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System identification of a mechanical system

with impacts using model reference adaptive

control

D. W. Virden∗ and D. J. Wagg

Automatic Control Laboratory, Department of Mechanical Engineering, University

of Bristol, Queens Building, Bristol BS8 1TR, UK.

Abstract

A single degree of freedom mechanical spring-mass system was considered

where the motion of the mass is constrained by an adjustable rigid impact stop.

A model reference adaptive control algorithm combined with interspike interval

techniques was used to consider the viability of identifying system parameters

when impacts are present. The unmodified adaptive control algorithm desta-

bilizes during vibro-impact motion, so three modified control algorithms were

tested experimentally. The first, the gain reset, was found to be of limited use

and system identification cannot be successfully carried out. The second and

third used a gain pause strategy. The second algorithm used acceleration trig-

gering and represented an improvement on the gain reset method. The third

approach used displacement triggering and was found to be partially successful

in identifying system parameters in the presence of vibro-impact motion.

Keywords: Adaptive control, system identification, vibro-impact, interspike

intervals.
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Notation:

aij Element of plant matrix

A Plant matrix

Am Model plant matrix

Amd Discrete model plant matrix

bi Element of controller matrix

B Controller matrix

Bm Model controller matrix

Bmd Discrete controller plant matrix

b(t) Spike train time series

c Damping constant

H Spike train threshold

k Spring constant

km Controller constant

K Adaptive feedback gain

Kr Adaptive feedforward gain

m Mass constant

r Reference signal

S Samples recorded during impact

ts Model settling time

u Control output

x Displacement of mass

ẋ Velocity of mass

xm Reference model displacement

ẋm Reference model velocity

xe System error

ẋe Derivative of system error

α MCS gain parameter

β MCS gain parameter

∆ Discrete sampling rate (samples/second)

τc Time of contact (impact)

ζ Damping ratio 2
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1 INTRODUCTION

Systems with motion limiting constraints occur in many areas of mechanical en-

gineering. For example, machines (Perterka & Kotera 1995), geared systems (Theo-

dossiades & Natsiavas 2001, Karagiannis & Pfeiffer 1991), bearings (Neilson & Gon-

salves 1993) and railway wheels (Knudsen et al. 1992). These types of systems

present particular challenges in terms of mathematical modeling and control due to

the nonlinear effects caused by impacts which occur during dynamic excitation.

Of the control techniques available, adaptive control allows a great deal of flexibil-

ity when dealing with uncertain or time varying plant parameters, and for this work

a model reference type adaptive controller was used with no prior tuning (Stoten

1993). The mechanisms for destabilization of MRAC controllers are well known;

(Ioannou & Kokotovic 1984, Anderson et al. 1986), but systems with constraints

present a particular challenge to developing a stable and robust adaptive control

strategy (Zavala-Rio & Brogliato 2001, Tung, Wang & Hong 2000).

(McCarragher & Austin 1998, Zavala-Rio & Brogliato 2001, and Tung et al.

2000) study the problem of using adaptive control techniques to control robot ma-

nipulators with constraints (i.e. impacts). Related work by (Kárason & Annaswamy

1994) and (Annaswamy & Wong 1997) examines the behavior of adaptive control in

the presence of input constraints and saturation. In this paper the viability of using

a model reference adaptive control algorithm to identify system parameters when

motion limiting constraints produce impacts in the system is examined. The theo-

retical formulation of the control algorithm is outlined in section 2. In section 3 the

experiential setup used for the control tests is described. The experimental results

are discussed in section 4 and the performance of each algorithm during testing is

described.
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2 THEORETICAL FORMULATION

2.1 Control algorithm

In this work we use a model reference adaptive controller, known as the minimal

control synthesis (MCS) algorithm (Stoten 1993). MCS is a form of model reference

adaptive control that assumes no prior knowledge of the system parameters, and in

which the adaptive control gains are all initially set to zero. We begin by considering

the general linear state space formulation for MCS. The plant state equation can be

written in the form

ẋ(t) = Ax(t) + Bu(t) (1)

where x is the state variable vector of dimension n×1, u the control signal, dimension

p × 1, A and B represent the linear dynamics of the plant.

