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Abstract

This paper studies the interaction between non-viscous damping and nonlinearities
for nonlinear oscillators with reflection symmetry. The non-viscous damping func-
tion is an exponential damping model which adds a decaying memory property to
the damping term of the oscillator. We consider the case of softening and harden-
ing behaviour in the frequency response of the system. Numerical simulations of
the Duffing oscillator show a significant enhancement of the resonance peaks for
increasing levels of non-viscous damping parameter in the hardening case, but not
in the softening case.This can be explained in the general context by an energy bal-
ance analysis of the undamped unforced oscillator, which shows that for hardening
nonlinearities the growth of damping with the energy level is an order of magnitude
smaller in the exponential case than in the viscous case.

Key words: damping, Duffing, exponential, non-viscous.

1 Introduction

Viscous damping is the most common model for modelling of vibration damp-
ing. This model, first introduced by Lord Rayleigh [1], assumes that the instan-
taneous generalised velocities are the only relevant variables that determine
damping. Viscous damping models are used widely for their simplicity and
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mathematical convenience even though the behaviour of real structural mate-
rials may not be adequately represented by viscous models [2]. For this reason
it is well recognised that in general a physically realistic model of damping is
unlikely to be viscous. Damping models in which the dissipative forces depend
on any quantity other than the instantaneous generalised velocities are non-
viscous damping models [3,4]. Mathematically, any causal model which makes
the energy dissipation functional non-negative is a possible candidate for a
non-viscous damping model [5, 6]. Clearly a wide range of choice is possible,
either based on the physics of the problem, or by a priori selecting a model
and fitting its parameters from experiments.

In this paper we consider a damping model called the “exponential” damping
model, which has been shown to have useful properties for modelling vibration.
With this model the damping force is expressed as

fd(t) =
∫ t

0
c µe−µ(t−τ)u̇(τ) dτ. (1)

Here c is the viscous damping constant, µ is the relaxation (or non-viscous
damping) parameter and u(t) is the displacement as a function of time. This
model was originally proposed by Biot [7,8] and later used be several authors in
the context of dynamics of linear elastic and viscoelastic systems. Equation (1)
physically implies that the previous time histories of the velocity u̇ contribute
to the current damping force and the most recent instances of velocity have the
highest influence. In the limiting case when µ → ∞, the exponential kernel
function approaches the Dirac delta function δ(t). For this special case the
damping force given by equation (1) reduces to the case of viscous damping.

One way to view the exponential damping model is as a generalisation of the
classical viscous damping model. In this case one could potentially enhance
the damping modelling capability of numerical models using the exponential
model. Methods for the analysis of linear single-degree-of-freedom [21, 22] as
well as multiple degree-of-freedom systems [3–6, 19, 20] with damping of the
form (1) have been considered. The following reasons for the selection of this
type of model can be given:

• For viscoelastic systems, an equation similar to (1) is often associated with
the stiffness parameter. In this context, the physical basis for exponential
models has been well established. Cremer and Heckl [2] concluded that ‘Of
the many after-effect functions that are possible in principle, only one —
the so-called relaxation function — is physically meaningful.’

• It has been noted that when the damping is non-viscous, forceful fitting
of viscous damping may produce non-physical result, for example, a non-
symmetric coefficient matrix [23]. For linear multiple-degree-of-freedom sys-
tems, Adhikari and Woodhouse [24] have proposed a method to identify
both the viscous and non-viscous parameters in equation (1) from exper-
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imental vibration measurements. This gives significantly improved results
over trying to fit a single parameter viscous model to experimental data.

