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Abstract

Periodic sticking motions can occur in vibro-impact systems for certain parameter ranges.

When the coefficient of restitution is low (or zero), the range of periodic sticking motions can

become large. In this work the dynamics of periodic sticking orbits with both zero and non-zero

coefficient of restitution are considered. The dynamics of the periodic orbit is simulated as the

forcing frequency of the system is varied. In particular the loci of Poincaré fixed points in the

sticking plane are computed as the forcing frequency of the system is varied. For zero coefficient

of restitution, the size of the sticking region for a particular choice of parameters appears to

be maximized. We consider this idea by computing the sticking region for zero and non-zero

coefficient of restitution values. It has been shown that periodic sticking orbits can bifurcate
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via the rising/multi-sliding bifurcation. In the final part of this paper we describe three types of

post bifurcation behavior which occur for the zero coefficient of restitution case. This includes

two types of rising bifurcation and a border orbit crossing event.

Keywords: Impact; 2DOF Oscillator; Periodic; Sticking; Multi-sliding

1 Introduction

In this paper periodic sticking motions which occur in the dynamics of a two-degree-

of-freedom impact oscillator are considered. The impact oscillator consists of two masses,

coupled with springs and dashpots, and the motion of both the masses is restricted by rigid

constraints [1]. These type of systems can be used to model a range of physical applications

mainly in mechanical engineering [2–9]. Many mathematical-numerical studies of these

systems have been carried out, and particular interest has been focused on bifurcation

behavior [10–16]. More general studies of multiple degree of freedom impact oscillators

have also been carried out [17–22], but these focus primarily on a single impact constraint.

In mechanical systems with vibration and impact, chatter and sticking are phenomena

which have been observed for a wide range of parameter values. Chatter and sticking in

single degree of freedom impact oscillators has been studied in detail [23,24] and also noted

to occur in two-degree-of-freedom systems, particularly for low forcing frequencies [25].

Vibro-impact systems exhibit a rich variety of periodic motions (see for example [26]),

and periodic sticking motions can be found for particular parameter values in both sin-

gle and multi-degree-of-freedom systems. Multi-degree-of-freedom systems with a single

constraint have been studied by [27] and [25], where periodic sticking motions were ob-

served for low forcing frequencies. In [1], periodic sticking motions were noted for a

two-degree-of-freedom impact oscillator with two constraints, and it was shown how the

entry boundary to the sticking region can be defined. The rising bifurcation discussed

by [27] has been shown to be equivalent to the multi-sliding bifurcation [28], which occurs
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in the study of nonsmooth systems [29–31].

In this paper we study the dynamics of periodic sticking motions which exist in a

two-degree-of-freedom impact oscillator with motion constraints on both masses [1]. For

low (or zero) coefficient of restitution, the range of periodic sticking motions becomes

large. This is significant because the maximum extent of the sticking region should be

defined for the zero case. This idea is considered by using a comparison of the sticking

region obtained by simulating the dynamics of periodic sticking orbits with both zero and

non-zero coefficient of restitution. Then the loci of Poincaré fixed points in the sticking

plane are computed as the forcing frequency of the system is varied. Projections of these

loci into the system state space indicate that the zero case does not define the largest

region of sticking motions for the examples considered.

In the final part of this paper we consider the post bifurcation behavior following rising

bifurcations in the zero coefficient of restitution case. We first illustrate the ‘standard’

rising bifurcation behavior described by [1, 27] and following this we describe one other

example where the rising has a receding behavior. Finally we discuss an example were a

sticking orbit passes through a border orbit [24], which defines the limiting extent of the

sticking region.

