also the optical components 

of the detection system will influence the LIF signal due to the local variations of the optical 
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transmission. These effects are corrected with the sheet correction. The principle behind �Sheet 

correction� is that the final experimental image is �normalized� by the sheet image; (iii) �Energy 

correction�: an energy monitor is used to monitor the energy variation of the laser beam. This 

information is used to correct the variations of the fluorescence intensity due to the variations of 

laser intensity from shot to shot for each PLIF image, when the fluorescence of the tracer is in the 

regime of linear dependence on the laser energy [46]. There are no further smoothing filters applied 

to the PLIF images in order to have the genuine fluorescence signal. After the post-processing, the 

fluorescence images are further converted into the temperature fields shown in Section 4, by using 

the calibration curve in Fig. 5. The temperature field distributions in Section 4.1 are �stitched� 

together from the three separate fields of view described in Section 3.2. 

 

4 Experimental results 
 

The results presented here have been taken for four acoustic excitation levels (drive ratios). This has 

been selected so as to induce four different values of the acoustic displacement at point �M� (cf. Fig. 

3c). Table 2 summarises the experimental parameters. Of course, PIV measurements had to be 

carried out initially in order to measure the acoustic velocity amplitude at point �M�. Subsequently, 

the acoustic displacement, ȟM could be calculated as ȟM=uM/(2ʌf), where f is the acoustic frequency 

of 13.1 Hz. The PLIF measurements were replicated for the same drive ratios. The temperature 

settings used in the experiments were 200ºC for thermocouple �T07� (PID controlled), while the 

resulting �T03� was around 30 ºC (cf. Table 1). 

 

Table 2 Experimental conditions covered by the current study 

Drive ratio, 

Dr [%] 

Velocity amplitude at 

point M, uM [m/s] 

Acoustic displacement, 

ȟ [mm] 

Reynolds number based on fin 

thickness d, Re = uMd/ Ȟ 
0.30 1.30 16 250 

0.45 1.90 23 357 

0.65 2.97 36 535 

0.83 3.84 46 702 

 

Measurements were performed for 20 phases within an acoustic cycle as shown in Fig. 6. It shows 

the reference pressure signal measured by the microphone (used for phase-locking the PLIF system), 

the reference velocity at point �M� measured by PIV and the calculated reference displacement at 

point �M�. The directions of the velocity and displacement are according to the coordinate system 

in Fig. 2. When the fluid moves towards the resonator closed end, i.e. the displacement is negative, 

the absolute pressure at the resonator end is higher than the mean pressure, and the pressure values 

are positive (cf. Fig. 6). When the fluid moves towards the loudspeaker, i.e. the displacement is 

positive, the absolute pressure at the resonator end is lower than the mean pressure, and the pressure 
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is shown as negative. For each phase, 100 frames were taken to calculate the phase-averaged 

temperature field (a higher number of frames provides negligible accuracy gains). 

 

4.1 Temperature field distributions 
 

Figure 7 shows the temperature fields obtained in 20 phases of the acoustic cycle at Re = 250 (ȟM = 

16 mm). At phase ĭ1, the fluid displacement reaches the maximum negative value (cf. Fig. 6), i.e. 

the leftmost position in the cycle. The cold gas in the channel formed by the cooled fins (referred to 

as the �cold channel� hereafter) moves far into the channel formed by the heated fins (referred to as 

the �hot channel� hereafter) and is heated by the plates. Some part of the hot gas in the hot channel 

flows out into the open area at the left of the hot fins. Due to the natural convection, the hot gas to 

the left of the hot fins rises to form a hotter region on the top. After this phase, the gas starts to 

accelerate to the right until phase ĭ6. At this phase (cf. Fig. 6), the fluid displacement is zero and it 

is in the so-called �equilibrium position�. The cold gas heated by the hot fins partly flows out from 

the hot channel and moves into the cold channel. Hot gas entering from the open area to the left of 

the hot fins dominates the left end of the hot channel. After this phase, the gas continues to move to 

the right. At phase ĭ8, it can be clearly seen that the hot gas partly moves into the cold channel. 

 

Figure 6 Reference pressure, velocity and displacement for the investigated 20 phases. Gas displacement 

amplitude is 46 mm. The reference pressure signal was measured at the end of the resonator by the microphone, 

while the reference velocity at point “M” (cf. Fig. 3c) was measured by PIV. The displacement amplitude at point 

“M” was calculated as ȟM=uM/(2ʌf). 