Due to its enhanced damping modelling capabilities, several authors have con-
sidered non-viscous damping models in the context of linear single-degree-of-
freedom as well as multiple degree-of-freedom systems. Golla and Hughes [9]
McTavis and Hughes [4] have proposed a method to obtain equations of motion
similar to (1) using a time-domain finite-element formulation. Their approach
(the GHM method) introduces additional dissipation coordinates correspond-
ing to the internal dampers. Dynamic responses of the system were obtained by
using the eigensolutions of the augmented problem in the state-space. Bishop
and Price [10] have considered equations of motion similar to (1) in the con-
text of ship dynamics. The convolution term appeared in order to represent the
fluid forces and moments. It is worth noting that a related modelling technique
used to model non-viscous effects is fractional damping (see for example [12]
and references therein). Bagley and Torvik [11], Torvik and Bagley [13], Gaul
et al. [14] and Maia et al. [15] have considered damping modelling in terms of
fractional derivatives of the displacements. The resulting equation has a con-
volution integral form similar to equation (1). In the context of engineering
vibration, typical applications for non-viscous damping models occur in the
study of dampers used for vibration isolation [16], for example, base isolation
of buildings [17].

Specifically, in this paper we a consider single-degree-of-freedom oscillator with
a symmetric stiffness nonlinearity and varying levels of harmonic forcing. A
classical prototype of this type of nonlinear system is the Duffing oscillator
with harmonic forcing. In order to understand the effect of adding non-viscous
damping to a nonlinear system we focus on the well understood situation of a
weak nonlinearity balanced with weak damping (that is, small c in equation
(1)). Section 4 discusses the two subcases of weak symmetric stiffness nonlin-
earity: the hardening (section 4.1) and the softening (section 4.2) nonlinearity.

In short, we find that positive non-viscosity µ induces two qualitative differ-
ences. First, we observe a moderate shift in the onset of nonlinear behaviour
toward lower forcing amplitudes for increasing µ. This can be explained by
the linear analysis of the zero state as found in [21] and summarised in Sec-
tion 3. Second, and more prominently, large resonance peaks are significantly
enhanced for hardening nonlinearities, but not for softening nonlinearities. Our
analysis shows that for the exponential force model, equation (1), the growth
of dissipation with the energy level is orders of magnitude smaller than for
the viscous damping model. This effect must be attributed to the interaction
with the nonlinearity which comes into play at large amplitude oscillations.
All numerical simulations are carried out using the classical Duffing oscillator,
such that we can study the effects of exponential damping using a system with
well known nonlinear dynamic behaviour. However, the analysis is indepen-
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dent of the particular cubic Duffing-type nonlinearity and, thus, carries over
to general symmetric stiffness nonlinearities.

In Section 2 we present the Duffing oscillator, which serves as a prototype
for nonlinear single-degree-of-freedom forced oscillators, and introduce non-
viscous damping into the model. Non-dimensionalisation leads to a system of
three first order differential equations depending on five parameters, of which
two relate to the external forcing, one captures the nonlinearity of the stiff-
ness behaviour, one represents the viscous damping and one the non-viscous
damping. Then in Section 3 we summarise the theory on the effects of the
exponential non-viscous damping model on a linear harmonic oscillator.

Section 4 starts with numerical simulations of the Duffing oscillator, which
show a strong effect of non-viscosity for the case with a cubic hardening stiff-
ness term. This includes resonance peaks which can have have unbounded
growth in amplitude. We present an energy balance analysis of the undamped
and unforced case which we use to demonstrate how the unbounded growth
can occur in the hardening case. The same analysis is used to demonstrate
that in the softening case the effect of the non-viscosity is relatively minor.
Conclusions are drawn in Section 5.

2 The forced Duffing oscillator with non-viscous exponential damp-

ing

The Duffing oscillator has been widely studied, and comprehensive reviews of
the associated literature can be found in [25–28]. For these type of systems
the damping is nearly always assumed to be viscous. Notable exceptions are
a study of a Duffing vibration isolator which has combined Coulomb and
viscous damping [29] and a study considering the effect of fractional damping
on the Duffing oscillator [30]. In addition a preliminary study on the system
considered in this paper has been carried out by two of the current authors [31].