2 Mathematical model

We consider a coupled two-degree-of-freedom system, which is shown schematically

in figure 1. This system has already been described in detail in [1, 28]. The governing

equations for the system away from impact can be expressed as

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + k2(x1 − x2) = f1, (1)

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = f2, (2)

where x1 represents the displacement of massm1 and x2 the displacement of mass m2. The

spring stiffnesses are given by k1, k2 and the damping constants by c1, c2 and the distance
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to the motion constraints are given by s1 and s2 respectively. The harmonic forcing

functions are f1 = A1 cos(Ωt) and f2 = A2 cos(Ωt). Equation 2 has a dual condition for

free flight that (xi − si) < 0 for si > 0 and (xi − si) > 0 for si < 0 which can be written

as (xi − si) ≶ 0, ∀si ≷ 0, for i = 1, 2. We also assume that the distance between masses

is large enough so that they do not impact with each other.

Equations (1) and (2) can be written in the nondimensionalized form





µm 0

0 1









ξ̈1

ξ̈2
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 +
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where µm = m1/m2, µk = k1/k2, ζ1 = c1/(2m1̟n1), ζ2 = c2/(2m2̟n2), ̟n1 =
√

k1/m1,

̟n2 =
√

k2/m2, ω = Ω/̟n2, f̃1 = P1 cos(ωτ), f̃1 = P2 cos(ωτ), P1 = A1/(k2xc), P2 =

A2/(k2xc), τ = ̟n2t and ξ = x/xc. The nondimensional variable ξ is achieved by dividing

displacement, x, by a constant displacement xc. This choice is arbitrary, and therefore we

will assume that xc = 1, such that the nondimensional distances to the motion constraints

are σ1 = s1/xc and σ2 = s2/xc. The nondimensional phase, φ, is defined as φ = τ mod

2π/ω.

The parameter values have been selected as m1 = m2 = k1 = k2 = 1 and c1 = c2 = 0.1

which means that in the nondimensionalized case µm = µk = ̟n1 = ̟n2 = 1 and

ζ1 = ζ2 = ζ . These specific parameters were chosen to give a simple relationship between

the natural frequencies and the system eigenvalues, and the damping value is chosen to

represent a physically realistic choice for a mechanical spring-mass-damper system. In

this case, equation (3) simplifies to
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The natural frequencies of the nondimensional system are given by
√

λj for j = 1, 2
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where λj are the eigenvalues of the 2 × 2 coupling matrix

[E] =





2 −1

−1 1



 . (5)

The corresponding normalized eigenvectors νj can be used to construct a orthogonal

modal matrix [Ψ] = [{ν1}, {ν2}]. We can then transform equation (4) into a modal form

by defining modal coordinates q = {q1, q2}T , such that ξ = [Ψ]q and

[I]q̈ + 2ζΛq̇ + [Λ]q = [Ψ]T f̂(t) (6)

where [Λ] = [Ψ]T [E][Ψ] is the diagonal matrix of the eigenvalues, λj, j = 1, 2 and f̂(t) =

[P1 cos(ωτ), P2 cos(ωτ)]T .

In this modal formulation, we define the vector ψi = [Ψi1,Ψi2], such that an impact

occurs when ψiq = σi, i = 1, 2. Hence equation (6) is valid only for (ψiq − σi) ≶

0, ∀σi ≷ 0, which is equivalent to the condition that (xi − si) ≶ 0, ∀si ≷ 0 for the ith

impacting mass. For this system there are two modal impact vectors, ψ1 = [Ψ11,Ψ12] and

ψ2 = [Ψ21,Ψ22], such that at impact ψ1q = σ1 and ψ2q = σ2, where q = [q1, q2]
T .

Equation (6) for each mode (with P2 = 0) is given by

q̈j + 2ζjλj q̇j + λjqj = Ψ1iP1 cos(ωτ), j = 1, 2. (7)

Equation (7) has a well known exact solution for under-damped oscillations 0 < ζj < 1

[32], such that for each mode exact solutions can be found between impacts [1]. We

consider only the under-damped case as this is the case of most interest for mechanical

systems. For the numerical simulations in this paper we set the forcing amplitudes as

P2 = 0 and P1 = 0.5 and take initial conditions q1(t0) = q2(t0) = q̇1(t0) = q̇1(t0) = t0 = 0.