The controller for the MCS algorithm is defined as

u(t) = K(t)x(t) + Kr(t)r(t), (2)

where r(t) is the reference (demand) signal, K(t) is the feedback adaptive gain and

Kr(t) the feed forward adaptive gain. Substituting equation 2 into equation 1 gives

ẋ = Ax + B(Kx + Krr) = (A + BK)x + BKrr. (3)

This type of controller operates without explicit values for the matrices A and

B. Instead, the plant is controlled to follow the output of a reference model with

known dynamics of the form

ẋm(t) = Amxm(t) + Bmr(t), (4)

where xm is the state of the reference model and Am and Bm are linear reference

equivalents of A and B. For the experiments a discrete time approximation, xmd

was used as shown in Equation 5 using the parameters Amd and Bmd from Equation

6

xmd(t) = Amdxmd(t − 1) + Bmdr(t − 1), (5)

4



Proc. IMechE. Part I: Journal of Systems & Control Engineering, 219: 121–132

Amd =







1 ∆

−16∆/t2s 1 − 8∆/t2s






,Bmd =







0

16∆/t2s






(6)

The performance of the controller is monitored using the error signal xe = xm−

x. The objective of the control algorithm is for xe → 0 as t → ∞. We can

reformulate the dynamics of the system as the error dynamics using ẋe = ẋm − ẋ

such that

ẋe = Amxe + (Am − A− BK)x + (Bm − BKr)r. (7)

Then providing (Am − A− BK) → 0 and (Bm − BKr) → 0 the stability of the

system will depend only on the matrix Am, which we can select in advance.

In general, the MCS gains are defined as

K = α

∫ t

0

yex(t)dt + βyex(t)

Kr = α

∫ t

0

yer(t)dt + βyer(t)
(8)

where ye = Cxe, and C is chosen such that the transfer function C(sI − A)−1B

is strictly positive real (SPR) (Hodgson & Stoten 1996). The control weightings

α and β can be chosen to give the appropriate amount of adaptive effort. From

empirical results we always maintain the ratio α/β = 10 and C = 4/ts (Stoten 1993)

(assuming first order control) where ts is the required settling time of the plant. The

MCS algorithm has been shown to be stable and robust for a wide range of A and

B values (Hodgson & Stoten 1996; Hodgson & Stoten 1999; Stoten & Benchoubane

1990). Further details of implementing MCS for both first and second order systems

can be found in (Stoten 1993).

2.2 System identification algorithm MCSID

The MCS control algorithm has been extended to a system identification algo-

rithm by Stoten & Benchoubane (1993). The basic premise can be seen by comparing

equations 4 and 3, from which we can see that for exact matching between the plant

and the reference model, the following relations hold

A + BK = Am

BKr = Bm

. (9)
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Therefore it should be possible identify the unknown parameter matrices A and

B by computing

B = BmK−1
r

A = Am − BK
. (10)

assuming that K−1
r can be found (Stoten & Benchoubane 1993). The work carried

out in Stoten & Benchoubane (1993) relies on the system matrices, A and B having

the following specific phase-canconinal form,

A =













A11 . . . A1p

...
...

Ap1 . . . App













, B =













B11 0

. . .

0 Bpp













, (11)

where

Aii =



























0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−aii1 −aii2 −aii3 . . . −aiini



























, (12)

and

Aij =



















0 . . . . . . 0
...

...

0 . . . . . . 0

−aij1 −aij2 . . . −aijnj



















, Bii =



















0
...

0

bii



















. (13)

Here, ni is the state dimension of the ith degree of freedom, such that
∑p

i=1
ni = n.

The reference model system matrices will have correspondingly similar structure.

A schematic representation of the system is shown in Figure 1, from which we

derive the equation of motion for the spring mass-damper system as

mẍ + cẋ + kx = kmu (14)

where x is the displacement of the mass and ẋ is the velocity. In this model km is

a constant which represents the combined motor, potentiometer and amplifier gains

6
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for the single mass rig. Writing equation 14 in a first order form gives







ẋ1

ẋ2






=







0 1

−k/m −c/m













x1

x2






+







0

km/m






u (15)

Thus we have a (2 × 2) A matrix and a (2 × 1) B matrix with the values

a21 = −k/m

a22 = −c/m

b21 = km/m

(16)

and a11 = 0, a12 = 1, b11 = 0.

2.3 Interspike intervals

Interspike intervals can be used to identify or reconstruct dynamic characteristics

of a system from examining the intervals between a series of spikes or pulses (Sauer

1994). For impacting systems this can be applied to intervals between successive

impacts (Wagg et al. 1999). A key requirement for interspike interval techniques is

the accurate measurement of the spikes. Impulse spikes which occur in impacting

systems with hard materials (e.g. steel on steel) are usually very short time events.