Replacing viscous damping by the exponential damping force, equation (1),
the governing equation for the forced Duffing oscillator can be expressed as

m
d2x

dt̂2
+ c

∫ τ̂=t̂

τ̂=0
µe−µ(t̂−τ̂)dx

dτ̂
dτ̂ + kx + αkx3 = A cos(Ωt̂), (2)

where x represents the displacement of the oscillator mass m, the linear stiff-
ness is given by k, the coefficient α, represents the form of the cubic stiffness
nonlinearity, t̂ is time and τ̂ is the integration variable. The viscous damping
coefficient is c and the non viscous damping effects are represented by the
parameter µ. The forcing amplitude is A = x0k, where x0 is the equivalent
static displacement.
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Introducing the nondimensional time variables t = t̂ωn and τ = τ̂ωn, where

ωn =
√

k/m is the natural frequency of the linear part, means that equation

(2) can be expressed as

ẍ + 2ζ
∫ t

0

e−
1

β
(t−τ)

β
ẋdτ + x + αx3 = x0 cos(ωt), (3)

where ζ = c/(2mωn), β = ωn/µ, ω = Ω/ωn and an overdot represents differ-
entiation with respect to nondimensional time.

We now define the integral term in equation (3) as

y =
∫ t

0

e−
1

β
(t−τ)

β
ẋdτ. (4)

Then by using the Leibniz rule for differentiation of an integral [3] we can
write

ẏ =
1

β
ẋ − 1

β
y. (5)

We can then write equations (3) and (5) as a set of three first order ordinary
differential equations

ẋ1 = x2,

ẋ2 = −2ζy − x1 − αx3
1 + x0 cos(ωt),

ẏ =
1

β
x2 −

1

β
y,

(6)

where all three equations have dimensions of length, which can be scaled out
as required. We note that if we multiply through the last line of equation (6)
by β, then as β → 0, y → x2 and the viscous damping case is obtained.

The parameters m, c and k are positive for physically realistic oscillators.
However, the coefficient α can have positive or negative sign depending on the
physical type of nonlinearity.

Setting |α| ≪ 1 corresponds to the weakly nonlinear cases of hardening (α
positive) or softening (α negative) cubic spring behaviour encountered in a
range of mechanical applications. For weak nonlinearities we can set α to
any particular value (for example, α = 1) without loss of generality because
different values of α correspond to a rescaling of the state space variables x1,
x2 and y. For the numerical simulations we have chosen α small such that
the forcing is of order one. Alternatively, one may fix x0 to 1 and vary α as
bifurcation parameter. This corresponds to a quadratic rescaling of the y-axis
in the numerical bifurcation diagrams 3 and 4.Figure 1 shows the frequency
response of these two cases, illustrating the effect of the nonlinearity as the
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characteristic “bending” of the resonance peak for non-zero forcing x0. The
resonance peak bends toward the range of higher frequencies in the hardening
case (a) whereas it bends toward lower frequencies in the softening case (b).
If the forcing exceeds a critical value, defined as x0,c, the bending gives rise
to the appearance of two limit points (called LP in Figure 1) and a region of
bistability between these two limiting frequencies. Typically the “upper” limit
point (ULP) is close to the resonance peak and frequency.

The sections 4.1 and 4.2 study how the presence of a nonzero exponential non-
viscous damping coefficient β affects characteristic expressions of the nonlin-
earity, namely the size of the region of bistability, the critical forcing x0,c, and
the height and location of the resonance peak.

3 Effects of exponential damping on a linear oscillator

The equation of motion of a linear single-degree-of-freedom system with damp-
ing characteristics given by equation (1) can be expressed as

ẍ + 2ζ
∫ τ=t

τ=0

e−
1

β
(t−τ)

β
ẋ(τ)dτ + x = f(t), (7)

together with the initial conditions

x(0) = x0 and ẋ(0) = ẋ0. (8)

Qualitative properties of the eigenvalues of this system have been discussed in
detail by Adhikari [21,22]. Here we review some basic results which are useful
in understanding the results of the nonlinear system discussed in section 4.

Transforming equation (7) into the Laplace domain one obtains

s2 x(s) +

(

2ζ s

sβ + 1

)

x(s) + x(s) = f(s) + ẋ0 +

(

s +
2ζ

sβ + 1

)

x0, (9)

where s is the complex Laplace domain parameter and (•) is the Laplace
transform of (•). When ζ → 0 the oscillator is effectively undamped. When
β → 0 then the oscillator is effectively viscously damped. In what follows, we
will use these limiting cases to develop a physical understanding of the results
to be derived in Section 4.