When (ξi − σi) = 0 for i = 1, 2 an impact occurs which is modelled using an instanta-

neous coefficient of restitution rule [33] . For single impacts the coefficient of restitution

rule is ẋi(t+) = −rẋi(t−), where, t
−

is the time just before impact, t+ is the time just

5



International Journal of Non-Linear Mechanics 40 (2005) 1076–1087

after impact and r is the coefficient of restitution with a value in the range r ∈ [0, 1]. In

matrix form the coefficient of restitution rule can be written as ξ̇(t+) = [Rk]ξ̇(t−) where

for the system being considered there are three different cases for the [Rk] matrices

[R1] =





−r 0

0 1



 , [R2] =





1 0

0 −r



 , [R3] =





−r 0

0 −r



 . (8)

corresponding to mass 1 impacting, mass 2 impacting and simultaneous impact of both

masses.

In modal form the coefficient of restitution rule becomes [Ψ]q̇(τ+) = [Rk][Ψ]q̇(τ
−
),

which leads to the relation for the modal velocities after impact of q̇(τ+) = [R̂k]q̇(τ−),

where [R̂k] = [Ψ]−1[Rk][Ψ] is the set of matrices which represents a linear transform of

modal velocities just before impact to modal velocities just after impact for the 3 possible

impact cases [1].

2.1 Sticking solutions

For this system there are two possible sticking regimes; when ξ1 = σ1 and when ξ2 = σ2.

Each regime has a reduced set of governing equations with explicit solutions [1]. It is also

possible to have a dual sticking regime when both ξ1 = σ1 and ξ2 = σ2 simultaneously,

with the result that there are no dynamics in the system.

In the case where mass 1 sticks ξ1 = σ1 and ξ̇1 = 0, and the equations of motion reduce

to a single equation

ξ̈2 + 2ζξ̇2 + ξ2 = σ1. (9)

The condition for the mass being held in place during sticking is related to the force on

the mass. The equivalent nondimensional release expression is given by

F2 = 2ζξ̇2 + ξ2 − 2σ1 + P1 cos(ωτ). (10)

The forcing term P2 = 0 in equation 9, but P1 occurs in the release expression, so this

case is referred to as the forced sticking case. The sticking phase ends when F2 becomes
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zero and changes sign at which time τ = τf . Equation (9) has the exact solution

ξ2 = e−ζ(τ−τs)(C1 cos[
√

1 − ζ2(τ − τs)] + C2 sin[
√

1 − ζ2(τ − τs)]) + σ1. (11)

At the start of the sticking period τs = τ and the constants C1 and C2 are found using

the initial conditions for ξ2 and ξ̇2 when ξ1(τs) = σ1 and ξ̇1(τs) = 0 [1].

In the case ξ2 = σ2 and ξ̇2 = 0, the reduced equation of motion is given by

ξ̈1 + 2ζξ̇1 + 2ξ1 − σ2 = P1 cos(ωt). (12)

The release condition is governed by

F1 = ζξ̇1 + ξ1 − σ2. (13)

This is therefore referred to as the unforced sticking case.

Equation (12) has the exact solution

ξ1 = e−2ζ(τ−τs)(C1 cos(2
√

1 − ζ2(τ − τs)) + C2 sin(2
√

1 − ζ2(τ − τs))) + C3 cos(ωt− ϕ) + σ2/2,

(14)

where ϕ = arctan((4ζω)(2− ω2)).

The initial conditions for both reduced equations can be taken directly from the ap-

propriate values of ξi and ξ̇i immediately prior to a sticking phase. These initial conditions

allow the computation the constants C1, C2 prior to the beginning of the next phase of

motion, and C3 is found as part of the particular solution [1].

3 Periodic sticking motion

An example of the type of periodic sticking orbit which will be considered in this

paper is shown schematically in figure 2. In this example r = 0 and sticking occurs for

mass 1 between A and A’, and for mass 2 between B and B’. One complete period occurs

between points A and C. From A to A’ mass 1 is stuck and mass 2 is in free flight. Then

7
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from A’ to B both masses are in free flight, followed by a second sticking regime from B

to B’ where mass 2 is stuck and mass 1 is in free flight. Finally both masses are in free

flight between B’ and C. The period of (nondimensional) time spent sticking is Tsi for

i = 1, 2 and for periodic sticking orbits the proportion of the whole period spent sticking

is pi = Tsi/T , where T = 2π/ω so that pi = Tsiω/2π.