The time of contact, τc, is related by S and ∆ such that τc ≈ S/∆, where ∆ is the

digital sampling rate, and S is the number of samples recorded during contact. In

this work we use an accelerometer attached to the impact stop (second algorithm) or

displacement data (third algorithm) to produce a spike train signal b(t). Therefore

we need a suitably fast sampling rate, ∆, to ensure that we capture spikes to a

sufficient level of accuracy. However, spikes only occur for a very short time, at

relatively large intervals, so a very fast ∆ will result in large quantities of unwanted

data being recorded. We must also choose a suitably defined threshold value, H,

to distinguish between spikes and noise. Thus b(t) > H is recorded as a spike, and

b(t) < H is disregarded. The choice of H is arbitrary, but must be made from

inspection of a spike train signal. Failure to set an appropriate H value can lead to

the following scenarios:

1. Threshold value too high; low velocity impacts will be missed.

7
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m

x

k impact stop

Figure 1: Schematic of Rig

Figure 2: Photograph of Experimental Setup

2. Threshold value too low; noise peaks may be mistaken for impulse spikes.

These issues are discussed in detail in (Wagg et al. 1999)

3 EXPERMENTAL SETUP

A photograph of the experimental setup is shown in Figure 2. The mass is

mounted on a uniaxial track with wheel bearings, and driven via a rack and pinion

gearing. The second mass, which can be seen on the right hand side in the photo,

was clamped rigidly for the duration of the tests. Springs between the two end

stops and the masses themselves provide the restoring forces for the mass. In this

8



Proc. IMechE. Part I: Journal of Systems & Control Engineering, 219: 121–132

system damping occurs due mainly to the friction in the track and gear system.

These components also introduce some nonlinearity due to friction in the bearings

on which the mass oscillates.

The system had an adjustable mass which allowed the weight of the trolley to be

changed. For these experiments two configurations were used which weighed 0.75kg

and 1kg respectively. The damping and spring constants remained unchanged for

the duration of the experiment.

The impact stop was constructed from a piece of square metal block that was

clamped to the track bed 45mm from the centre of the motor. 3mm of high density

foam was attached to the end of the block. From the impact spike data, impacts

were observed to last for approximately 1/15 of a second.

The position of the mass was controlled via an electric motor, and the displace-

ment and velocity of the mass was recorded using a potentiometer and tachometer

respectively. The signals are read via an Amplicon PC30AT card, which is also used

to output the control signal. The control system was implemented on a 486 Personal

Computer running RedHat Linux 5.1. A sampling rate of 256Hz was used for all

tests. This was controlled using the Linux real time clock.

Preliminary tests were carried out on the rig to identify the nature of the damp-

ing. This involved subjecting the rig to an impulse and observing the response. From

these tests it was found that the system was close to critically damped, ζ ≈ 1.

For the work in this paper the MCS algorithm was implemented on the rig using

the following parameters; α = 0.1, β = 0.01 and ts = 1 second. The reference signal

was composed of three sine waves

r = 0.4 sin(2πt) + 0.133 sin(3πt) + 0.08 sin(5πt). (17)

This reference signal was chosen to satisfy the persistence of excitation condition

(Sastry & Bodson 1989; Stoten 1993). The discrete reference model (Equation 5)

was used with the discrete reference model parameters (Equation 6) with ts = 1s

and ∆ = 1/256s

For each test the MCS control was implemented with zero initial conditions and

run for approximately 250 seconds when the adaptive control gains had stabilized.

9
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Figure 3: Non-impacting system parameters

The accelerometer was amplified using a customized DC amplifier and connected

to an input channel on the Analogue to Digital Card (ADC). This signal was sampled

at every control step and compared to the threshold to determine if an impact had

occurred. The displacement spike train was computed from the displacement data

and a predetermined threshold value H.

4 EXPERMENTAL RESULTS

4.1 Non-impacting system identifcation

The first set of tests were carried out to identify the parameters of the system

with no impacts present. These values were then used to compare with the values

found from the impacting tests. MCS system identification (MCSID) has already

been carried out on this apparatus and reported in (Stoten & Benchoubane 1993),

although this used different trolley mass values. Using the analysis developed in

(Stoten & Benchoubane 1993) the parameters required to characterise the SISO

10
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Figure 4: Gain Values from Unmodified Algorithm

system are

a21 = −k/m, a22 = −c/m, b21 = km/m (18)

where km includes the potentiometer, motor and amplifier gains.