Manipulation of equation (9) and substituting s = iω, [21], enables a non-
dimensional frequency response function to be expressed as

G(iω) =
1 + iβω

(1 − ω2) + iω (2ζ + β − βω2)
. (10)
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From equation (10), the amplitude of vibration can be obtained as

|G(iω)| =
√

G(iω) G∗(iω) =

√

√

√

√

1 + β2ω2

(1 − ω2)2 + ω2 (2ζ + β − βω2)2 . (11)

Figure 2 shows the amplitude of the non-dimensional frequency response
|G(iω)| as a function of the normalised frequency ω. The numerical values
of β and ζ are selected such that Figure 2 represents the general overall be-
haviour. The amplitude of vibration is scaled such that it is equal to one in
the static case, that is, when ω = 0. Therefore as the frequency changes, the
values of |G(iω)| in equation (11) can be regarded as the amplification factors.
When β is less than a critical value βc [21], such that β < βc = 1/(3

√
3) the

frequency response function is similar to that of the viscously damped system.
This is expected because the value of β is relatively small.

For all cases in Figure 2, we observe that the amplitude of the peak response of
the non-viscously damped system is higher than that of the viscously damped
system. In general the higher the value of β, the higher the value of the am-
plitude of the peak response. This is due to the fact that the real part Re[s] of
the dominant weakly damped complex eigenmode pair of the linear oscillator,
equation (7), increases from Re[s] = −ζ to Re[s] ≈ −ζ/2, moving closer to
the imaginary axis, for β increasing from 0 to 1 [21]. The eigenvalues of the
oscillator, equation (7), correspond to the complex roots of the denominator
of G(iω). This means that an increase of β corresponds to a decrease of the
effective damping. A similar effect is caused by including an integral term in
a feedback control law. We can expect that this decrease of effective damping
at the linear level causes nonlinear effects to become observable at smaller
forcing amplitudes (which is indeed the case, see Section 4).

Another interesting observation in Figure 2 is that the dynamic response am-
plitude has a peak even when ζ > 1/

√
2. For example, in Figure 2(d), the

viscously damped system does not have any response peak as ζ = 1 (crit-
ical viscous damping). However, for the non-viscously damped system, the
response amplitude has a peak when β = 1 or β = 0.75, but not if β < 0.5.
See reference [22] for an in-depth exploration of these response behaviours.
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4 Analysis of the interplay between nonviscous damping and non-

linearity

4.1 The effect of non-viscous damping on systems with hardening nonlinear-
ities

The hardening stiffness nonlinearity, α > 0 in equation (3) is characterised
by a bending of the resonance peak toward the high-frequency end. The illus-
tration in Figure 1(a) shows that, for forcing amplitudes x0 larger than the
critical amplitude, x0,c, this bending of the resonance peak causes a region of
bistability, bounded by two limit points. Figure 3(a) depicts how this region of
bistability in the (ω, x0)-plane depends on the non-viscous damping coefficient
β. The other two relevant parameters have been kept fixed at a small value:
α = 0.05 and (without loss of generality) ζ = 0.05. The region of bistability in
the (ω, x0)-plane typically has the form of a wedge with a cusp (ωc, x0,c) that is
pointing downwards. The cusps of all curves are marked by grey-filled circles
in Figure 3(a) (partially obscuring each other and effectively forming a line).
For each value of β from 0.1 to 1 (varying in steps of size 0.1) the diagram
in Figure 3(a) shows the curves of limit points bounding this wedge of bista-
bility (compare also Figure 1(a)). The part of each curve bounding a wedge
of bistability from the right corresponds to the ULP in Figure 1(a), which is
for moderately large forcing amplitudes (x0 > x0,c) very close to the top of
the resonance peak. This implies that the location of the top of the resonance
peak coincides (approximately) with the right boundary of the bistability re-
gion (the curve emanating to the right from the cusp in Figure 3(a)), at least
for parameter values far from the cusp. The part of the curve bounding the
wedge of bistability from the left corresponds to the LLP in Figure 1(a). The
location of LLP in parameter and phase space is virtually unaffected by β: all
LLP curves in Figure 3(a) lie on top of each other.

