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Abstract

In this paper a modified model reference adaptive control (MRAC) technique is presented which can be

used to control systems with nonsmooth characteristics. Using unmodified MRAC on (noisy) nonsmooth

systems leads to destabilization of the controller. A localized analysis is presented which shows that the

mechanism behind this behavior is the presence of a time invariant zero eigenvalue in the system. The

modified algorithm is designed to eliminate this zero eigenvalue, making all the system eigenvalues stable.

Both the modified and unmodified strategies are applied to an experimental system with a nonsmooth

deadzone characteristic. As expected the unmodified algorithm cannot control the system, whereas the

modified algorithm gives stable robust control, which has significantly improved performance over linear

fixed gain control.

Keywords: Gain wind-up, Non-smooth dynamics, Adaptive control, Robustness.

Running title: MRAC of a nonsmooth system
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1 Introduction

In this paper a model reference adaptive control (MRAC) technique is presented which can be applied to non-

smooth systems. This is significant because, although MRAC type controllers have been applied to nonlinear

systems [1–9], the presence of nonsmooth dynamics typically destabilizes these controllers [10, 11]. The tech-

nique presented here is in fact a modification to the standard MRAC approach — descriptions of the standard

approach can be found in a range of textbooks, for example [12–14]. The modified algorithm is applied to an

experimental system with a nonsmooth ‘dead zone’ characteristic and shown to give stable and robust control.

The modified algorithm is developed by considering the MRAC system as a set of three nonlinear ordinary

differential equations (ODE’s). The concept of studying these type of systems as sets of ODE’s has been

considered by (amongst others) [14–19]. In this work, the behavior of a single input, single output (SISO)

model reference control system, is studied using a state space, dynamical systems approach as typified by [20].

The resulting dynamical system is strongly nonlinear and has a particular structure consistent with adaptive

systems which results in a zero eigenvalue in the Jacobian of the linearized system for all parameter values

(see [21] and references therein for similar observations on related adaptive systems). By studying the dynamics

of the localized system (see for example [22–24]) it can be demonstrated that an infinite number of fixed points

exist for the system, and that for a unit step demand they form a time invariant exact matching manifold. The

(global) dynamics along the exact matching manifold can also be obtained by projecting the system onto a

basis formed by the eigenvectors of the linearized system using a center manifold projection [20], an approach

previously used to study another class of adaptive control systems [21].

From a practical viewpoint, the robustness of the system to ‘gain wind-up’ (sometimes called ‘drift’ or

‘creep’) is of key importance. For unmodified MRAC, the presence of a zero eigenvalue means that some

disturbance signals can be enough to induce gain wind-up — although persistence of excitation also plays a

role in this process [14]. The presence of nonsmooth discontinuities exacerbates this wind-up process [11].

Therefore a modified algorithm is presented which eliminates the zero eigenvalue, so that the system can be

shown to be both locally and globally asymptotically stable for a selected class of control demand signals

[25]. It is worth noting that other modifications to MRAC have been presented (for example [26]). The

modification presented here is similar to the gain “leakage” strategies, which have been applied to integral only

adaptive gain strategies [27,28]. However, the localized stability analysis of system [25] shows theoretically why
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these modifications give the system improved stability and robustness. The nonsmooth experimental example

presented in Section 4.2 gives a graphic illustration of this.

2 Theoretical formulation of the MRAC algorithm

In this section a brief review of the MRAC method is given for a SISO system. For more detailed discussions

of MRAC see [12–14] and references therein and Appendix A1.

The system studied in this paper is based on a first-order linear plant approximation given by

ẋ(t) = −ax(t) + bu(t) (1)

where x(t) is the plant state, u(t) is the control signal and a and b are the plant parameters. The control signal

is generated from both the state variable and the reference (or demand) signal r(t), multiplied by the adaptive

control gains K and Kr, such that

u(t) = K(t)x(t) +Kr(t)r(t), (2)

where, K(t) is the feedback adaptive gain and Kr(t) the feed forward adaptive gain. The plant is controlled

to follow the output from a reference model

ẋm(t) = −amxm(t) + bmr(t), (3)

where xm is the state of the reference model and am and bm are the reference model parameters which are

specified by the controller designer. The object of the MRAC algorithm is for xe → 0 as t → ∞, where

xe = xm − x is the error signal. The dynamics of the system may be rewritten in terms of the error such that