The results of the two tests are shown in Figure 3. Data was recorded from

approximately 10 seconds after the test started. From Figure 3 we see that the

parameter values have stabilized after a further 200 seconds. This experiment was

run twice, once with each mass configuration. Dividing the settled value of the a21

parameter for each trolley configuration gave a ratio of 0.723 which is very favorable

when compared to the predicted ratio of 0.75.

These results confirm the finding of (Stoten & Benchoubane 1993) that MCS

can be used to identify the system parameters of electro-mechanical systems with

governing equations that fit the specified phase-canonical form.

11
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Figure 5: Displacement under Unmodified Algorithm

4.2 System identification with impacts

4.2.1 Unmodified algorithm

An initial test was carried out to see the effect of introducing an impact on

the standard MCS control algorithm. For these tests Kr = kr is scalar and K =

[k[0], k[1]]T . The result of this test was that the control gains, kr and k[0] were

found to increase steadily from time t = 0 in an approximately linear manner. This

is shown in Figure 4, where we also note that gain k[1] remains at an insignificantly

small amplitude throughout the test. The increasing gain phenomena is known as

“gain wind up”, and will eventually lead to a sudden destabilization of the controller.

In this example the mechanism behind the gain wind up is due to the introduction

of a strong nonlinearity associated with the impact. In Figure 5 the displacement of

the trolley under the unmodified algorithm is shown.

There are two components to the gain wind up shown in Figure 4. The first is

the initial gain windup where the gains adapt to the steady state values observed

in the non-impacting test (Figure 3). Once the gains have started to wind up the

12



Proc. IMechE. Part I: Journal of Systems & Control Engineering, 219: 121–132

-2

-1

0

1

2

3

4

5

0 50 100 150 200

G
a
i
n
 
A
m
p
l
i
t
u
d
e

Time (s)

Kr
K[0]
K[1]

Figure 6: Gain Values from Gain Reset Algorithm

trolley moves and starts to impact. This can be seen in Figure 5 where the first

impact occurs at approximately 27s with an amplitude of ∼ 0.45V . This regular

impact, with a period of 2s, represents a strong non linearity which causes further

controller gain windup which will eventually cause the unmodified algorithm to lose

stability. The motion of the trolley gets less predictable as the gains continue to

windup and its velocity increases. This results in the increased displacement seen

after 37s in Figure 5. The spikes which are greater than 0.45V are due to the high

impact velocities, which occur during the loss of stability, where at each impact a

significant impulse force is transferred to the experimental apparatus.

4.2.2 Gain reset algorithm

The most simplistic approach to dealing with an impact (or other short time

nonlinear event) during adaptive control is to simply reset the gains to zero. The

MCS algorithm is based on starting all gains from zero, so in effect this is restarting

the control algorithm again after each impact. The period of 50s between impacts

is due to the controller having to readapt to its steady state values after being reset.

13
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check for
impact

no impact impact

wait until
r<r(impact)
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normal MCS

next timestep

hold r
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fixed

time step

Figure 7: Schematic of Gain Pause Algorithm

For these tests an impact correlated to a spike of greater than the threshold value

H = 2.3V from the accelerometer. The results from the test are shown in Figure 6,

where we have plotted the control gains. Again we note that k[1] is of such a small

amplitude, that it is indistinguishable from the time axis. Although this approach

proved successful in preventing gain wind up, it is very inefficient in terms of control,

and could only be recommended if no other technique could be applied. It is certainly

not suitable for application to a system with a periodic impact as the control suffers

noticeably. However one potential application would be to implement the method

as a safety mechanism, on systems where an impact is not normally expected. It is

also clear from Figure 6 that system identification cannot be attempted using these

results, as the gains do not have sufficient time between impacts to attain steady

state values.

4.2.3 Gain pause algorithm

A second, more sophisticated strategy, is to pause the gain adaption during the

time that the impact occurs. This algorithm was implemented by identifying a spike

14
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Figure 8: Gain Values from Gain Pause Algorithm (Acceleration Triggering)

as before, and then pausing adaption, initially for a fixed interval of 0.25 seconds, and

waiting until the reference signal had dropped below the value that had caused the

impact. The reference signal was not allowed to resume the original function until it

was less than the value that caused the impact. The fixed interval of 0.25s was used in

order to prevent the switch between adaption, pause and back to adaption occurring

too rapidly — it was noted during tests that rapid switching could cause controller

destabilisation as essentially this is a form of nonsmooth event itself. A schematic

flow diagram showing the complete gain pause algorithm is shown in Figure 7.