The wedge shape of the bistability region and the curves of limit points are
known for the classical viscous case (β = 0). As Figure 3(a) indicates, they
persist also for non-viscous damping (β > 0). However, there are two quali-
tative changes. First, the cusp (ωc, x0,c) is shifted downwards when increasing
β from 0 to 1 (see inset of Figure 3(a)). That is, the larger the non-viscous
damping β the smaller the critical forcing amplitude x0,c that causes the res-
onance peak to bend enough for bistability. The inset in Figure 3(a) zooms
into the parameter region of the cusps, showing only the cusps as a curve
(x0,c(β), ωc(β)) for β varying in the interval [0, 1]. The explanation for the
downward shift of x0,c follows from the analysis of the unforced non-viscous
system, linearised around zero. Section 3 showed that, for the linear oscillator
system, we have a decrease of effective damping for increasing β. Lower effec-
tive damping causes nonlinear effects to become observable at smaller forcing
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amplitudes. This implies that one would expect the cusp to shift down to the
parameter region of smaller forcing amplitude, which indeed occurs.

The second, more prominent, effect of non-viscous damping is the widen-
ing of the region of bistability (see Figure 3(a)). More precisely, for every
β > 0 there exists a second critical forcing amplitude x0,∞ for which the top
of the resonance peak disappears toward ω = +∞ and infinite amplitude
max{t} x1(t) = ∞. The limit points on the curves to the right of the cusp in
Figure 3(a), which correspond to the ULPs, are close to the top of the reso-
nance peak if the resonance peak itself is large (compare the top of the peak
and the upper limit point, denoted ULP, in Figure 1(a)). Thus, the location
of the right curve of limit points in Figure 3(a) is a good approximation for
the top of the resonance peak as well.

Figure 3(b) focuses on the asymptotic behaviour of the ULPs which are ap-
proximately at the top of the resonance peak. The figure shows the limit point
curve for large ω, plotting it in the parameter plane period (2πω−1) vs. x0β

2,
which is a transformation of the (ω, x0)-plane in Figure 3(a). It can be seen
that the limit point curves stay finite for ω → ∞, indicating that a scaling
law exists of the form x0,∞ ∼ β−2. This implies that for x0 > x0,∞(β) one
will not find the large sharp bent resonance peak of Figure 1(a). Instead the
response amplitude always increases for increasing ω, coexisting with a small
amplitude response for all ω > ω1(β), the left “lower” limit point (LLP).

One can understand this qualitative difference to the viscous case by consid-
ering the forced weakly damped system, equation (6) as a small forcing/small
damping perturbation of the conservative unforced oscillator

ẋ1 = x2,

ẋ2 = −x1 − αx3
1.

(12)

This consideration is certainly valid for large amplitude responses as they
occur near the high (and very sharp) resonance peaks. The oscillator, equation
(12) preserves the energy h(x) = (x2

2 +x2
1)/2+αx4

1/4. Each energy level h ≥ 0
corresponds to a (free-phase) periodic orbit of equation (12) with a unique
frequency ω̃(h). The function ω̃(h) increases strictly monotonically due to the
hardening type of the nonlinearity. Let us denote its inverse by h̃(ω). A high
amplitude response of the forced and damped system in equations (6) follows
as a zero order approximation a periodic orbit γ = (x1(t), x2(t)) of equation
(12) corresponding to a certain energy level h. This orbit γ and its energy
level h are determined by two criteria, a resonance condition and a phase (or
balance) condition. The resonance condition states that

ω̃(h) = ω or, equivalently, h = h̃(ω) (13)

where ω is the forcing frequency. The resonance condition, equation (13) fixes
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the energy level h of the response for a given forcing frequency ω to h̃(ω) due
to the monotonicity of ω̃ and h̃. The phase condition states that the integral
of

ḣ =
∂h

∂x1

ẋ1 +
∂h

∂x2

ẋ2,

= −2ζx2(t)y(t) + x0x2(t) cos(ωt),
(14)

equals zero along the periodic orbit γ = (x1(t), x2(t)) of equation (12) corre-
sponding to the energy level h:

0 =
∫

γ
ḣ =

∫

γ
−2ζx2(t)y(t) + x0x2(t) cos(ωt) dt. (15)

The phase condition means that the phase of the orbit is determined such that
the damping −2ζ

∫

γ x2y and the forcing x0

∫

γ x2 cos(ωt) balance each other. In
equation (14) y is the unique periodic solution of βẏ(t) = x2(t)− y(t) (for the
viscous case β = 0 we simply have y(t) = x2(t)).

