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Multiobjective Criteria for Nonlinear Model
Selection and Identification with Neural Networks

G.P. Liu and V. Kadirkamanathan
Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield S1 4DU, U.K.

Abstract

This paper presents a new approach to model selection and identification of
nonlinear systems via neural networks and genetic algorithms, based on multiob jec-
tive performance criteria. It considers three performance indices (or cost functions)
in the objectives, which are the distance measurement and maximum difference
measurement between the real nonlinear system and the nonlinear model, and the
complexity measurement of the nonlinear model, instead of a single performance
index. The Volterra polynomial basis function network and the Gaussian radial
basis function network are applied to approximate the nonlinear system. A numer-
ical algorithm for multiobjective nonlinear model selection and identification using
neural networks and genetic algorithis is developed.

1 Introduction

Nonlinear system identification can be posed as a nonlinear functional approximation
problem. From the famous Weierstrass Theorem (Powell, 1981) in approximation theory,
which is a classical field of mathematics, it is known that the polynomial and many other
approximation schemes can approximate arbitrarily well a continuous function. In recent
years, many nonlinear system identification approaches, particularly identification using
neural networks (Chen et al, 1990; Narendra and Parthasarathy, 1990; Kadirkamanathan,
1991; Chen and Billings, 1992; Qin, et al. 1992; Willis et al. 1992; Kuschewski, et al,
1993), are the application of a similar mathematic machinery.

For nonlinear system identification using approximation, two key questions are how to
judge the accuracy for the nonlinear function being approximated and how to choose
nonlinear function units to guarantee it. A lot of nonlinear system identification ap-
proaches fix the number of nonlinear function units and use only a single performance
function, e.g. the 2-norm of the difference between the real nonlinear system and the
nonlinear model which results in the well-known least squares algorithm, to measure and
judge the accuracy of the identification and to optimize the approximation. However, in



nonlinear system identification there are often a number of objectives to be considered.
The objectives are sometimes conflicting and no identification which can be considered
best with respect to all objectives exists. Hence, there is an inevitable trade-off between
objectives, for example, the distance measurement and maximum difference measurement
between the real nonlinear system and the nonlinear model. These considerations lead to
the study of multiobjective nonlinear system identification in this paper.

This paper presents a set of multiobjective performance functions to measure the approx-
imation accuracy and complexity of the nonlinear model and uses genetic algorithms to
select the nonlinear basis functions in the model to reach a simple nonlinear model. Two
neural networks are applied for the model representation of the nonlinear systems. One
is the Volterra polynomial basis function (VPBF) network and the other is the Gaussian
radial basis function (GRBF) network. It also develops a numerical algorithm for multi-
objective nonlinear model selection and identification using neural networks and genetic
algorithms. Some examples demonstrate the operation of the algorithm.

2 Nonlinear Modelling by Neural Networks

The modelling of nonlinear systems has been implemented as the problem of selecting
an approximate nonlinear function between the inputs and the outputs of the systems.
For a single-input single-output system, it can be expressed by the NARMAX model
(Nonlinear Auto-Regressive Moving Average model with eXogenous inputs) (Chen and
Billings, 1989), i.e.

y(t) f(y(t - 1)1y(t ),...,y(t— n'y)ﬁu(t_ 1),u(t— 2)’"-$u(t—nu)s
e(t —1),e(t —2),...,e(t — n.)) + e(t), (1)
where f(.) is a2 unknow nonlinear function, y is the output, u the control input and e the
noise, respectively, ny, ny,n. are the corresponding maximum delays.

The nonlinear function f(.) in the above NARMAX model can be approximated by a
single-layer neural network, i.e. a linear combination of the basis functions.

*(x,p) = Zwkfk x,dy), (2)
where

x = [y(t—=1),y(t —2),...,y(t = ny),u(t —1),u(t — 2),...,u(t — ny),
e(t —1),e(t —2),...,e(t — n.)] (3)
fi(x,d,) (k = 1,2,...,N) is the basis function with its parameter vector d, and the

parameter vector p containing the weights wy and the basis function parameter vectors di.
If the basis functions fi(X,.d,) do not have the parameters dj, then it is denoted by fi(x)-



Two sets of basis functions are introduced in this paper: a set of the Volterra polynomial
basis functions (VPBF) and a set of the Gaussian radial basis functions (GRBF).
Multivariate polynomial expansions have been suggested as a candidate for the nonlinear
modelling using the NARMAX model. The Volterra polynomial expansion has been
cast into the frameworks of nonlinear system approximations and neural networks. A
network whose basis functions consist of the Volterra polynomials is named as the Volterra
polynomial basis function network. Its functional representation is given by

f(x) = f(x,p)+0(x) (4)
fr(x,p) = a+x"b+x"Cx
a+ 61331 + bgﬂ.‘z + .+ Cu-’Bf + €12Z1Z2 + 62233 + ..

