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Abstract

We consider the rising phenomena which occur in sticking solutions of a two-degree of

freedom impact oscillator. We describe a mathematical formulation for modelling such a systems

during both free flight and during sticking solutions for each of the masses in the system.

Simulations of the sticking solutions are carried out, and rising events are observed when the

forcing frequency parameter is varied. We show how the time of sticking reduces significantly

as a rising event occurs. Then within the sticking region we show how rising is qualitatively

similar to the multi-sliding bifurcation for sliding orbits.
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1 Introduction

In this paper we consider the so called rising phenomena which occur in sticking

solutions of a two-degree of freedom impact oscillator. The impact oscillator consists of

two masses, coupled with springs and dashpots, where the motion of both the masses is

restricted by rigid constraints. Such systems have a range of applications as, for example,

in machines with clearance and backlash [1]. Several authors have considered the nonlinear

dynamics associated with two degree of freedom impact oscillators [2–5]. In particular,

the bifurcation behaviour of two degree of freedom impact system with a single impact

constraint has been studied in detail [6–8]. More general studies of multiple degree of

freedom impact oscillators have also been carried out [9–11].

Chatter and sticking are phenomena which occur in a wide range of impact oscillator

systems. Studies of chatter and sticking have been carried out for both single degree of

freedom impact oscillators in [12] and for two degree of freedom systems by [13]. The

behaviour of periodic sticking motions in both single and multi degree of freedom systems

is considered by Toulemonde and Gontier [14], and the authors make reference to the

“rising bifurcation” which they demonstrate occurs for a two degree of freedom system.

It is this so called rising behaviour which forms the focus for the current study.

Sticking in impact systems is mathematically analogous to sliding in electrical sys-

tems [15]. The sliding orbits in these electrical systems have been shown to exhibit

particular types of sliding bifurcations under parameter variation [16]. In fact there are

four types of sliding bifurcation which can occur [17], for which the normal form mappings

have been derived [18]. A multi-sliding bifurcation is one of the four cases, which occurs

in the systems studied by [16–18], Previous physical manifestations of the multi-sliding

bifurcation have been studied in models of relay feedback systems [16] and friction os-

cillators [19]. The multi-sliding bifurcation can also be related to the rising phenomena

observed in vibro-impact systems — a connection which was first reported by [20]. In
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this paper, we examine the rising phenomena found in a two-degree of freedom vibro-

impact system as a system parameter is varied, and find similar results to [14] regarding

the drop in sticking time. We demonstrate using numerical simulations that rising and

multi-sliding are qualitatively equivalent bifurcations events by observing that the stick-

ing solutions become tangent to the boundary of the sticking region at a rising event —

analogous to results for sliding orbits shown by [18].

2 Mathematical model

We consider a coupled two degree of freedom system, which is shown schematically in

figure 1. The governing equations for the system away from impact can be expressed as

ẍ1 +
c

m
(2ẋ1 − ẋ2) +

k

m
(2x1 − x2) =

A1

m
cos(Ωt), (1)

ẍ2 +
c

m
(ẋ2 − ẋ1) +

k

m
(x2 − x1) =

A2

m
cos(Ωt), (2)

where x1 represents the displacement of mass m1 and x2 the displacement of mass m2

and we assume that m1 = m2 = m. The spring stiffnesses are given by k1 = k2 = k and

the damping by c1 = c2 = c and the distance to the motion constraints are given by s1

and s2 respectively. Equation 2 has a dual condition for free flight that (xi − si) < 0 for

si > 0 and (xi − si) > 0 for si < 0 which we will write as (xi − si) ≶ 0 ∀si ≷ 0.

Then equations (1) and (2) can be written in the form

[I]ẍ +
c

m
[E]ẋ +

k

m
[E]x =

1

m
f(t), (xi − si) ≶ 0 ∀si ≷ 0 (3)

where [E] is a 2 × 2 coupling matrix, [I] is the identity matrix and f(t) = A cos(Ωt),

where A = {A1, A2}
T . Note: A2 = 0 for all the simulations in this paper.