ẋe(t) = −amxe(t) + (a− am − bK(t))x(t) + (bm − bKr(t)) r(t). (4)

Using Equations (1), (2) and (3), it can be seen that for exact matching between the plant and the reference

model, the following relations hold

K = KE =
a− am
b

, (5)

Kr = KE
r =

bm
b
. (6)

where ()E denotes the (constant) Erzberger gains [15]. Equations (5) and (6) can be used to express Equation

(4) as

ẋe = −amxe + b(KE −K)(xm − xe) + b(KE
r −Kr)r. (7)
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A generic objective of model reference adaptive control is to adapt to minimize the error xe without

detailed knowledge of the plant parameter values a and b. Usually this takes place in the presence of plant

uncertainties, and in this case a and b are scalars based (and b > 0) on the assumption that the plant has

first-order dynamics. As a result the objective is not to explicitly solve Equation (7), (which is based on a

first-order plant approximation) but provide a controller which can cope with as large a range of a and b values

as possible.

For general model reference adaptive control, the adaptive gains are commonly defined in a proportional

plus integral formulation

K(t) = α

∫ t

0

yex(τ)dτ + βyex(t) +K0, (8)

Kr(t) = α

∫ t

0

yer(τ)dτ + βyer(t) +Kr0, (9)

where α and β are adaptive control weightings representing the adaptive effort and K0 and Kr0 are the initial

gain values. Experimentally, it has been found that the ratio α/β = 10 works well [4]. In higher order MRAC

implementations, ye is a scalar weighted function of the error state and its derivatives, ye = Cexe, where Ce

can be chosen to ensure the stability of the feed forward block [12] (see also Appendix A1). In the case of a

first-order implementation, Ce is a scalar and therefore may be incorporated into the α and β adaptive control

weightings.

In general, it is usual to use estimates of the Erzberger gains, based on a first-order system identification of

the plant, as the initial gain values, K0 and Kr0. Alternatively the initial gain values may be set to zero such

that the controller requires no knowledge of the plant parameters a and b [4] — although this generally leads to

slower convergence to final gain values. The adaptive weightings, α and β need to be selected in advance, and

clearly have a significant influence on the rate of adaptation as they act as fixed gain values which multiply the

proportional and integral parts of the controller gain. How to select appropriate values for these weightings a

priori is an open problem in adaptive control.

It is perhaps useful to classify the systems studied here using the notation proposed in the recent work

of [24]. For our systems there is one state and two adaptive gains, therefore a 1+2 system. However, if the

input (demand) signal is set to zero, one of the adaptive gains becomes redundant, and we get a 1+1 system

similar to that studied by [21,23]. The other main difference with the system studied here is that the primary

system state is actually the error between two scalar linear systems.
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Figure 1: Photograph of the experimental plant, which is a small-scale motor-driven single axis moving table.

3 MRAC applied to a nonsmooth plant

MRAC controllers are designed to adapt to compensate for plant under-modeling and non-linearities. However

it is well known that they are susceptible to gain wind-up due to noise and other uncertainties [14,25] which can

lead to system instability. In this section the application of MRAC to the control of a motor rig which contains

a significant deadzone nonsmooth effect is considered. This typically leads to gain wind-up — discussed in

Section 3.1. In Section 3.2 a localized stability analysis for the smooth system is presented which demonstrates

the mechanism behind wind-up.

3.1 Gain wind-up

In this paper, the plant considered is a small-scale motor-driven moving table. The plant is shown in Figure 1.

The control signal, u, is generated in dSpace, a digital signal processor based system which is programmable

from within the Matlab-Simulink environment. This signal is fed to the motor via a four-quadrant power ampli-

fier. The angular velocity of the motor may be measured using a small generator (which, at low frequency, has

negligible dynamics relative to those of the motor) and is calibrated to act as a tachometer. The Perspex table,

which is mounted on linear bearings, is driven by the motor through a rack and pinion and the displacement
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Figure 2: Experimental results showing the velocity deadzone behavior exhibited by the plant; (a) open-loop

demand and (b) velocity response.

of the table is measured using a linear potentiometer.