The change from free motion of both masses to one mass sticking represents a reduction

in the degree of freedom of the system from 2 to 1. For the example in figure 2 this

reduction from 2 to 1 occurs at points A and B. Similarly there is an increase in degree

of freedom from 1 to 2 at points A’ and B’.

The two-degree-of-freedom system has a parameter set µ = {ζ, P1, P2, ω, σ1, σ2, r}. For

any particular choice of these parameter values there could typically be regions of non-

impacting behavior, vibro-impacting behavior, chatter and sticking [25]. We will assume

that P2 = 0, and that ζ, P1, ω, σ1, σ2 have suitable constant values such that for a range of

excitation frequencies ω, vibro-impacting motions, chatter and sticking occur. For such

a choice of parameters, the coefficient of restitution, r, will then define the extent of the

potential sticking region, S, for periodic sticking orbits.

For r = 0, the impacts are completely plastic, and sticking will generally occur after

every impact — in section 4.1 we show an exception to this where impact occurs without

sticking. For r 6= 0, sticking will only occur after a complete chatter sequence [23], and as

a result sticking orbits will occur for lower excitation frequencies — because this allows

chatter to become complete. As r → 1 impacts tend towards being perfectly elastic and

sticking orbits will not appear even for low excitation frequencies. A numerical example

is shown in Figure 3, where we compare two time series. In Figure 3 (a), the coefficient

of restitution is r = 0.7, and in Figure 3 (b), the coefficient of restitution is r = 0.0. It is

clear that for the r = 0.0 the sticking proportions of the periodic orbit, p1, p2 are at their

maximum values for all the other parameters in µ fixed.

8
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3.1 Classifying periodic sticking orbits

Periodic impacting orbits are usually classified by the number of forcing periods, n, and

the number of impacts, m, which occur during one period of the motion, denoted P (n,m)

[34]. Periodic orbits with sticking have an infinite number of instantaneous impacts during

one period of motion [23], so every periodic sticking orbit is classified P (n,∞). With the

understanding of multi-sliding bifurcations [29–31], and how they occur in impacting

systems [28], there is a further distinction which can be made for periodic sticking orbits

— the number (and duration) of the sticking phase(s). For example, if k is the number of

sticking phases per period we could classify the orbit using P (n,∞, k). A more detailed

classification would include the proportion of the period spent sticking, p = [p1, p2], such

that P (n,∞, k, p). In fact the majority of periodic sticking orbits considered in this work

are P (1,∞, 1). In the case where a periodic motion occurs with a sticking phase and an

additional number of separate impacts we use the notation P (n,∞ + m, k), an example

of this is discussed in section 4.1.

3.2 The sticking region

Sticking behavior in vibro-impact systems is analogous to sliding behavior in some

electrical systems [29], as discussed in [28]. For studying the behavior of sticking orbits in

general, it is useful to define the region in the system phase space where these orbits exist.

The sticking/sliding region(s) consists of a manifold(s) within the system state space on

which the sticking/sliding orbits exist. These sticking/sliding orbits are then (usually)

restricted to some region on the manifold by conditions which define the entry (start of

sliding) and exit (end of sliding) of the orbit from the manifold. For some systems [29]

it is possible to define the manifold and the entry and exit boundaries explicitly. For

vibro-impact systems is has been pointed out that only the manifold and exit boundary

can be defined explicitly [1].

9
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For the system studied here there are two manifolds in the system state space on

which sticking can take place. These are defined by the impact conditions of the system

such that if ξ = {ξ1, ξ2, ξ̇1, ξ̇2, φ}T is the state vector, then the system state space can be

defined as G = {ξ ∈ R
4 × φ : ξ1 ≤ σ1, ξ2 ≤ σ2}. Then the two impact manifolds are

defined as Σ1 = {ξ ∈ R
4 × φ : ξ1 = σ1, ξ̇1 = 0} and Σ2 = {ξ ∈ R

4 × φ : ξ2 = σ2, ξ̇2 = 0}.