The natural frequencies are given by ωnj =
√

λjk/m for j = 1, 2 where λj are the

eigenvalues of matrix [E], and the corresponding normalized eigenvectors ξj can be used to

construct a orthogonal modal matrix [Ψ] = [{ξ1}, {ξ2}]. We can then transform equation
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(3) into a modal form by defining modal coordinates q = {q1, q2}
T , such that x = [Ψ]q

and

[I]q̈ +
c

m
[Λ]q̇ +

k

m
[Λ]q =

1

m
[Ψ]T f(t) (4)

where [Λ] = [Ψ]T [E][Ψ] is the diagonal matrix of the eigenvalues, λj , j = 1, 2.

In this modal formulation, we define the vector ψi = {Ψi1,Ψi2}
T , such that an impact

occurs when ψT
i q = xi, i = 1, 2. Hence equation (4) is valid only for (ψT

i q−si) ≶ 0 ∀si ≷

0, which is equivalent to the condition that (xi − si) ≶ 0 ∀si ≷ 0 for the ith impacting

mass.

We can simplify equation (4) such that for each mode

q̈j + 2ζjωnj q̇j + ω2
njqj =

f̂j

m
cos(Ωt), j = 1, 2, (5)

where f̂ = [Ψ]T A, f̂ = {f̂1, f̂2}
T and ζj = (c/2)

√

λj/km is the modal damping coefficient.

Equation (5) has the well known exact solution for under-damped oscillations 0 < ζj < 1

[21], so that we can solve for each mode exactly, and hence find the total displacements

x1, x2 — see [13, 22] for further details. Without loss of generality, this formulation can

be considered in either a dimensional or a nondimensional form [22] — in the following

work we assume all parameters and variables are nondimensional.

2.1 Modelling impact events

When (xi − si) = 0 for i = 1, 2 an impact occurs and an instantaneous coefficient of

restitution rule is applied. A single isolated impact occurs when for the ith mass xi = si,

while for j 6= i:(xj − sj) ≶ 0 ∀sj ≷ 0. This type of impact may be modelled using an

instantaneous coefficient of restitution rule [23] such that

ẋi(t+) = −rẋi(t−) xi = si (6)

where, t− is the time just before impact, t+ is the time just after impact and r is the

coefficient of restitution with a value in the range r ∈ [0, 1]. In matrix form the coefficient
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of restitution rule can be written as

ẋ(t+) = [Rk]ẋ(t−) (7)

where for the systems being considered there are three different cases for the [Rk] matrices

[R1] =





−r 0

0 1



 , [R2] =





1 0

0 −r



 , [R3] =





−r 0

0 −r



 . (8)

corresponding to mass 1 impacting, mass 2 impacting and simultaneous impact of both

masses.

In modal form the coefficient of restitution rule, equation 7, becomes

[Ψ]q̇(τ+) = [Rk][Ψ]q̇(τ−). (9)

This leads to the relation for the modal velocities after impact

q̇(τ+) = [R̂k]q̇(τ−), (10)

where [R̂k] = [Ψ]−1[Rk][Ψ] is the set of matrices which represents a linear transform of

modal velocities just before impact to modal velocities just after impact for the 3 possible

impact cases.

2.2 Sticking solutions

For this system there are two possible sticking regimes; when x1 = s1 and when x2 =

s2. There is also a dual sticking regime when both x1 = s1 and x2 = s2 simultaneously,

but this will not be considered here. Each regime has a reduced set of governing equations

with explicit solutions [22].

In the case where mass 1 sticks x1 = s1 and ẋ1 = 0, so that the equations of motion

reduce to a single equation; equation (2) which becomes (with A2 = 0)

ẍ2 +
c

m
ẋ2 +

k

m
(x2 − s1) = 0. (11)
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The force which holds the mass against the stop during sticking, from equation (1) is

given by

F2 = cẋ2 + k(x2 − 2s1) + A1 cos(Ωt). (12)

Equation (11) has the exact solution

x2 = e−ζ̂ω̂n(t−ts)(C1 cos(ω̂d(t− ts)) + C2 sin(ω̂d(t− ts))) + s1, (13)

where ω̂n =
√

k/m, ζ̂ = c/2mω̂n and ω̂d = ω̂n

√

1 − ζ̂2. At the start of the sticking period

ts = t and the constants C1 and C2 can be found using the initial conditions x1(ts) = s1

and ẋ1(ts) = 0.