At phase ĭ11, the fluid displacement reaches the maximum positive value (cf. Fig. 6), which 

indicates that the gas reached the rightmost position in the cycle. The hot gas dominates the whole 

hot channel and partly penetrates into the cold channel. The cold gas in the cold channel partly 

moves into the open area to the right of the cold fins and mixes with the colder gas in this region. 

After this phase, the gas starts to move to the left. At phase ĭ12, the cold gas in the cold channel 

gradually moves into the hot channel. The cold gas in the open area to the right of the cold fins 

partly flows into the cold channel. At phase ĭ16, the gas reaches again the �equilibrium position�. 



 

 16

The cold gas penetrates as far as possible into the hot channel and the hot gas in the hot channel also 

migrates into the open area to the left of the hot fins. At phase ĭ18, the hot channel is occupied by 

the cold gas and the hot gas in the hot channel moves further to the left. After this phase, the gas 

keeps moving to the left until it enters the next acoustic cycle.  

 

Figure 8 shows an analogous set of the temperature field plots at the highest Re investigated: Re = 

702 (ȟM = 46 mm). Clearly, the larger fluid displacement amplitude changes the picture of the 

temperature fields: the cold gas can penetrate deeper into the hot channel and vice versa. Similarly, 

the higher velocities cause higher local temperature gradients and lead to higher heat transfer rates 

(as discussed below). The fluid displacement amplitude of 46 mm is greater than the fin length 

which causes the hot gas to �overshoot� the CHX and the cold gas to �overshoot� the HHX as can 

be seen for phase ĭ1 and ĭ11. 

 
Figure 7 Temperature field distributions for 20 phases within an acoustic cycle at Re = 250. Red rectangles in the 

first plot mark the heated plates, while blue rectangles mark the cooled plates in the heat exchangers. The black 

dashed lines mark the “stitching” between the three averaged PLIF images. 

It should be noted that slight discontinuities can be seen in Figs. 7 and 8 as a result of �stitching� 

together three images obtained from consecutive experiments. This is due to the practical 

implementation of the experiment as well as its overall duration. During the measurements, the 
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fluorescence images from the middle and right views were obtained with the illumination coming 

from Mirror 1, while for the left view Mirror 2 was used. Although every effort was made to keep 

the optical paths the same, there could be differences in the optics and windows in the light path, 

which may lead to a slightly different level and distribution of the excitation energy from the left 

and right sides of the heat exchangers. Separate calibrations were impractical because of the thermal 

inertia of the rig and the time to warm up or cool down the heavy metal resonator. Another cause 

may be a slight change in acetone concentration during a very long experimental run (3 hours), 

which may result in temperature discrepancies between neighbouring views. 

 

 
Figure 8 Temperature field distributions for 20 phases within an acoustic cycle at Re = 702. 

 

To further analyse the heat flux, the cross sectional temperature profiles in the hot and cold channel 

can be investigated at different positions along the flow direction. The respective eight positions in 

both the hot and cold channels are selected as 1, 5, 10, 15, 20, 25, 30 and 34 mm counting in either 

direction from the �joint� between the HHX and CHX. Positions 1 and 34 mm are selected to avoid 

the �joint� and the edges of the hot and cold fins. The �joint� involves a large temperature gradient 

in both the longitudinal and the transverse direction, thus the measured temperature gradient could 

introduce a high degree of uncertainty. At the edges of the fins, there is a relatively strong reflection 
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so that the fluorescence intensity is considered to be unreliable. 

 

The wall temperatures at the 16 positions selected can be obtained by using a linear interpolation of 

temperature values from the surface mounted thermocouples on the hot and cold fins. As an 

example, the cross sectional temperature profiles 1 mm away in either direction from the �joint� are 

shown in Figs. 9a (Re = 250) and 9b (Re= 702) for selected phases in the acoustic cycle (ĭ1, ĭ6, ĭ8, 

ĭ12, ĭ16 and ĭ18). The distance from the fin wall is normalized by the channel width, D = 6 mm. 

The temperature normalised as follows: 

 
ch

wf

TT

TT

−

−
=ș , (5) 

where Tf, Tw, Th and Tc are the local fluid temperature, local wall (fin) temperature, reference hot 

temperature (here 200ºC), reference cold temperature (here 30ºC), respectively. 

 

 

Figure 9 Normalized temperature distributions at selected cross-sections of the hot and cold channels. Graphs on 

the left are for the position 1 mm from the “joint” above the hot fin. Graphs on the right are for the position 1 

mm from the “joint” above the cold fin. Row (a) is for Re = 250. Row (b) is for Re = 702. Only six phases shown. 