The phase condition, equation (15) can be recast by introducing the phase
explicitly as a new parameter φ (without loss of generality we put φ into the

forcing and assume that x2(0) = 0, x1(0) =
√

2h̃(ω)) such that

2ζ
∫

γ
x2(t)y(t)=x0 cos(φ)

∫

γ
x2(t) cos(ωt) − x0 sin(φ)

∫

γ
x2(t) sin(ωt) (16)

=−x0 sin(φ)
∫

γ
x2(t) sin(ωt). (17)

The first term on the right-hand-side of equation (16) vanishes because the
nonlinearity (and, thus, x2) is odd. The right-hand-side of equation (17) varies
for φ ∈ [0, 2π] between ±x0

∫

γ x2(t) sin(ωt). Consequently, the following crite-
rion determines the existence of exactly two different high amplitude responses
of the weakly damped and weakly forced system, equation (6):

∣

∣

∣

∣

∣

2ζ
∫ 2π/ω

0
x2(t)y(t) dt

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

x0

∫ 2π/ω

0
x2(t) sin(ωt) dt

∣

∣

∣

∣

∣

(18)

where (x1(t), x2(t)) is the periodic orbit of the conservative oscillator on the

energy level h̃(ω) starting from (x1(0), x2(0)) = (
√

2h̃(ω), 0), and y is the
unique periodic solution to βẏ = x2 − y.

For the viscous case we have y(t) = x2(t) in equation (18). This implies that
the left side of equation (18) grows much faster in h (and ω) than the right
side. Indeed, | ∫γ x2 sin(ωt)| equals the modulus |x2,1| of the first Fourier coef-
ficient of x2 whereas

∫

γ x2
2(t) equals

∑∞
k=−∞ x2

2,k, the sum of the squares of all
Fourier coefficients. Thus, for a certain, sufficiently large, forcing frequency ω
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inequality (18) will turn into an equality. At this frequency ω and its energy
level h̃(ω) we have the resonance peak and the ULP. For larger forcing fre-
quencies damping dominates the forcing such that there is no high amplitude
response.

For positive β, however, the term
∫

γ x2(t)y(t) is orders of magnitude smaller
than

∑∞
k=0 x2

2,k. In fact, for large ω,

∫ 2π/ω

0
x2(t)y(t) =

∞
∑

k=−∞

x2
2,k

1 + iωβk
≪

∞
∑

k=−∞

x2
2,k =

∫ 2π/ω

0
x2

2(t). (19)

Consequently, modelling with exponential damping will always lead to pre-
dictions that have a significant enhancement of large resonance peaks for
hardening nonlinearities. This observation and criterion, equation (18), are
independent from the particular Duffing type cubic nonlinearity of equation
(6) and the modulus of parameter α.

In the case of the Duffing oscillator studied here we observe that
√

2h̃(ω) ∼ ω,
|x2,1| ∼ ω,

∫

γ x2(t)
2 ∼ ω2 and

∫

γ x2(t)y(t) ∼ ω. This implies the existence of
the critical forcing amplitudes x0,∞ which we observed in Figure 3(b).