At low frequencies the velocity of the plant exhibits behaviour which closely replicates a deadzone nonlin-

earity. Where, theoretically, an ideal deadzone nonlinearity is defined as:

vo = 0 for |vi| < vc,

vo = vi − vc for vi ≥ vc,

vo = vi + vc for vi ≤ −vc,

(10)

where vi is the input, vo is the output and vc is the deadzone offset. Experimentally, the deadzone behaviour

is demonstrated in Figure 2, for the case where a sinusoidal, 1Hz, 2.5V amplitude, open-loop input (Figure 2

(a)) is applied to the plant. The velocity response, Figure 2 (b), clearly exhibits regions of zero velocity lasting

around 0.1s every time the direction of travel changes, which may be approximated as a deadzone nonlinearity.

For this plant, it is thought that the deadzone is caused by a combination of the power amplifier dynamics and

stiction in the motor and linear bearing.

A first-order MRAC strategy is used to control the displacement of the moving table. It is worth noting that

in the case of a plant with a velocity deadzone, velocity control using MRAC strategies do not greatly assist
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with the minimization of the nonlinear plant behavior. This is because with velocity control the magnitude of

both the demand velocity, r, and the feedback velocity, x, are small, assuming that (as would normally be the

case) the demand frequency is lower than the reference model break frequency. Therefore the rate of change in

the controller gains are small over the region where non-linear behavior occurs. Conversely, with displacement

control, the non-linear regions coincide with the regions of large amplitude displacements x and r and therefore

rapid gain adaption can occur over the non-linear regions, giving more responsive control.

Figures 3 (a) and (b) show the plant displacement x compared with the reference model output xm and the

system gains respectively when the plant displacement is controlled using the MRAC algorithm. The reference

model parameters used were am = bm = 40 and the demand was a 0.02m amplitude, 0.8Hz sinusoid. Initially

the gains are set to Kr0 = 52 and K0 = −42 which were found to give reasonably smooth linear control. Over

the first 10s of the test the adaptive gain weightings α and β were set to zero, i.e. a constant gain linear control

strategy was used. It can be seen that over this period of time the table response was reasonably good except

over the non-linear velocity deadzone regions where there is a marked error between the table displacement

and the reference model output. At t = 10s the unmodified adaptive MRAC strategy was activated by setting

non-zero adaptive gain weightings (α = 10 and β = 1). It can be seen that with the adaptive control strategy

the gains rapidly changed (in this case winding down) resulting in very poor displacement control, and within

6 oscillations at 18.5s the maximum positive travel of the table was exceeded. This type of stability loss was

observed with lower adaptive gain weightings over an extended time frame and has been observed in other

nonsmooth systems [11]. The mechanism behind this type of stability loss is considered next.

3.2 Localized analysis of the MRAC algorithm

In this section the error equation (Equation (7)) developed in Section 2 is reformulated as a nonlinear dynamical

system. Using a dynamical systems approach the system stability can be analyzed using local analysis close to

the equilibrium points. The plant and MRAC algorithm is assumed to be a dynamical system of the form

ξ̇ = f(ξ, t), (11)

where ξ = {xe,K,Kr}
T is the state vector.

By manipulating Equation (7) and the derivatives of Equations (8) and (9), the dynamical system repre-
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Figure 3: Displacement control of the experimental plant using the standard unmodified MRAC algorithm,

initially using linear gains (α = β = 0) with adaptive gain weighting set to α = 10, β = 1 at t = 10s; (a)

displacement response and (b) system gains.

sentation of the plant and MRAC algorithm may be expressed as

ẋe = −amxe + b
(

KE −K
)

(xm − xe) + b
(

KE
r −Kr

)

r

K̇ = α
(

xexm − x2e
)

+ β
{

xeẋm + (xm − 2xe)
[

−amxe + b
(

KE −K
)

(xm − xe) + b
(

KE
r −Kr

)

r
]}

K̇r = αxer + β
{

xeṙ + r
[

−amxe + b
(

KE −K
)

(xm − xe) + b
(

KE
r −Kr

)

r
]}

,

(12)

where the parameters am, b, α and β are constant and the parameters r, ṙ, xm and ẋm are time varying input

signals (see Appendix A1 for a formulation using the variables (KE −K) and (KE
r −Kr) in place of K and

Kr).