 

The temperature profiles in Fig. 9 clearly show the large temperature variations in a very thin layer 

of gas near the wall. In Fig. 9a, the temperature profiles for all six phases in the hot channel indicate 
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the heat transfer direction from the plate to the gas, while in the cold channel the heat is always 

transferred from the gas to the plate. It is also found that in the cold channel, at phase ĭ1, the gas 

temperature beyond the thin layer near the wall is lower than the wall temperature (a negative ș). It 

is understood that at this phase the gas is in the leftmost position, and the cold gas from the cold 

channel moves deep into the hot channel. The colder gas from the right occupies this position for a 

while so that at phase ĭ6 the temperature in the cold channel centre is still lower than at the wall. 

 

In Fig. 9b, the heat transfer between the gas and the fins in the hot and cold channels is still from 

the plate to the gas and from the gas to the plate, respectively. The relatively large velocity increases 

the steepness of temperature profiles. The heat is transferred through the gas near the wall at a 

higher rate per unit surface area (heat flux density). The large displacement amplitude causes the 

cold gas to occupy the selected position for a larger part of an acoustic cycle. This is clearly 

illustrated by the gas temperatures at phase ĭ1, ĭ6, and ĭ8 in the cold channel, which are lower than 

the wall temperature. 

 

4.2 Heat flux and Nusselt number 
 

The temperature profiles such as those presented in Fig. 9 allow calculating the local, 

phase-dependent heat fluxes on the fin surface using first principles: 

 ( ) ( )
0

,,
,

=

Φ
−=Φ

y
dy

yxdT
kxq , (6) 

where k is the nitrogen thermal conductivity, which is a function of temperature and can be 

calculated using a 7
th

 order polynomial [54]. The positive values indicate the heat transfer from the 

plate to the gas; the negative values indicate the heat transfer from the gas to the plate. The local, 

phase-dependent, heat fluxes are obtained by linear fitting of temperatures at 6 data points closest to 

the fin plates along the y direction. 

 

The heat flux q(x, ĭ) is a function of the axial location x and phase ĭ. The cycle-averaged local 

heat flux q(x), the space-averaged phase-dependent heat flux q(ĭ) and the space-cycle averaged 

heat flux q are defined respectively as, 
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The axial location x includes 16 positions as described in section 4.1; ĭ denotes 20 phases in Fig. 6. 

The integrations in Eqns. (7-9) are performed by using weighted averaging in space and time 

(phase). Figure 10 shows the space-averaged heat fluxes in the acoustic cycle for four Reynolds 

numbers investigated. It can be found that the variation of space-averaged heat fluxes has a 

sinusoidal character as a function of phase. At phase ĭ6 (phase angle 90û), the heat flux reaches the 

maximum negative value for Re equal to 250 and 357. It is because at this phase the velocity 

reaches the maximum, and the gas moves to the right through the �equilibrium position�. The hot 

gas occupies the hot channel and partly penetrates into the cold channel (cf. Fig. 7), which causes 

the relatively small temperature gradient in the thin thermal boundary layer in the hot channel and a 

large temperature gradient in the cold channel. Thus, the overall effect is the heat transfer from the 

gas into the plate. 

 

 

Figure 10 Space-averaged phase-dependent heat fluxes. 

 

For the relatively large values of Re, the high gas displacement causes the gas on the left of the 

HHX partly reach the cold channel (cf. Fig. 8), which seems to decrease the temperature gradient in 

the cold channel. The maximum positive heat fluxes appear at about ĭ16 (phase angle 270û) when 

the gas moves to the left through the �equilibrium position�. The cold gas dominates the cold 

channel and penetrates deeply into the hot channel, which causes relatively small temperature 

gradient in the cold channel and relatively large gradient in the hot channel. The overall effect is the 

heat transfer from the plates into the gas. These space-averaged phase-dependent heat fluxes 

increase with Re. This is because of the high velocity and gas displacement amplitudes at higher Re. 

The high velocity amplitude increases the temperature gradient in the hot and cold channels, while 

the high gas displacement amplitude increases the heat transfer length in the flow direction. 
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Figure 11 shows the space-cycle averaged heat flux variation with Re. It can be clearly seen that the 

heat transfer is from the plate to the gas in the HHX, while the heat transfer is from the gas to the 

plate in the CHX. The space-cycle averaged heat flux for the HHX is increasing with Re, while for 

the CHX the maximum heat flux is at Re = 535. At low Re, the gas displacement is less than the 

length of the HHX and CHX (cf. Fig. 7). The gas heated by the HHX can partly transfer heat to the 

CHX, while the heated gas at the leftmost end of the HHX cannot exchange heat with the CHX. By 

the same token, the cold gas at the rightmost end of the CHX cannot exchange heat with the HHX. 