On each impact manifold, Σi, a corresponding sticking region Si exists for i = 1, 2. The

condition for a sticking orbit to leave the sticking region Si is given by the equations for

Fi = 0, for i = 1, 2 — equations 10 and 13. Therefore we can analytically define the

exit boundary of each sticking region ∂Si, using the conditions for Fi = 0, for i = 1, 2 in

equations 10 and 13.

Although there is no way of analytically defining the entry boundary of the sticking

regions, it would appear from Figure 3 that the entry boundary could be defined by the

point of first sticking when r = 0. i.e. the maximum possible extent of the sticking

region occurs when no chatter precedes the sticking. Therefore to test whether the r = 0

case does define the maximum possible extent of the sticking region, the loci of the first

sticking points for mass 2 sticking (point B in Figure 2) have been computed as the

forcing frequency is varied. Because mass 2 is sticking, the state variables which will

define the sticking orbit are ξ1, ξ̇1 and φ, and we will plot these values at the point where

mass 2 first sticks i.e. the entry point into the sticking region. For the r = 0 case the

bifurcation diagrams showing the amplitude of ξ1 and φ at the first sticking point as ω

is varied through the range 0.1–2.5 are shown in Figure 4 (a) and (c) respectively. As a

comparison we have shown the same plots for the r = 0.7 case in Figure 4 (b) and (d),

from which we note that sticking exists for a much larger range of ω values in the r = 0

case. Note also that there are some nonsmooth jumps in the variation of φ with ω shown

in Figures 4 (c) and (d). This is explained by observing the the modulo value, 2π/ω,

which is plotted as a dashed line in Figures 4 (c) and (d). For both cases shown in Figure

10
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4, r = 0 (Figure 4 (c)) and r = 0.7 (Figure 4 (d)), the loci begins at a value below the

modulo value. However in both cases, as ω is increased, the loci eventually intersect with

the modulo line such that the phase value becomes zero. This explains the jumps of the

loci in Figure 4 (c) and (d), at ω ≈ 0.75 for Figure 4 (c) and ω ≈ 0.21 in Figure 4 (d).

This also accounts for the division of the loci into two sections in Figures 5 (c) and (d).

As ω is varied the first sticking points defined by ξ1, ξ̇1 and φ describe a locus in R
3.

In Figure 5 (a) the projection of this locus into the ξ1, ξ̇1 plane is shown, and in Figure

5 (c) the projection into the φ, ξ̇1 plane is shown. These loci define the entry into the

sticking region, and the exit boundary ∂S1 is marked as a dashed line in Figure 5 (a).

By comparing the zero and non-zero case, we can see that the loci have a particularly

complex structure when projected into the ξ1, ξ̇1 plane, Figures 5 (a) and (b). It is also

clear that the r = 0 loci does not encompass the entire region occupied by the r = 0.7

loci for the ξ1, ξ̇1 projection. However the explanation of this is apparent from the time

series in Figure 3, where it can be seen that due to the time at which the sticking starts,

the magnitude of ξ1 value is greater for the r = 0.7 case than for the r = 0 case. This

can also be seen by comparing Figures 4 (a) and (b) where the value of ξ1 at the first

sticking point is plotted against ω. For the φ, ξ̇1 projections shown in Figures 5 (c) and

(d), it can be seen that the r = 0 loci does not encompass the entire region occupied by

the r = 0.7 loci, but it does have higher values — indicating a stronger possibility for

defining a bound on the region S1.

It is interesting to note that as the system parameter ω is varied smoothly, the resulting

first sticking loci contain several discontinuities — nonsmooth points and discontinuous

jumps. Apart from phase transitions, these points represent nonsmooth changes (bifur-

cations) in the dynamics of the periodic orbits, and will be discussed in section 4.