The first step is to find the equilibrium points of Equation (12). Having done this the stability of each

equilibrium point can be examined using local analysis of the linearized system. To find the equilibrium points

for the system we need to solve the equation: f(ξ̃, t) = 0, where ( ˜ ) indicates an equilibrium point. By

inspection, two conditions are necessary for the system to be at equilibrium

x̃e = 0, (13)

(KE − K̃)xm + (KE
r − K̃r)r = 0, (14)

8



from which it can be seen that there are an infinite number of K̃, and corresponding K̃r, values which give

f(ξ̃, t) = 0.

Defining a subset of the complete system state space as Σ = {xe ×K ×Kr ∈ R
3}, then Equations (13) and

(14) define the equilibrium manifold (denoted Γ) which represents the set of equilibrium points ξ̃ = {0, K̃, K̃r}
T .

In the case of ṙ = ẋm = 0 and xm/r constant (this is the case for a steady state unit step input) the manifold

representing the equilibrium solutions in Σ defined by Equation (14) is a straight line in the K,Kr plane. The

projection of the dynamics onto Γ for the step input case is shown in Appendix A2.

In general, however, r and xm are time varying (with the relationship between xm and r being governed by

Equation (3). Equation (14) will be satisfied regardless of xm and r if K̃ = KE and K̃r = KE
r corresponding

to the equilibrium point at ξ̂E = {0,KE,KE
r }T . In addition to this time invariant point, there are an infinite

number of time dependent solutions to Equation (14) which require time varying K̃ and K̃r for time varying

xm and r. However, from Equations (12) it can be observed that for K̃ and K̃r to vary with time the error xe

must be non-zero. Therefore at equilibrium points other than ξ̃E = {0,KE,KE
r }T , limit cycle type behavior

exists which oscillate around Γ. The existence of oscillations in the gain can also indicate factors such as

under-modeling of the plant.

To analyze the local stability of the system near an equilibrium points ξ̃, the right hand side of Equation

(11) is expanded as a Taylor series at ξ̃ , from which the linear approximation to the system is

ξ̇ ≈ Dfξ(ξ̂)(ξ − ξ̂), (15)

where Dfξ(ξ̂) is the Jacobian Matrix evaluated at an equilibrium point ξ = ξ̂, f(ξ̃) = 0, and all the O((ξ− ξ̃)2)

and higher terms have been neglected. The stability of the local dynamics is given by the eigenvalues of Dfξ(ξ̃).

Using Equation (12), the Jacobian for the system at an equilibrium point ξ̃ is found to be

Dfξ(ξ̃) =

































−am − b(KE − K̃) −bxm −br

αxm − β[amxm + b(KE − K̃)xm − ẋm] −βbx2m −βbrxm

αr − β[amr + b(KE − K̃)r − ṙ] −βbxmr −βbr2

































. (16)
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This Jacobian has three eigenvalues, λ1 = 0 and

λ2,3 = −
1

2
[am + b(KE − K̃) + βb(x2m + r2)]±

1

2
S, (17)

where S2 = [am + b(KE − K̃) + βb(x2m + r2)]2 − 4b[α(x2m + r2) + β(xmẋm + rṙ)]. It should emphasized at

this point that λ1 is time invariant, and indicates neutral (i.e. non-asymptotic) stability in the eigenvector

direction which is given by

e1 = [0,−r/xm, 1]
T . (18)

In this case the eigenvector, e1 is always tangent to the exact matching manifold, Γ.

Figure 4 (a) shows the adaptive gains for a simulation of first-order plant controlled using the unmodified

MRAC strategy. The initial gains were set to zero, and the adaptive weightings where α = 1000 and β = 100.

The plant and reference model parameters used were a = b = 4 and am = bm = 40 respectively and the demand

r was a 1V amplitude 1Hz sinusoid. It can be seen that the gains settle to the Erzberger values of KE = −9

and KE
r = 10 in around 20 seconds. However if noise disturbance is added to the plant output, gain wind-up

can occur as shown in Figure 4 (b), where a 50Hz 0.1V sinusoid is added to the plant output. Yang [25] shows

that the neutral localized stability in the direction of the equilibrium manifold leads to gain wind-up when a

system is subjected to noise and that the wind-up occurs along the manifold (Γ) i.e. in the direction of ±e1,

depending on system parameters and input signals.