When Re = 535, the corresponding gas displacement amplitude is 36 mm, which is close to the 

length of the HHX and CHX (35 mm). It is considered that the gas heated by the HHX can fully 

transfer heat to the CHX and the cold gas in the CHX can take as much heat as possible heat from 

the HHX. However, it seems that when the gas displacement amplitude is more than the length of 

the HHX and CHX (cf. Fig. 8), the colder gas from left of the HHX moves into the CHX but cannot 

effectively exchange heat with the CHX. Nevertheless the net heat flux between the HHX and CHX 

increases with Re. 

 

Figure 11 Space-cycle averaged heat flux as a function of Re. 

 

From the local phase-dependent heat flux, the local phase-dependent heat transfer coefficient h(x,ĭ) 

and the local phase-dependent Nusselt number Nu(x, ĭ) can be defined as: 
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respectively, where ǻT is the thermal potential for the heat flux. In the oscillatory flow, ǻT = Tw - Ti 

is the difference between the wall temperature and the gas temperature at the entrance and exit of 

the channel or pipe [55]. Here, Ti is selected as the temperature at point �M� in Fig. 3c because this 
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temperature reflects the interaction between the HHX and CHX. Thus, ǻT(x, ĭ) = Tw(x) - TM(ĭ). 

The space-cycle averaged Nusselt number can be expressed as: 

 ∫∫ ΦΦ=
l

dxdx
l 0

2

0
),(Nu

2

1
Nu

π

π
,  (12) 

Figure 12 shows the relation of the space-cycle averaged Nu vs. Re. It is found that the heat transfer 

correlation for the HHX is different from that for the CHX, i.e. Nu of the HHX is much larger than 

that of CHX at the same Re. It is reasonable to speculate that heat exchangers with the same 

configuration (the thickness and length of fin, and the gap between fins) would have the same heat 

transfer coefficient and thus the same heat transfer correlation, if the operating conditions are 

appropriately considered in the derivation of the non-dimensional heat transfer correlation. The lack 

of such agreement suggests that the underlying definition of the heat transfer coefficient does not 

fully reflect the physics � most likely the tentative selection of the temperature at point M as a 

reference (by analogy to work [55]) is incorrect. Nevertheless, at the stage of developing the 

measurement and data processing techniques this issue is not critical and will have to be addressed 

through further fundamental heat transfer research. 

 

Figure 12 Space-cycle averaged Nu vs. Re. 

 

Figure 12 also shows a similar trend to the heat flux behaviour in Fig. 11, in that Nu for the HHX 

increases with Re, while Nu for the CHX reaches a maximum at the Re = 535. It is found that the 

increase of Nu for the HHX becomes weaker for Re over 535 (as though a �saturation� effect took 

place after the displacement amplitude exceeds the fin length). This agrees well with the 

thermoacoustic design guidelines explained in Section 1. 

 

5 Uncertainly analysis 
 

As described in section 3.4, the temperature distribution is determined in the following steps: 
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background subtraction, sheet correction, energy correction and temperature calibration. The 

precision of any step will contribute to the overall precision of the temperature measurement. 

According to the theory of error propagation [56], given a function: 

 ,...),,( CBAfX = ,  (13) 

the standard deviation, ıX, of X can be written as, 
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Here, ıA, ıB and ıC are the standard deviations of A, B and C, respectively. 

 

A general temperature calibration curve can be typically described as [46]: 

 bTaeI −= . (15) 

Here, a and b are constants determined by the fitting of the calibration curve. Thus, the temperature 

can be expressed as: 

 
b

I

b

a
T
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−= . (16) 

It is indicated that there are a few steps required for correcting the image dark current, laser sheet 

inhomogeneities, variations of laser energy and so on, before obtaining the true PLIF signals: 

 scecbg CCIII **)( exp −= . (17) 

Iexp is the raw PLIF image intensity, Ibg is the background image intensity, Cec and Csc are correcting 

coefficients for the energy and sheet correction. Thus the temperature can be written as, 
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a
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As the laser sheet inhomogeneities and variations of laser energy can be corrected relatively 

accurately at the post-processing stage through energy correction and sheet correction, the errors 

caused by them can be practically neglected. A careful analysis indicates that the temperature 

dependence of the refractive index has a negligible effect on the measurement accuracy. 