2 2
= [a"l 611 621 .++y C11, C12, C22, ---][ls T1,T2y.--3 L1y I1T2,Tp, ...

N
= :A; wi fr(x) (5)

]T

where

[wl, Wz, W3,y oy Wni 2, W3y Wntd) -ooy UJN] = [a, by B3y oos €114 €125 C2200y Cain)sy (6)

[fls f2: .f31 reey fﬂ+2i f‘n+3a fﬂ+4i "':fN] = [11211 T2, "'1‘7’.3) 331332a-'13§v '“,3:3;,] (7)

are the set of linear weights and the set of basis functions being linearly combined, re-
spectively, and x € IR™.

Radial basis functions were introduced as a technique for multivariable interpolation (Pow-
ell, 1987), which can be cast into an architecture similar to that of the multilayer per-
ceptron. Radial basis function networks provide an alternative to the traditional neural
network architectures and have excellent approximation properties. One of the most im-
portant radial basis function networks is the Gaussian radial basis function neural network,
also called the localised receptive field network. The nonlinear function approximated by
the GRBF network is expressed by

N
£2(x,p) = 3 wrexp(—(x — di)Ci(x — di)) (8)

k=1
where Cy is the weighting matrix of the kth basis function whose centre is di, which can

trasnform the equidistant lines from being hyperpherical to the hyperellipsoidal, Cx =1
in this paper, and p is the parameter vector containing wy and d; (k = 1,2,...,N).

3 Nonlinear Model Selection and Identification by
Genetic Algorithms

Many different techniques are used today for optimizing the design space associated with
various control systems. In recent years, the direct-search techniques, which are problem-
independent, have been proposed as a panacea for the difficulties associated with the
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traditional techniques. One of these techniques is the genetic algorithm (GA) (Goldberg,
1989; Davis, 1992). Genetic algorithms are search procedures based on the mechanics of
natural genetics. They are different from normal search methods encountered in engi-
neering optimization in following ways: a) The GA searches from a population of points,
not a single point. b) The GA uses probabilistic and not deterministic transition rules.
Recently, genetic algorithms is being applied to control system design (see, e.g., Davis,
1992; Bonseca and Fleming, 1993, Patton and Liu 1994). Thus, this paper applies the
GA approach to the model selection and identification of nonlinear systems.

The model selection can be seen as a subset selection problem. For the model represented
by the VPBF network, the principle of model selection using the genetic algorithms can
be briefly explained as follows. For the vector x € IR*, the maximum number of the model
terms is given by N = (n +1)(n + 2)/2. Thus, there are N basis functions which are the
combination of 1 and the elements of the vector x. Then there are 2 possible models for
selection. Each model is expressed by an N-bit binary model code c, i.e. a chromosome
representation in genetic algorithms. If some bits of the binary model code c are zeros,
it means that the basis functions corresponding to these zero bits are not included in the
model.

For example, if the vector x € IR?, the maximum number of the model terms is 10. Then
there are 1024 possible models. Each model can be expressed by a 10-bit binary model
code. Thus the Volterra polynomial basis functions are

f = [f1, far oo Jr0] = [1, 21, T2, T3, T123, T2T3, T1T3, 23, T3, T3). (9)
If the 10-bit binary model codeisc={1 0 0 1 0 0 1 0 1 0], the model can
be written as
F(p) = pTdiag(c)f
= [p1,pa, 7, Po)lf1, fa, fr, o]
= p1+ paTs + prz1Z3 + pez;. (10)

For the model represented by GRBF network, the maximum number of the model terms
is given by N, the number of the Gaussian functions, and there are 2V possible models
for selection and also N possible radial basis functions with their centres d;. Thus a
chromosome reprentation in genetic algorithms consists of an N-bit binary model code ¢
and N real number basis function centres dx (kK =1,2,..., N), i.e.