4 The modified MRAC algorithm

To alleviate the problem of gain wind-up, a method is presented for replacing the undesirable zero eigenvalue

with a constant (real) negative eigenvalue. This is achieved by replacing the time varying adaptive gains K

and Kr with new modified gains, Km and Krm respectively, resulting in the control equation

u(t) = Km(t)x(t) +Krm(t)r(t) (19)

The modified gains are calculated using the equations

Km =
s

s+ ρ2
K +

ρ2

s+ ρ2
K∗ (20)

Krm =
s

s+ ρ2
Kr +

ρ2

s+ ρ2
K∗

r (21)
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Figure 4: Simulation of a plant controlled using the MRAC algorithm, a) with no noise and b) with noise

added to the plant output, using plant parameters a = b = 4 and reference model parameters am = bm = 40.

where s is the Laplace transform variable, ρ is a constant and K∗ and K∗
r are gain constants. A condition

on the values of these gain constants is derived in the subsequent analysis. Similar gain “leakage” strategies,

have been applied to an integral only adaptive gain strategy, i.e. a MRAC controller with β = 0 — these are

discussed in [14]. It can be seen from equations 20 and 21 that the modified gains Km and Krm are generated

using two signals filtered by first-order transfer functions - a high-pass first-order filter applied to K or Kr

respectively and a low-pass first-order filter applied to K∗ or K∗
r respectively.
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4.1 Dynamics of the modified algorithm

By considering the localized stability of the modified system it can be shown that all three system eigenvalues

are stable. The error dynamics for the modified system may be expressed as

ẋe = −amxe + b
(

KE −Km

)

(xm − xe) + b
(

KE
r −Krm

)

r

K̇m = α
(

xexm − x2e
)

+ β
{

xeẋm + (xm − 2xe)
[

−amxe + b
(

KE −Km

)

(xm − xe) + b
(

KE
r −Krm

)

r
]}

+ρ2(K∗ −Km)

K̇rm = αxer + β
{

xeṙ + r
[

−amxe + b
(

KE −Km

)

(xm − xe) + b
(

KE
r −Krm

)

r
]}

+ ρ2(K∗
r −Krm),

(22)

By inspection, there are now four conditions that are necessary for the system to be at equilibrium:

x̃e = 0 (23)

(KE − K̃m)xm + (KE
r − K̃rm)r = 0 (24)

K̃m = K∗ (25)

K̃rm = K∗
r (26)

Note that if ρ = 0 we revert to the unmodified case where only the first two conditions are required.

For these four conditions (23)–(26) to be satisfied it follows that, since xm and r are time varying, K∗ = KE

and K∗
r = KE

r and that equilibrium only exists at a single point, ξ̃E = {0,KE,KE
r }T . In Section 3 it was

shown that with the standard MRAC strategy there exists a manifold of equilibrium points (Γ), and that

the Jacobian of each equilibrium point had a zero eigenvalue. For the modified algorithm the manifold of

equilibrium points has been reduced to a single point, and computing the Jacobian matrix reveals that the

time invariant eigenvalue now takes the value λ1 = −ρ2 in the eigenvector direction e1 = [0,−r/xm, 1]
T .

Therefore the modification to the MRAC algorithm has eliminated the neutral (i.e. non-asymptotic) local-

ized stability. However, to implement the controller, knowledge on the Erzberger gains are needed to select K∗

and K∗
r . In practice these gain values will not be known accurately but can be estimated from a first-order

transfer function approximation to the plant dynamics. Errors in the estimation of the Erzberger gains used

for setting K∗ and K∗
r will cause oscillations in the gains about the K∗ and K∗

r values. This is demonstrated

in simulation in Figure 5 (a) where K∗ = −10 and K∗
r = 12 (the Erzberger gains are KE = −9 and KE

r = 10)

and ρ = 2 with the other parameters taking the values used in Figure 4. With the addition of the noise on the

12
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Figure 5: Simulation of a plant controlled using the modified MRAC algorithm, a) with no noise and b)

with noise added to the plant output, using plant parameters a = b = 4 and reference model parameters

am = bm = 40. Note the gain oscillations which occur in (a) are due to K∗ 6= KE and K∗
r 6= KE

r .

plant output, Figure 5 (b), it can be seen that the modified control algorithm has eliminated the gain wind-up.