The change from free motion of both masses to one mass sticking represents a reduction

in the degree of freedom of the system from 2 to 1. The initial conditions for equation

(13) can be taken directly from the values of x2 and ẋ2 immediately prior to a sticking

phase when x1 = s1 and ẋ1 = 0. The sticking phase ends when F2 becomes zero and

changes sign at which time t = tf .

In the case x2 = s2 and ẋ2 = 0, the reduced equation of motion is given by

ẍ1 + 2
c

m
ẋ1 +

k

m
(2x1 − s2) =

A1

m
cos(Ωt). (14)

The force which holds the mass against the stop during sticking is given by

F1 = cẋ1 + k(x1 − s2). (15)

Equation (14) has the exact solution

x1 = e−2ζ̂ω̂n(t−ts)(C1 cos(2ω∗

d(t− ts)) + C2 sin(2ω∗

d(t− ts))) + C3 cos(Ωt− φ∗) − s2/2,

(16)

where ω̂n =
√

k/m, ζ̂ = c/2mω̂n, ω
∗

d = ω̂n

√

0.5 − ζ̂2, t0 is taken at the start of the

sticking period and

φ∗ = arctan

(

4ζ̂(Ω/ω̂n)

2 − Ω2/ω̂2
n

)

. (17)
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As with the preceding case the initial conditions for equation (13) can be taken directly

from the values of x1 and ẋ1 immediately prior to a sticking phase when x2 = s2 and

ẋ2 = 0. These initial conditions allow us to compute the constants C1, C2 and C3 [22].

3 The rising event

In this section we consider the example of a periodic sticking motion which exists for

the parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, s1 = −0.3, s2 = 0.1,

r = 0.7, forcing A1 = 0.5 and A2 = 0.0. At a forcing frequency of Ω = 0.255 a periodic

sticking motion exists. A time series of this periodic solution is shown in figure 2, and a

phase portrait in figure 3. This periodic solution includes regions of free flight, chatter

and sticking for both of the masses, although it should be noted that the sticking phases

do not overlap (i.e. there is no dual sticking).

This particular sticking solution has been chosen as it is close to a rising event. The

progression of the rising event as Ω is increased can be seen in figure 4. First we observe

that as Ω is increased from 0.255 to 0.2561 the mass lifts off, or rises, part way through

the sticking phase of the motion. After rising the mass goes into a chatter sequence and

then sticks to the stop again. This means that the sticking phase of the periodic orbit is

now composed of two separate parts. As Ω is increased further (Ω = 0.26), the amplitude

of the rise grows and the second part of the sticking phase reduces until only a single

impact remains. Further increasing Ω beyond this point results in the loss of the single

remaining impact such that only a single sticking phase is left.

This new sticking phase is significantly shorter than the original one, and [14] postu-

lated that this sudden drop in sticking time is one way of identifying that a rising event

had occurred. The sticking time for the frequency range considered in this example is

shown in figure 5 (a) and (b), and a clear drop in sticking time can be seen at Ω ≈ 0.26

shown in close up in figure 5 (b). This is in agreement with results shown in [14]. From
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figure 5 (b), we can clearly see the two separate parts of the sticking orbit that occur

after rising. i.e. there are two proportions of sticking time. One of the sticking time

proportions can be see to decrease (approximately linearly) as the forcing frequency, Ω,

is increased. At Ω ≈ 0.2575 this part of the sticking orbit reduces to zero, as we observe

from the sequence of events shown in Figure 4.

4 The rising/multi-sliding bifurcation

The relationship Fi = 0 (equations 12 and 15) defines the boundary in phase space

where sticking ends, which we denote as ∂S. For sticking to exist the condition Fisi > 0

must apply, which in this case is the region on the positive side of the boundary ∂S [22].

Considering sticking solutions in isolation from the rest of the periodic orbit, means

that when a rising event occurs it can be considered as a bifurcation of the sticking

solution. In figure 6 we have plotted the sticking solution for the rising example in figure

4 projected into t, x2, ẋ2: time, displacement and velocity. Here the solid line indicates

the sticking orbit and the dashed line the boundary of the sticking region defined by ∂S.