4.2 The effect of non-viscous damping on nonlinearities of softening type

The softening nonlinearity (α < 0) is characterised by a bending of the reso-
nance peak toward the low-frequency end. This causes a region of bistability
in the (ω, x0)-plane which has a wedge shape similar to the hardening case
but flipped toward the low-frequency end. Figure 4 shows how this region of
bistability depends on the non-viscous damping coefficient β. In panel (a) all
bistability wedges for β = 0.1 to 1 (in steps of size 0.1) have been projected
onto the (ω, x0)-plane. Panel (b) shows a 3d-view of the full parameter space
(ω, x0, β). Clearly, the dependence on β in this case is relatively minor. One
observes a shift of the cusp toward lower forcing amplitudes similar to the
hardening case due to the effects of the non-viscous damping on the effective
damping in the linearisation of the zero state. At large amplitudes there is no
noticeable effect of the increase of β. This can be explained by arguments sim-
ilar to those employed for high amplitude responses for the hardening case. In
equation (19) the difference between the viscous and the nonviscous case lies
in the denominator 1 + iωβk where ω is large for hardening nonlinearities but
small or moderate for softening nonlinearities. Thus, we cannot expect the ex-
ponential damping model to give qualitatively different predictions compared
to the classical viscous one.

We remark that the classical Duffing oscillator with purely viscous damping
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(β = 0) and a softening nonlinearity exhibits an intricate web of bifurcations
for small ω [27], including symmetry breaking and sequences of period doubling
leading to chaos. Hence, the unperturbed case β = 0 shows dynamics in the
left part of Figure 4(a) that depends sensitively on initial conditions and all
parameters, including β. Changes of these features, however, are too subtle to
be clearly attributed to the effect of the inclusion of the exponential damping,
which would correspond to an increase of β. Any other parameter variation
may effect the same change.

5 Conclusions

In this paper we have considered the dynamics of a weakly nonlinear Duffing
oscillator with a non-viscous exponential damping model. This system can be
reduced to a set of three ODE’s, which can then be simulated numerically.
We have considered the cases of softening and hardening behaviour in the fre-
quency response of the system. The numerical simulations show that a signif-
icant enhancement of the nonlinear resonance peaks is observed for increasing
levels of non-viscous damping parameter in the hardening case, but not in the
softening case. This can be explained by an energy balance of the equivalent
undamped, unforced (hardening) case, which shows that the growth of expo-
nential damping with the energy level is several orders of magnitude smaller
than the growth of viscous damping. As a result damping reduces close to the
resonance peak for positive non-viscosity and for sufficiently large forcing, the
bistable region becomes infinite. Qualitatively, the conclusion that exponential
damping enhances the resonance peak can be generalised to general hardening
spring nonlinearities.
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Figure Captions

• Figure 1: Duffing oscillator with non-viscous exponential damping model.
Illustration of the effect of (a) hardening and (b) softening nonlinearity on
the frequency response. The maximum x1 value per forcing period is shown
against frequency ω. Solid lines denote stable solution branches, and dashed
lines are unstable branches. The limit points (LP) are shown as dots. The
coefficients are: α = 0.05, x0 = 2.5 for (a), and α = −0.05, x0 = 0.2 for
(b). The damping coefficients are β = 0.05 and ζ = 0.05 for both diagrams.
(Numerical computations carried out with AUTO [32] and RAUTO [33].)

• Figure 2: Linear oscillator with non-viscous exponential damping model.
Amplitude of the non-dimensional frequency response |G(iω)| as a function
of the frequency ω for different values of ζ and β. The frequency ω is nor-
malised to multiples of the natural frequency ωn =

√
k/m of the original

system. (a) ζ = 0.1, (b) ζ = 0.25, (c) ζ = 0.5, and (d) ζ = 1.0
• Figure 3: Duffing oscillator with non-viscous exponential damping model.

Panel (a): Region of bistability, bounded by curves of limit points, in the
(ω, x0)-plane and their dependence on β. The inset shows the cusps of
the bistability regions enlarged for varying β ∈ [0, 1]. Panel (b): asymp-
totics of the limit point curves (and approximate resonance peaks) in the
(2π/ω, x0β

2)-plane for large ω (that is, small periods). Other parameters:
ζ = 0.05, α = 0.05. (Numerical computations carried out with AUTO [32]
and RAUTO [33].)

• Figure 4: Duffing oscillator with non-viscous exponential damping model.
Region of bistability in the (ω, x0)-plane and their dependence on β (panel
(a)) and in the three-dimensional space of the parameters (ω, x0, β). Other
parameters: ζ = 0.05, α = −0.05. (Numerical computations carried out
with AUTO [32] and RAUTO [33].)
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