One possible method for overcoming the need for setting K∗ and K∗
r values based on estimates of the

Erzberger gains is to start controlling the plant using the standard MRAC algorithm (i.e. ρ = 0). Then as the

gains adapt, the modification could be activated, at say t = tρ, by setting a non-zero ρ value and setting K∗

and K∗
r values to the current gain values, K(tρ) and Kr(tρ) respectively. However, for the plant considered

in this paper the standard MRAC algorithm was insufficiently stable for this method to be practical. Instead

the K∗ and K∗
r gains were set to the gain values that were found to provide good linear (fixed-gain) control,

Kr = 52 and K = −42.

13



4.2 Experimental implementation

For the moving table, it has already been shown, in Figure 3 that when the standard MRAC strategy is used

gain wind-up occurs which leads to system instability. Using the modified algorithm, Figures 6 (a), (b) and

(c) show the displacement response and the system gains Kr and K respectively for the case where ρ = 10,

α = 2000, β = 200, K∗
r = 52 and K∗ = −42. The traces are shown after 40s of adaption, and it can be seen

that with this modified MRAC strategy the control is significantly better than the linear control shown in the

first 10s of Figure 3. In this case there is only a limited deterioration of the control accuracy over the velocity

deadzone regions. Note also that the unmodified MRAC approach, shown after 10s in Figure 3, could not

control this plant at all.

Figures 6 (b) and (c) show how the gains adapt in a regular oscillatory pattern at twice the frequency of

the demand. It is interesting to note that the gains also exhibit a very slight gain wind-up. The analysis in

the previous section suggested that with the modified algorithm no gain wind-up would occur. However, this

analysis was based on the dynamics of the plant being approximated to a first-order linear system. There are

two contributing factors for the small amount of gain wind-up observed in the experiments; (i) The gains have

not yet fully adapted to the final values. Simulations of the modified algorithm indicate that if K∗ 6= KE and

K∗
r 6= KE

r that there is a very slow movement of trajectories in Σ towards the single fixed point, ξ̃E . (ii) There

is significant under-modeling of the plant dynamics. In this case the plant dynamics may be more accurately

modelled as second order than as first order. Also the nonsmooth discontinuity in the plant is not included in

the analysis of section 3.2.

We have used a modified version of the MRAC algorithm to successfully control a plant with a nonlinear

deadzone. To assess the effectiveness of such a controller it is worth examining the control of the plant when

using the linear equivalent to the MRAC algorithm, i.e. the MRAC controller with adaptive weightings α and

β set to zero. Figures 7 (a) and (b) show comparisons of the table performance using the modified MRAC

algorithm and the linear equivalent to the adaptive MRAC strategy. The fixed gains in the linear controller

take the same values as the modified MRAC K∗
r and K∗ gains. Figure 7 (a) shows the displacement response

using the linear and the adaptive modified MRAC controllers compared to the reference model displacement

xm. It can be seen that the performance of the modified MRAC strategy is better than that of the linear

control equivalent, especially over the non-linear deadzone regions. The errors, xm − x for the two control
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Figure 6: Experimental results showing displacement control of the plant using the modified MRAC algorithm;

(a) displacement response, (b) and (c) system gains.
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Figure 7: Experimental results showing displacement control of the plant using the linear equivalent to the

MRAC algorithm; (a) displacement response and (b) system error xm − x.

strategies are shown in Figure 7 (b), where the modified adaptive error is approximately half the maximum

amplitude of that of the linear control.

5 Conclusions

In this paper a modified MRAC controller has been presented which has been applied to a nonsmooth plant.

The phenomena of gain wind-up, which commonly occurs in MRAC control systems, has been analyzed using

localized stability analysis. Using this analysis the inherent zero eigenvalue which exists in the unmodified

system, is seen to be the major cause of gain wind-up in the presence of plant uncertainties such as a nonsmooth

discontinuities. A modification to the MRAC strategy has been proposed to eliminate the zero eigenvalue and

reduce the infinite manifold of equilibrium solutions, Γ, to a single equilibrium point, ξ̃E . Simulations of a

plant with first order dynamics have been used to demonstrate the presence of gain wind-up when the plant

output is subjected to a noise disturbance in the unmodified MRAC. However, with the modification to the