11
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4 Sliding bifurcations

The sliding orbits in electrical systems have been shown to exhibit particular types

of sliding bifurcations under parameter variation [29]. There are four types of sliding

bifurcation which can occur [30], for which the normal form mappings have been derived

[31]. A multi-sliding bifurcation is one of the four cases, which occurs in the systems

studied by [29–31], and is the most significant for our current study. Previous physical

examples of the multi-sliding bifurcation have been studied in models of relay feedback

systems [29] and friction oscillators [35].

In addition to multi-sliding, in the case of r = 0, the system will normally have

a grazing-sliding bifurcation (in this example grazing followed by sticking) each time a

grazing event occurs. This is similar to the grazing-sliding in the friction oscillator example

studied by [35], but will not be considered in detail here.

4.1 Three examples of post bifurcation behavior

The multi-sliding (or rising) bifurcation occurs when a sliding (sticking) orbit touches

the boundary of the sliding (sticking) region Si [27, 28]. Physically this means that the

force holding the mass against the constraint becomes zero, and as the bifurcation param-

eter continues to vary, the mass lifts off (or rises) from the the constraint. This results in

a sudden reduction in sticking time [27, 28].

In this subsection we look a three different types of post bifurcation behavior which

relate to observations of the behavior of the first sticking loci shown in Figures 4 and 5

for the r = 0 case. All three examples are for mass 1 sticking. The first example is shown

in Figure 6, and occurs close to ω = 0.254. In Figure 6 (a) and (b) we see that a rising

has occurred some where near the middle of the sticking phase. As ω increases the rise

propagates towards the release point for the mass, Figure 6 (c) and (d). The result is

that the single sticking region is divided into two parts. So the periodic sticking orbit

12



International Journal of Non-Linear Mechanics 40 (2005) 1076–1087

goes from P (1,∞, 1) → P (1,∞, 2). However the sticking phase following the rise quickly

decreases until a limit point, where it becomes a single point (like grazing) just before the

mass lifts off — Figure 6 (d) then (f). This type of post multi-sliding behavior will be

called the standard case, and has been discussed by [27, 28].

A second example of post multi-sliding behavior is shown in Figure 7, and occurs close

to ω = 0.475. In this case the rise is very close to the first sticking point. As with the

standard case, the periodic sticking orbit goes from P (1,∞, 1) → P (1,∞, 2), but one of

the new sticking phases is very small. The post multi-sliding behavior is then that the

rise becomes larger in amplitude, before reaching a maximum and then declining until

P (1,∞, 2) → P (1,∞, 1) through a reverse multi-sliding event. Note, this event can be

seen in Figure 4 (a) as a series of points below the main loci close to ω = 0.475. This is

called the receding multi-sliding case.

The last example, shown in Figure 8, occurs for frequency values close to ω = 0.7.

In this example the sliding orbit passes through what has now been termed a border

orbit — the orbit on which the sticking zone shrinks to zero [24]. In this case, the mass

first impacts without sticking, and then impacts with a sticking phase, classified as a

P (1, 1 +∞, 1) periodic orbit. It is worth noting that in this type of multi-mass system it

is possible for an impact to occur without sticking even for the r = 0 case. This can be

seen from equation 10, which is the release condition for when mass 1 is sticking. When an

impact occurs, Equation 10 must have the same sign as the constraint distance (negative

in this case) for sticking to occur. In effect, equation 10 is the nondimensional equivalent

of the force holding the mass against the constraint [1] — if the mass impacts and the

force is acting away from the constraint, then no sticking will occur. It is clear that this

force is dependent on the displacement and velocity of mass two and the external forcing.

For example, computing the values of F2 for Figure 8 (b) (ω = 0.85), at the first impact

(τ = 964.12) F2 = 0.202, so no sticking occurs. At the second impact (τ = 965.65)

13
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F2 = −0.1594, so sticking does occurs.