[c,dT,dT,...,dE)]. (11)

For example, if N = 5, z € IR? and the chromosome

(0 1 0 0 1],[du,dra), ..., [ds1,ds2]], (12)

then the model is given by
2

fr(x,p) = waexp(— E:(:cj — dy;)?) + ws exp(— Z — ds;)?). (13)

=1 i=1



It shows from the above that only the basis functions corresponding to the non-zero bits of
the binary model code ¢ are included in the selected model. Given a parent set of binary
model codes and basis function parameter vectors, a model satisfying a set of performance
criteria is sought by the numerical algorithm in Section 5.

4 Multiobjective Performance Criteria

This section presents multiobjective performance criteria for nonlinear model selection
and identification. Let us define the following performance functions:

¢1(p) = | f(x) = £ (x,p) 2 (14)
¢2(p) = | f(x) = (%, P) llos (15)
¢3(p) = o(c) (16)
where ||. ]|, and ||. ||, are the 2- and co-norms of the function (.), o(c) is the number of

the non-zero elements in the binary model code c.

For model selection and identification of nonlinear systems, there are excellent reasons for
giving attention to the performance functions ¢;(p) (: = 1,2,3). The practical reasons for
considering the performance function ¢;(p) is even stonger than two other performance
functions ¢,(p) and ¢3(p). Statistical considerations show that it is the most appropriate
choice for data fitting when errors in the data have a normal distribution. Often the
performance function ¢;(p) is prefered because it is known that the best approximation
calculation is straightforward to solve. The performance function ¢;(p) provides the
foundation of much of approximation theory. It shows that is small, then the performance
function ¢;(p) is small also. But the converse statement may not be true. A practical
reason for using the performance function ¢,(p) is that when in computer calculations,
a complicated nonlinear function is estimated by one that is easy to calculate, then it
is usually necessary to ensure that the greatest value of the error function is less than a
fixed amount, which is just the required accuracy of the approximation. The performance
function ¢3(p) is used to measure the complexity of the model. The small the performance
function @3(p) and the simpler the model. Under the same other conditions, the simple
model is always better than the complicated one.

In order to give a feel for the usefulness of the multi-objective approach as opposed to
single-objective design techniques, let us consider the minimisation of the cost functions
é:(p) (: = 1,2,3). Let the minimum value of ¢; be given by ¢;, for 7 = 1,2, 3, respectively.
For these optimal values ¢} there exist corresponding values given by ¢;[¢?] (; # 1,7 =
1,2,3), for « = 1,2, 3, respectively, and the following relations:

min{¢1(43], $1(¢3]} = 41, (17)
min{@2[4]], b2[43]} = &3 (18)
min{¢s[¢1], ¢s[¢3]} = 43 (19)
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If one of the performance functions ¢; (i = 1,2,3) is minimized individually (single-
objective approach), then unacceptably large values may result for other performance
functions ¢; (7 # 1, j = 1,2,3). Generally, there does not exist a solution for all per-
formance function ¢;(p) for « = 1,2,3 to be minimized by the same parameter vector p.
Following the method of inequalities (Zakian and Al-Naib, 1973; Liu, 1992; Whidborne
and Liu, 1993), we reformulate the optimization into a multiobjective problem as

¢!(p) < Eqy for 1= 1’2a3 (20)

where the positive real number ¢; represents the numerical bound on the performance
function ¢;(p) and is determined by the designer.

5 Numerical Algorithm

As we are concerned with three objectives (or cost functions) for model selection and
identification, this section develops the numerical algorithms combining genetic algorithm
approaches and the method of inequalities to get a numerical solution satisfying the
performance criteria.

Now, let us normalize the multiobjective performance functions as the following.

{ f—i-@, for E,’#O

Pi(p) = 3 (21)

éi(p) + 1, for £ =0
Let T; be the set of parameter vectors p for which the ¢th performance criterion is satisfied:
L;={p:¢i(p) £1}. (22)

Then the admissible or feasible set of parameter vectors for which all the performance
criteria hold is the intersection

r=r,nr,Nrs. (23)
Clearly, p is an admissible parameter vector if and only if

max{¢1(p), ¥2(p), ¥s(p)} < 1. (24)

which shows that the search for an admissible p can be pursued by optimization, in
particular by solving

min{max{¢1(p), ¥2(p),, ¥s(p)}} < 1. (25)
Now, let p* be the value of the parameter vector at the kth step, and define
I*={p:¢i(p) < A*}, for i=1,2,3, (26)
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where

A* = max{i(p*)} (27)

and also define
Ik =Trfnr¥nrs, (28)
E* = 41 (p*) + ¥2(p*) + s(p"). (29)

I'* is the kth set of parameter vectors for which all performance functions sat’i‘sfy

vi(p) < A%, for i=1,2,3. (30)