control strategy, the simulations demonstrate that gain wind-up does not occur.
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Experimental testing of the MRAC strategy was performed on a small-scale motor-driven moving table in

displacement control. The table dynamics are nonsmooth, with the velocity response exhibiting a large dead-

zone nonlinearity. Initially tests were conducted on a linear equivalent to the MRAC strategy (i.e. equivalent

to setting the MRAC adaptive gain weightings to zero). With tuning, the linear controller performed reason-

ably well. However when the gains were allowed to adapt, using the standard unmodified MRAC strategy,

the control performance was very poor, to the extent that it was impossible to get the unmodified MRAC to

stabilize. The control of the table using the modified MRAC strategy was a significant improvement both on

the linear control and the unmodified MRAC. The modified MRAC, had approximately half the maximum dis-

placement error than when the linear controller was used. The gains oscillations observed in the experimental

results occurred at twice the frequency of the demand signal with a slight gain wind-up. This wind-up can be

attributed to continued gain evolution at a slow rate and under-modeling of the plant dynamics.

In the future, it is anticipated that further refinement of the modified MRAC algorithm will be possible.

In particular, it would be beneficial for K∗ and K∗
r to be optimised on-line to minimise the oscillations in Km

and Krm, as was observed in the simulation results due to errors in matching K∗ and K∗
r to KE and KE

r

respectively. In addition to this, a systematic technique for selecting the optimal value of rho for a particular

plant would be a highly desirable research objective. The improvement in robustness which can be achieved

by the modifications demonstrated in this work may also lead to this type of algorithm being applicable to a

wider range of practical applications.
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Appendix

In appendix A1 we outline the background material on the derivation of MRAC for systems of higher order

which would naturally be written in a matrix formulation. In appendix A2 we describe how expressions can
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be obtained for the global dynamics along Γ.

A1 Higher-order MRAC formulations

For the linear state space system in the form ẋ(t) = Ax(t) +Bu(t), where x is the n× 1 state variable vector,

u is the m× 1 control signal vector, A is a n×n matrix representing the linear dynamics of the plant, and B is

a n×m matrix. The controller is given by u(t) = K(t)x(t) +Kr(t)r(t), where r(t) is the reference (demand)

signal, K(t) is the feedback adaptive gain and Kr(t) the feed forward adaptive gain [13–15]. All the input

signals we use in this work are at least persistently exciting to order one [14]. Substituting for u gives

ẋ = Ax +B(Kx+Krr) = (A+BK)x+BKrr. (27)

The plant is now controlled to follow the output from a reference model with known dynamics ẋm(t) =

Amxm(t)+Bmr(t), where xm is the state of the reference model and Am and Bm are linear reference equivalents

of A and B [12]. The system error dynamics are now

ẋe = Amxe + (Am −A−BK)x+ (Bm −BKr)r, (28)

and for exact matching A+BKE = Am and BKE
r = Bm. Assuming all matrix (pseudo) inverses exist we can

obtain expressions (the Erzberger conditions [15]) for the gain values as KE = B†(Am −A) and KE
r = B†Bm,

where ()† denotes the pseudo-inverse and ()E denotes the constant Erzberger gain value. The Erzberger gains

can be used to express the matrix terms given in Equation (28), as

ẋe = Amxe +BΦTw (29)

where Φ = (KE − k), k = {K,Kr}
T ,KE = {KE,KE

r }T and w(t) = {x, r}T and we assume that B has a

pseudo-inverse such that BB† = I. The adaptive gains are defined in a proportional plus integral formulation

k = α

∫ t

0

yew(τ)dτ + βyew(t). (30)

where α and β are control weightings representing the adaptive effort, and ye = Cexe where Ce can be chosen

to ensure the stability of the feed forward block [12].

If we let φ(t) = (KE −K(t)) and ψ(t) = (KE
r −Kr(t)), then Φ(t) = {φ, ψ}T and ξ = {xe, φ, ψ}

T is the

state vector. By using the fact the KE is a constant, Φ̇ = −k̇, and by using Equation (30) we can obtain

expressions for φ̇ and ψ̇.
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Applying this formulation to the first order plant/controller system described in 2 gives the following system

of ODE’s (assuming Ce is incorporated into α and β)

ẋe = −amxe + b[φ(xm − xe) + ψr],

φ̇ = −αxe(xm − xe)− β[(−amxe + b[φ(xm − xe) + ψr])(xm − 2xe) + xeẋm],

ψ̇ = −αxer − β((−amxe + b[φ(xm − xe) + ψr])r + xeṙ).