 

According to the equation of error propagation, the square of the standard deviation of temperature, 

ıT, can be calculated as: 
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Here, 
expIσ and 

bgIσ  are the standard deviations of the PLIF image and background image, 

respectively. The standard deviations of the PLIF image correspond to the error bars in Fig. 5. They 

vary with temperature: a low temperature corresponds to a large standard deviation, while a high 
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temperature corresponds to a relatively small standard deviation. The standard deviations of the 

background image have relatively constant values and are originally due to camera dark current 

(electronic signal determined by the thermal characteristics of the CCD even in the absence of light). 

The standard deviation of temperature is therefore: 
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Figure 13 shows the changes in standard deviation of temperature measurements with temperature 

calculated from Eq. (20). It can be found that the standard deviation of temperature increases with 

temperature. The maximum standard deviation of temperature is around 16 °C at 200 °C, based on 

averaging of 100 images, i.e. 3.4% (16 K / 473 K) when a relative uncertainty is used. This 

uncertainty is congruent with literature data concerned with LIF: For example, an uncertainty of 

1.8% at 300 K was estimated by Kearney et al. in Rayleigh-Benard convection [40]. An uncertainty 

of 2.4% at around 350 K, and 4.5% at around 1000K was obtained in a laminar hypersonic flow [57] 

and 10% between 300 K and 3000 K in shock tunnel flows [58]. 

 

Figure 13 Standard deviations of temperature measurements as a function of temperature. 

From the standard deviation of temperature, the standard deviation of local, phase-dependent heat 

flux, ıq(x,ĭ), can be deduced. Since the local, phase-dependent heat flux is obtained by a linear fitting 

of temperatures at 6 data points near the wall, it can be approximately described as: 
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Here, T1 is the gas temperature closest to the fin wall; T2 is the gas temperature at one of other 5 

data points; ǻy is the distance between T1 and T2 in y direction. This approximation may exaggerate 

the uncertainty of local, phase-dependent heat flux because only two data points rather than 6 data 

points are used. But, the benefit of this approximation is the simplicity of calculation of the 
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uncertainty of local, phase-dependent heat flux. According to Eq. (14), 

 Txq
y

k ı2ı ),( Δ
=Φ . (22) 

Uncertainty of space-averaged phase-dependent heat flux, and uncertainty of space-cycle averaged 

heat flux can be deduced by averaging local, phase-dependent heat flux. They are indicated by the 

error bars in Figs. 10 and 11, respectively. Combining Eqns. (10), (11) and (22) the uncertainty of 

the local, phase-dependent Nusselt number, ıNu(x,ĭ), can be expressed as: 
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Uncertainty of the space-cycle averaged Nu can be reduced by averaging the local, phase-dependent 

Nu in 20 phases and 8 measured spatial positions. Thus, the maximum uncertainties of the 

space-cycle average Nu for the HHX and CHX are 0.43 and 0.21, respectively. The uncertainties of 

the space-cycle average Nu for the HHX and CHX are shown in Fig. 12 for the four values of Re in 

this study.  

 
6 Conclusion 
 

The focus of this paper is to develop the experimental setup and methodologies for application of 

acetone-based PLIF for the measurement of time-dependent temperature fields in a challenging 

environment of oscillatory flows present in the thermoacoustic systems in the vicinity of the 

parallel-plate heat exchangers. A pair of mock-up heat exchangers was constructed and their thermal 

performance monitored as a function of acoustic displacement within an acoustically-induced 

oscillatory flow. However, this study is essentially a test-bed for developing the PLIF 

methodologies themselves, in particular in terms of the acetone seeding, optimisation of the acetone 

concentration and the temperature calibration. Furthermore, the obtained time-dependent 

temperature distributions in an acoustic cycle demonstrate the potential of using the acetone-based 

PLIF in thermoacoustic systems to obtain temperature gradients and corresponding heat fluxes. This 

is also indicated by the relatively low uncertainty of Nu obtained from the temperature gradient at 

the solid-fluid interface. The local temperature distribution profiles in the acoustic cycle and 

space-averaged phase-dependent heat fluxes reveal the heat transfer variations as a function of 

phase within the cycle. The space-cycle averaged heat fluxes and changes of Nu vs. Re show that it 

is possible to monitor (and potentially optimise) the thermal performance of heat exchangers. The 

technique provides an important foundation for further design studies of heat exchangers in 

thermoacoustic systems. Future comprehensive heat transfer studies of this type may lead to 

improved heat transfer correlations or be used as a benchmark for future CFD codes. 
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