As ω is increased, the sticking phase (for mass 1) reduces to zero, until the border

orbit is reached Figure 8 (c). Beyond this, mass 1 has no sticking phase (although mass 2

continues to stick until a border orbit close to ω = 1.4 — Figure 4 (a)). The border orbit

event for mass 1 has a clear effect on the sticking values for mass 2 which can be seen

clearly in Figure 4 (a) as the discontinuity close to ω = 0.9. This effect can also be seen

clearly as a sharp discontinuity in Figure 5 (a) and (c). So in the border orbit crossing

the periodic orbit makes the transition from P (1, 1+∞, 1) → P (1, 1) — sticking periodic

orbit to impacting periodic orbit.

5 Conclusions

In this paper we have examined the behavior of periodic sticking orbits which occur

in a two-degree-of-freedom impact oscillator. For these periodic sticking orbits, two cases

have been considered, one with r = 0.7 and the other with r = 0. For each case we have

computed the loci of first sticking points in the sticking region — as forcing frequency

is varied — demonstrating the complex nature of the entry boundary for this region.

The projections of the sticking region into the ξ1, ξ̇1, and φ, ξ̇1 planes indicated that the

condition r = 0 did not bound the sticking region completely — although in the φ, ξ̇1

plane the first sticking loci provided a partial boundary to the region.

Plots of the loci of first sticking points against the bifurcation parameter (forcing

frequency) showed clear nonsmooth jumps and discontinuities. Three of these nonsmooth

events have been discussed in more detail, including two types of multi-sliding bifurcation

and a border orbit crossing. The discovery of multi-sliding bifurcations and border orbit

crossing in models of mechanical and electrical systems is a very recent addition to the

literature on this subject. In this paper we have shown, by example, how border orbit

crossing events manifest themselves. We have also shown that multi-sliding bifurcations

14
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can have two distinct types of post bifurcation behavior — the standard case and the

receding case involving a reverse multi-sliding event.
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Figure Captions

• Figure 1 Schematic representation of an N degree of freedom impact oscillator with

multiple motion limiting constraints.

• Figure 2 Schematic diagram of a periodic sticking orbit. Sticking occurs between A

to A’ and B to B’. Solid line mass 1, dashed line mass 2.

• Figure 3 Time series showing; (a) r = 0.7 and (b) r = 0. The maximum potential

sticking region occurs when r = 0. Parameters ζ = 0.05, P1 = 0.5, ω = 0.4, σ1 =

−0.3, σ2 = 0.1.

• Figure 4 First sticking loci as ω is varied: (a) and (b) values of ξ1 at the point when

mass 2 sticks to the constraint. (c) and (d) corresponding values of φ. (a) and (c)

r = 0, (b) and (d) r = 0.7. Parameters ζ = 0.05, P1 = 0.5, σ1 = −0.3, σ2 = 0.1

• Figure 5 First sticking loci as ω is varied from 0.1 to 2.5: (a) and (b) projected onto

the ξ̇, ξ plane. (c) and (d) projection onto the ξ̇, φ plane. (a) and (c) r = 0.0, (b)

and (d) r = 0.7. The dashed line in (a) and (b) denotes the boundary of the sticking

region ∂S where the constraining force drops to zero, and the mass is released from

sticking. Parameters ζ = 0.05, P1 = 0.5, σ1 = −0.3, σ2 = 0.1

• Figure 6 Rising bifurcation sequence 1: Solid line is mass 1, dashed line mass 2.

Parameters ζ = 0.05, P1 = 0.5, σ1 = −0.3, σ2 = 0.1, r = 0; (a) and (b) ω = 0.254,

(c) and (d) ω = 0.26, (e) and (f) ω = 0.265.

• Figure 7 Rising bifurcation sequence 2: Solid line is mass 1, crosses are computation

points. Parameters ζ = 0.05, P1 = 0.5, σ1 = −0.3, σ2 = 0.1, r = 0, ω = 0.469−0.505.

• Figure 8 Border orbit crossing: Solid line is mass 1. Parameters ζ = 0.05, P1 =

0.5, σ1 = −0.3, σ2 = 0.1, r = 0, ω = 0.7 − 0.91.
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