(31)

In this formulation ξ̃E = {0, 0, 0}.

A2 Global dynamics along Γ

Using Equation (31) we can define a subset of the complete state space Σ̂ = {R × R × R : (xe, φ, ψ)}. Then

by defining a transformation matrix T = [e1, e2, e3], consisting of the eigenvectors of the linearized system, the

transformation ξ = Tν can be made where ν = [u, v, w]. Rewriting Equation (31) in the form ξ̇ = Lξ + h(ξ),

where L is the linear part and h(ξ) the nonlinear part, gives an expression for the dynamics in the transformed

coordinates
















u̇

v̇

ẇ

















= T−1LT

















u

v

w

















+ T−1h(ξ). (32)

In this coordinate set, u̇ represents the dynamics along the exact matching manifold, Γ, and T−1LT has the

following block diagonal structure

T−1LT =

























0
... 0 0

. . . . . . . . . . . .

0
... s12 s12

0
... s21 s22

























(33)

where sij represents an unspecified algebraic term. Now T−1LT is in a block diagonal form as discussed

by [20] in relation to center manifolds. In effect the dynamics associated with the zero eigenvalue — the

leading diagonal term in T−1LT — have been linearly decoupled from the dynamics associated with the stable

eigenvalues — represented by the block formed by the sij , i, j = 1, 2 terms. However, unlike the classical

approach to center manifold theory for the systems described by [20, 29], the adaptive system has a time

invariant zero eigenvalue. The result is that the dynamics associated with the zero eigenvalue can be projected
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onto Γ, and for a step input, Γ is a linear time invariant manifold. Therefore Γ is the center manifold in the

system. A similar type of center manifold analysis has been carried out for a different class of adaptive systems

by [21]. As pointed out by [21], decoupling the center manifold dynamics allows us to ignore the remaining

system dynamics.

The dynamics along Γ can be extracted from Equation (32) as the first row of T−1 multiplied by the

nonlinear vector h(ν).

u̇ = [T−1

11
, T−1

12
, T−1

13
]

















h1(ξ)

h2(ξ)

h3(ξ)

















(34)

The form of Equation (34) will then enable us to determine the dynamics along Γ. For the step input case, the

matrix of linear terms is

L =

















−am b b

−α+ βam −βb −βb

−α+ βam −βb −βb

















(35)

and the nonlinear vector

h(ξ) =

















−bφxe

−αx2e − β[2amx
2

e − 3bφxe + 2bφx2e − 2bψxe]

βbφxe

















(36)

The transformation matrix, T has the form

T =

















0 λ̂2/χ λ̂3/χ

−1 1 1

1 1 1

















(37)

where λ̂i = λi + 4βb, i = 1, 2 and χ = (βam + bφ̃β − α). The inverse transform matrix is then given by

T−1 =

















0 1

2
− 1

2

− χ

λ̂3−λ̂2

1

2

λ̂3

λ̂3−λ̂2

1

2

λ̂3

λ̂3−λ̂2

χ

λ̂3−λ̂2

− 1

2

λ̂2

λ̂3−λ̂2

− 1

2

λ̂2

λ̂3−λ̂2

















(38)

such that

u̇ =
1

2
h2(ξ)−

1

2
h3(ξ) (39)
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substituting for h gives

u̇ = βb(φ+ ψ)xe − (
α

2
+ β(am + bφ))x2e . (40)

Then from the relation ξ = Tν

xe =
λ2

χ
v + λ3

χ
w

φ = −u+ v + w

ψ = u+ v + w

(41)

so that we can obtain an expression for the dynamics along Γ in terms of the coordinate set ν,

u̇ = 2βb(v + w)(
λ̂2
χ
v +

λ̂3
χ
w) − (

α

2
+ β(am + b(−u + v + w)))(

λ̂2
χ
v +

λ̂3
χ
w)2. (42)

From equation (40) , if xe 6= 0 then u̇ will have some value which represents the rate of change of the

coordinate along (i.e. tangent to) the exact matching manifold, Γ.
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