The MCS gain values computed during a typical test are shown in Figure 8. We

note that as with previous examples k[1] is of negligible amplitude. From Figure 8 we

can also see that although kr reaches a steady state value, the absolute value of k[0]

increases steadily throughout the test, and has some step jumps in amplitude towards

the final stages of the test. As a result, in this system, the system identification could

only be carried out on the Kr gain data. The step increases in the k[0] gain occurred

due to a series of missed impacts.

In Figure 9, we have plotted the (n−1)th interval between spikes, ∆Tn−1, against

15
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Figure 9: Interspike Intervals (Gain Pause, Acceleration Triggering)

the nth interval ∆Tn. For this test we see that the majority of impacts occurred

at intervals of approximately 2 seconds. However, there are a range of other ∆Tn

values, which mean that the interspike interval plot forms a grid like pattern. This

grid layout is indicative of a general problem of missing spikes or identifying spurious

spike — both cases are discussed in detail in (Wagg et al. 1999).

Figure 10 shows the threshold value, H, and the signal from the accelerometer

used to calculate the interspike intervals.

4.2.4 Displacement triggering

The limitations of the preceding techniques in terms of system identification, led

us to seek a more reliable approach. This was achieved by using the displacement

of the trolley to determine when an impact had occurred, and to trigger the pause

algorithm. It was found that using this technique the α and β adaptive gain pa-

rameters could be increased by a factor of 10 to α = 1 and β = 0.1 This produced

much more satisfactory system identification results as both gains leveled off quickly

— although there were significant fluctuations in the stabilised gain values. This

16
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Figure 11: Gain Values from Gain Pause Algorithm (Displacement Triggering)
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Figure 12: Interspike Intervals (Gain Pause, Displacement Triggering)

is shown in Figure 11, where we have plotted the MCS gain values for a typical

displacement triggering test. The interspike interval plot for this test is shown in

Figure 12. This shows that the motion is dominated by an interspike interval of

∆t ≈ 2. This indicates a predominately period one vibro-impact motion (Bishop

et al. 1998), and shows that the problems with missed/spurious spikes have been

eliminated in this case.

Tests were run using the displacement triggering method with a 0.75kg and a 1kg

trolley to determine if it was possible to use this algorithm for system identification

(the figures show the results from the experiments using the 0.75kg trolley). The

resulting gains were then used to calculate the system parameters. The ratio of the

a21 parameters (which corresponds to k/m, was identified. As k remains constant,

this ratio should be the same as the ratio of the two masses (which was 0.75 for

this experimental setup). The results are shown in Figure 13, where a dotted line

denotes the theoretical value of 0.75. It can be seen that the correlation between the

experimental results and theoretical predictions is qualitatively good, in the presence

of significant fluctuations above and below the theoretical value. The ratio of the
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a21 was recorded and averaged over a 78s period after the gains had stabilized and

was found to be 0.6846. It was noted that the mean experimentally observed values

for the system parameters tended to be lower than the predicted ones. The presence

of large fluctuations is unavoidable, as we see from the adaptive gain plot in Figure

13. But taking a cumulative average over a period of time, Figure 14, shows the

ratio converging to a steady value. Taking the averaged value across a suitably large

steady state time range, we obtain estimated parameter values which are reasonably

close to those predicted by theoretical calculations. This has been achieved using a

modified linear adaptive algorithm in the presence of a strong impact nonlinearity

which occurs at least once every forcing cycle.

5 Conclusions

In this paper a single degree of freedom spring-mass-damper experimental system

was studied, which was subject to motion limiting constraints which led to impacts.

The focus of this paper has been to determine if it is possible to carry out system

identification of the system parameters, using adaptive control, in the presence of

impacts. The unmodified adaptive control algorithm was found to destabilize via

gain wind up in the presence of impacts. Three modified methods were investigated

to try and improve this situation.

The first modified method used gain resetting after each impact. This stabi-

lized the system, but did not allow system identification to be carried out. The

second modified method used gain pausing at each impact. The gain wind up was

still present and prevented system identification from being performed. The final

modified method — based on displacement triggering — proved successful in both

stabilizing the vibro-impact system, and in giving a estimation of the chosen system

parameter with at least 80% accuracy.
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