In figure 6 (a) the solution is just before rising, and in (b) just after rising. In each case

the sticking solution coalesces with the boundary (i.e. it exits the sticking region) and in

Figure 6 (a) the orbit comes very close to an additional tangential intersection with the

boundary (i.e. just be for rising). In figure 6 (b) the orbit exits the region for a short

time between −0.2 ≤ x2 ≤ −0.15 — this is the post rising behaviour. We note also from

Figure 6 that at the point of rising bifurcation the sticking orbit touches the boundary

∂S tangentially, as opposed to when it exits the region when the intersection with the

boundary is transversal. The tangential nature of the rising event has similarities to the

grazing bifurcation [24] which also occurs in these systems.

In fact this bifurcation is analogous to the multi-sliding bifurcation for sliding orbits,

discussed by [16–18]. In the electrical systems exactly the same scenario occurs, where an
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orbit restricted to a switching manifold touches the boundary of the region tangentially

at the point of bifurcation. Hence for sticking solutions we can refer to the occurrence of

a rising bifurcation as a multi-sliding bifurcation.

5 Conclusions

In this paper we have considered rising phenomena which occur in sticking solutions of

a two-degree of freedom impact oscillator. For this type of oscillator, exact solutions exist

during the sticking phases of motion. We have shown numerical simulations of typical

sticking solutions, and a rising event which occurs as the forcing frequency parameter is

varied. From these numerical simulations we have observed similar results to [14] regarding

the significant reduction in sticking time as a rising bifurcation occurs. In fact we have

shown how the sticking time first separates into two distinct parts, one of which rapidly

reduces to zero as the system parameter is increased. Within the sticking region we have

shown how rising is qualitatively similar to the multi-sliding bifurcation for sliding orbits.

This has been achieved by observing that the sticking solutions become tangent to the

boundary of the sticking region at a rising event — analogous to previously published

results for sliding orbits in relay feedback and friction oscillator systems.

6 Acknowledgements

This work was supported as part of an Advanced Research Fellowship from the EPSRC.

References

[1] S. Theodossiades and S. Natsiavas. Periodic and chaotic dynamics of motor-driven

gear-pair system with backlash. Chaos, Solitons and Fractals, 12:2427–2440, 2001.

9



Chaos, Solitons and Fractals 22 (2004) 541–548

[2] J. Shaw and S. W. Shaw. The onset of chaos in a two-degree of freedom impacting

system. Journal of Applied Mechanics, 56:168–174, 1989.

[3] S. F. Masri. Theory of the dynamic vibration neutraliser with motion-limiting stops.

Transactions of the American Society of Mechanical Engineers, Journal of Applied

Mechanics, 39:563–568, 1972.

[4] S. Chatterjee, A. K. Mallik, and A. Ghosh. On impact dampers for non-linear vi-

brating systems. Journal of Sound and Vibration, 187(3):403–420, 1995.

[5] R. D. Neilson and D. H. Gonsalves. Chaotic motion of a rotor system with a bearing

clearance. In A. J. Crilly, R. A. Earnshaw, and H. Jones, editors, Applications of

fractals and chaos, pages 285–303. Springer-Verlag, 1993.

[6] G. W. Luo and J. H. Xie. Hopf bifurcation of a two-degree-of-freedom vibro-impact

system. Journal of Sound and Vibration, 213:391–408, 1998.

[7] G-L Wen. Codimension-2 hopf bifurcation of a two-degree-of-freedom vibro-impact

system. Journal of Sound and Vibration, 242(3):475–485, 2001.

[8] G. W. Luo and J. H. Xie. Hopf bifurcations and chaos of a two-degree-of-freedom

vibro-impact system in two strong resonance cases. Non-linear Mechanics, 37:19–34,

2002.

[9] J. P. Cusumano and B-Y. Bai. Period-infinity periodic motions, chaos and spatial

coherence in a 10 degree of freedom impact oscillator. Chaos, Solitons and Fractals,

3:515–536, 1993.

[10] S. Natsiavas. Dynamics of multiple-degree-of-freedom oscillators with colliding com-

ponents. Journal of Sound and Vibration, 165(3):439–453, 1993.