It is clear that I'* contains both p* and the admissible set I'. E* is a combined measure-
ment of all performance functions. If we find a new parameter vector p¥, such that

A« A, (31)
or
A*F = A* and EB* < B, . (32)

where A* and E* are defined similarly to A* and E*, then we accept p* as the next value
of the parameter vector. Then, we set p**! = p*. We then have

$i(P*) < Yi(pF), for 1=1,2,3 (33)

and
Fic T c I*. (34)

So that the boundary of the set in which the parameters are located has been moved
towards the admissible set, or, rarely, has remained unaltered. The process of finding the
optimization solution is terminated when both A and E* cannot be reduced any further.
But the process of finding an admissible parameter vector p is terminated when

AF <1, (35)

j.e. when the boundaries of I'* have converged to the boundaries of I'. If the A* persists in
being larger than 1, this may be taken as an indication that the performance criteria may
be inconsistent, whist their magnitude gives some measure of how closely it is possible to
approach the objectives. In this case, some of the performance criteria should be relaxed
until they are satisfied. From a practical viewpoint, the approximate optimal solution is
also useful if the optimal solution is not achievable.

The steps of the above algorithm to be executed for the GA implementation are as follows:



Step 1: Chromosomal representation

Each chromosome in the population consists of an N-bit binary model code ¢ and a real
number basis function parameter vector D, where N is the number of the basis functions
for the nonlinear model selection. For example, for the VPBF network there is not the
vector D and for the GRBF network the vector D contains all basis function centres d,

(k=1,2,...,N),ie. D= [dT,d7,...,d]

Step 2: Generation of the initial population
The M chromosomes [c, D] for the initial population are randomly generated, where M
is an odd number.

Step 3: Evaluation of the performance functions

Given the j-th binary model code c; and basis function parameter vector D;, then the
j-th nonlinear model is known. Using the least squares algorithm, the j-th weight vector
w, can be computed easily, based on the datum of the vector x, the binary model code c;
and the basis function parameter vector D;. Then evaluate the normalized performance
functions ¥i(p;) (z = 1,2,3), where p; = [wj, c;, D;], and

A; = max ¥i(p;), (36)
3
E; = gllfi(Pj): (37)

These above computation are completed for all M sets of chromosomes,i.e. j =1,2,..., M.

Step 4: Selection

According to the fitness of the performance functions for each chromosome, delete the
(M —1)/2 weaker members of the population and reorder the chromosomes. The fitness
of the performance functions is measured by

Fi=—, for j=12,...,M (38)

Step 5: Crossover

Offspring binary model codes are produced from two parent binary model codes so that
their fist half elements are preserved. The second half elements in each parent are ex-
changed. The average crossover operator is used to produce offspring basis function
parameter vectors. The average crossover function is defined as

D”—i;—-[ﬁ, for j=1,2,...,M2_1.

Then the (M — 1)/2 offsprings are produced.

(39)

Step 6: Mutation



A mutation operator, called a creep, is used. For the binary model codes, it randomly
replaces one bit in each offspring binary model code with a random number 1 or 0. For
the offspring basis function parameter vectors, the mutation operation is defined as
: M-1
D; + B¢, for =1,2,...,-—-—é—, (40)
where £ is the maximum to be altered and ¢; € [—1,1] is a random variable with zero
mean.

Step 7: Elitism

The elitist strategy copies the best chromosome into the succeeding generation. It prevents
the best chromosome from loss in the next generation. It may increase the speed of
domination of a population by a super individual, but on balance it appears to improve
genetic algorithm performance. The best chromosome is defined as one satisfying

E, = te{g.l.?,M}{El :E < En—o(A—A,) and A <A, +6} (41)
where
Am = _min wBih (42)

E,. and E, are corresponding to A,, and A;, which are defined in Eq.(?) and (?), a > 1
and 6 is a positive number, which are given by the designer (e.g. o = 1.1 and § = 0.1).

Step 8: New offsprings

Add the (M — 1)/2 new offsprings to the population which are generated in a random
fashion. Actually, the new offsprings are formed by replacing randomly some elements of
the best binary model code and mutating the best basis function parameter vector with
a probability

Step 9: Stop check
Continue the cycle initiated in Step 3 until convergence is achieved. The population is
considered to have converged when

A;— Ay <e for 1=1,2,...,(M=1)/2, (43)

where A, is corresponding to Ey, and ¢ i1s a positive number.