10



Chaos, Solitons and Fractals 22 (2004) 541–548

[11] D. Pun, S. L. Lua, S. S. Law, and D. Q. Cao. Forced vibration of a multidegree

impact oscillator. Journal of Sound and Vibration, 213(3):447–466, 1998.

[12] C. J. Budd and F. Dux. Chattering and related behaviour in impact oscillators.

Philosophical Transactions of the Royal Society of London A, 347:365–389, 1994.

[13] D. J. Wagg and S. R. Bishop. Chatter, sticking and chaotic impacting motion in

a two-degree of freedom impact oscillator. International Journal of Bifurcation and

Chaos, 11(1):57–71, 2001.

[14] C. Toulemonde and C Gontier. Sticking motions of impact oscillators. European

Journal of Mechanics A:Solids, 17(2):339–366, 1998.

[15] M. Di Benardo, A. R. Champneys, and C. J. Budd. Grazing, skipping and sliding:

analysis of the non-smooth dynamics of the dc/dc buck converter. Nonlinearity,

11(4):858–890, 1998.

[16] M. Di Bernardo, K. H. Johansson, and F. Vasca. Self-oscillations and sliding in relay

feedback systems:symmetry and bifurcations. International Journal of Bifurcation

and Chaos, 4(11):1121–1140, 2001.

[17] P. Kowalczyk and M. di Bernardo. On a novel class of bifurcations in hybrid dynam-

ical systems. In Lecture Notes in Computer Science, number 2034, pages 361–374,

2001.

[18] M. Di Bernardo, P. Kowalczyk, and A. Nordmark. Bifurcations of dynamical systems

with sliding: derivation of normal-form mappings. Physica D, 170:175–205, 2002.

[19] M. Di Bernardo, P. Kowalczyk, and A. Nordmark. Sliding bifurcations: A novel

mechanism for the onset of chaos in dry friction oscillators. International Journal of

Bifurcation and Chaos, 13(10):2935–2948, 2003.

11



Chaos, Solitons and Fractals 22 (2004) 541–548

[20] D. J. Wagg. Bifurcation phenomena in vibro-impact systems with multiple con-

straints. IMA conference on ”Bifurcations: The use and control of chaos”, Southamp-

ton, July 2003. To appear in proceedings., 2003.

[21] S. P. Timoshenko. Vibration problems in engineering. Van Nostrand, 1937.

[22] D. J. Wagg and S. R. Bishop. Dynamics of a two degree of freedom vibro-impact

system with multiple motion limiting constraints. To appear in the International

Journal of Bifurcation and Chaos, 2004.

[23] J. M. T. Thompson and H. B. Stewart. Nonlinear dynamics and chaos. Chichester:

John Wiley, 2002.

[24] A. B. Nordmark. Non-periodic motion caused by grazing incidence in an impact

oscillator. Journal Of Sound and Vibration, 145(2):275–297, 1991.

12



Chaos, Solitons and Fractals 22 (2004) 541–548

Figure Captions

• Figure 1 Schematic representation of an N degree of freedom impact oscillator with

multiple motion limiting constraints.

• Figure 2 Example time series of sticking orbit for two degree of freedom system.

Solid line x2, broken line x1. Parameters values m1 = m2 = 1, k1 = k2 = 1,

c1 = c2 = 0.1, xs = 0.1, r = 0.7, forcing A2 = 0.0, A1 = 0.5 and Ω = 0.255.

• Figure 3 Phase portrait of time series shown in Figure 2. Solid line x2, broken line

x1.

• Figure 5 Proportion of sticking time of mass 2 as a ratio of forcing period.

• Figure 4 Rising bifurcation in a two degree of freedom impact oscillator. Solid line

x2, broken line x1. Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1,

xs = 0.1, r = 0.7, forcing A2 = 0.0, A1 = 0.5. (a) and (b) Ω = 0.255; (c) and (d)

Ω = 0.2561; (e) and (f) Ω = 0.26; (g) and (h) Ω = 0.27.

• Figure 6 The sticking trajectories in t, x2ẋ2 space. Solid line sticking, dashed line

Fp = 0 where Fp = f(ẋ2, x2, t); (a) Just before rising for the case shown in figure 4

(a) and (b) and; (b) Just after rising for the case shown in figure 4 (c) and (d).
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