Take the best solution in the converged generation and place it in a second “initial genera-
tion”. Generate the other M —1 chromosomes in this second initial generation at random
and begin the cycle again until a satisfactory solution is obtained or A, and E; cannot
be reduced any further.



6 Examples

We use the data generated by a large pilot scale liquid level nonlinear system with zero
mean Gaussian input signal (Voon, 1984; Fonseca et al. 1993). 1000 pairs of input-output
data were collected. The first 500 pairs were used in the model selection and identification
of the system, while the remaining 500 pairs for validation test. The Volterra polynomial
basis function network and the Gaussian radial basis function network were applied to
select and identify the model of the system by the numerical algorithm developed in
Section 5. The parameters for the algorithm are as follows:

Parameter Name VPBF Network | GRBF Network

model term number N 45 10
chromosome length 45 50
[y(t—1)7
y(t—2)
y(t—3) y(t-1)
variable vector x y(t—4) y(t-2)
u(t —1) u(t — 1)
u(t —2) u(t — 2)
u(t — 3)
Lu(t —4)
€1 1.5 1.5
€2 0.3 0.3
E3 7 T

The VPBF Network

Since the maximum number of the model terms is 45, there are 2*° possible models for
selections. But, after 210 generations the optimal results has been found approximately
by the algorithm. The performance functions are

1(p) = 1.8000, y(p) = 0.3965, @3(p) = 3. (44)
The model represented by the VPBF network is
y(t) = 1.3234y(t — 1) — 0.3427y(t — 2) + 0.075y(t — 4)u(t — 2). (45)

The convergence of the performance functions with respect to generations are given in
Figure 1. The measured and estimated outputs, and estimation error of the system are
shown in Figure 2. The validity test of the model identified via the VPBF network is
illustrated in Figure 3.
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The GRBF Network

Although the maximum number of the model terms is only 10 (i.e. 1024 possible mod-
els for selection), the search dimension of the basis function centre parameters is 40 in
real number space (i.e. infinity possibilities for selection). After 700 generations the
performance criteria are almost satisfied. At this stage, ¢1(p) = 1.5643, ¢(p) =
0.2511, @3(p) = 5. In order to obtain the better performance, the basis function pa-
rameter vector was searched for another 100 generations using the algorithm with the
fixed number of the model terms, i.e. let ¢3(p) = 5 for this case. Finally, the performance
functions are

é1(p) = 1.2957, qb;(p) =0.1724, ¢3(p) = 5. (46)

The model represented by the GRBF network is

4

y(t) = Zsjw,- exp(— g(y(t — ) —dy)? = Y (u(t — 5 +2) - dy)?), (47)

=1 1=3
where
w, —2.6363 —2.1577 —1.8855 —0.8975 —0.2841
wsy —1.2470 —1.2717 -—-2.2730 0.3445 0.3315
wy | =|-1.7695 |, {di;}=|-0.6345 -—1.1223 -1.1615 —0.3666 (48)
Wy 0.9437 0.7344 1.0223 0.5469 0.1989
ws —0.5341 —-1.2336 —0.5928 0.3212 0.5754

The performance of the GRBF network is shown in Figures. 4-6. Figure 4 shows the
convergence of the performance functions with respect to generations. The measured
and estimated outputs, and estimation error of the system are given in Figure 5. The
validation test of the model identified via the GRBF network is demonstrated in Figure
6.

The selection, identification and validity test results for the large pilot scale liquid level
nonlinear system shows that the VPBF network is simpler than the GRBF network, but
the performance of the latter is better than that of the former.

7 Conclusions

This paper has been concerned with model selection and identification of nonlinear sys-
tems on the basis of neural networks, genetic algorithms and multiobjective optimization
techniques. It has proposed a set of multiobjective performance functions to measure
the approximation accuracy and complexity of the nonlinear model and uses genetic al-
gorithms to select the nonlinear function units to reach a simple nonlinear model. The
Volterra polynomial basis function (VPBF) network and the Gaussian radial basis func-
tion (GRBF) are applied for the model representation of the nonlinear systems. It has

11



developed a numerical algorithm for multiobjective nonlinear model selection and identi-
fication. The examples have demonstrated the operation of the algorithm.
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Figure 1: The convergence of the performance functions using VPBF network.
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Figure 2: The selection and identification results of the system using VPBF network.
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Figure 3: The validation results of the system using VPBF network.
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Figure 4: The convergence of the performance functions using GRBF network.
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Figure 5: The selection and identification results of the system using GRBF network.
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Figure 6: The validation results of the system using GRBF network.
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