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Radial basis function network compensators for uncertainties of robotic
manipulators

Abstract

This report proposes a decentralised compensation scheme for uncertainties and
modelling errors of robotic manipulators. The scheme employs a central decoupler and
independent joint neural network controllers. Recursive Newton Euler formulas are
used to decouple robot dynamics to obtain a set of equations in terms of each joint's
input and output. To identify and suppress the effects of uncertainties associated with
the model each joint is controlled separately by Gaussian radial basis function network
controllers using direct adaptive techniques. The effectiveness of the proposed
adaptive control scheme is demonstrated by controlling the three primary joints of
PUMA 560. Simulation results show that this control scheme can achieve fast and
precise robot motion control under substantial payload variations.

1. Introduction

Robot manipulators have become increasingly important in the field of industrial
automation. In today's automated factory robots are widely used in material handling,
painting and welding tasks. High speed and high precision trajectory tracking capability
is of prime concern in manipulator applications. Conventional controllers for industrial
robots are based on the independent joint control schemes in which each joint is
controlled separately by a simple position servo-loop with predefined constant gains.
This control scheme is adequate for simple pick-and-place tasks where only point to
point motion is of concern. However, in tasks where precise tracking of fast
trajectories under different payloads is required, the existing robot control schemes are
severely inadequate. Any significant gain in performance for tracking the desired
trajectory as closely as possible over a wide range of manipulator motion and payloads
requires the consideration of adaptive control techniques.

Globally stable adaptive controllers for mechanical manipulators have been proposed in
literature [16,17]. These approaches, however, require a detailed description of the
structure of the dynamic model. Moreover the explicit identification of inertia
parameters in these controllers is computationally intensive [22]. They can therefore be
vulnerable to unfavourable properties from the view point of reliability and
maintenance of the controllers. Also the adaptive control theory can adapt unknown
parameters in a mathematical referenced model but it can not adapt the structure of the
model itself. In a real environment the inevitable uncertainty of the available model
resulting from hardly measurable non-linear friction, gear non-linearities, changes in
motor dynamics and payload variations makes the control task extremely difficult. In
the presence of errors between actual system structure and the model structure,
robustness of control system decreases. Consequently, it may be desirable to utilise
learning control techniques that permit the implementation of non-linear compensators
without detailed prior knowledge of the plant dynamics. Neural nets provide one such
alternative.

Advances in artificial neural nctworks have prowdcd the potenua] for new approachcs




three-fold. First, they have a flexible structure to express non-linear systems which may
provide for a robust controller. Second, because of their structure they have a flexible
learning capability as against adaptive control method which stays within unknown
parameter identification of a predefined model. In addition parallel processing and fault
tolerance are easily achieved.

Recently there has been considerable interest in the application of neural networks to
robot control [6, 10, 12, 21]. Most of these efforts aim at generating the inverse
dynamic models of manipulators in the neural networks, with the underlying
assumption being that neural networks are capable in principle of approximating any
well behaved function. This does not imply however, that it is equally easy to learn to
represent any function from a finite amount of training data. As robot dynamics are
extremely non-linear, the neural network may require an excessive amount of training
data in order to yield a reasonable generalisation. Because of this difficulty some neural
network based robot control schemes have been developed in which the neural
network assumes a supportive role in the overall adaptive loop rather than trying to
approximate the whole inverse dynamics [4, 8, 23]. Such schemes are based on the
belief that neural networks perform effectively when they are not required to learn too
much. Also as the inverse dynamics of the manipulators can be computed efficiently to
a fair degree of accuracy using the recursive Newton Euler equations, it is reasonable
to utilise them and assist them through neural networks to compensate for the
uncertainties of robotic manipulators.

The commonly used neural network structure in robot control is the multi-layered
perceptrons using the back propagation learning algorithm [20]. However, it is well
known that this type of algorithm suffers from the drawback of slow convergence.
Moreover the multi-layered perceptrons are non-linear in parameters and are therefore
not amenable to direct adaptive control techniques. Although local convergence results
are present for layered networks [1, 2], there is no theoretical evidence about how well
layered neural networks without bias weights can approximate non-linear functions.
On the other hand, radial basis neural networks [11] have the advantage of being linear
in parameters, provided their centres are kept constant, and are therefore well suited
for direct adaptive techniques. Several algorithms utilising Gaussian radial basis
functions to adaptively compensate for the non-linearities in a certain class of plants
are available [9, 13, 14]. However, these algorithms cannot be directly applied to
manipulator control, largely because of the large amount of coupling present between
the joints.

This report presents a new de-centralised approach to adaptive robot control using
neural networks which does not require inverse model formulation. The control
scheme uses a framework of de-centralised Gaussian network adaptive controllers
utilising direct adaptive control techniques for weight updates. To get around the
problem of inter-joint coupling, the control scheme first applies non-linear state
feedback control [3] to the robot dynamics, thus obtaining a set of decoupled
equations in joint co-ordinates and then makes use of Gaussian radial basis function
networks to compensate for the unmodeled dynamics and to suppress tracking errors.
Simulation studies on PUMA 560 indicate the effectiveness of the scheme.

The report is organised as follows: The application of Feedback decoupling theory to
robot control, and its practical aspects are discussed in section 2, while sections 3.1,




3.2 give the controller structure and the overall control scheme. Simulation results are
presented in section 4 and section 5 gives conclusions. Radial basis neural networks
are briefly discussed in the appendix.

2. Non-linear decoupled control

The application of non-linear decoupled control to robotics is briefly discussed in this
section and details about the general non-linear decoupling theory can be found
elsewhere [3]. The Lagrange Euler equations of motion of an n link robot can be
written in matrix notation as

D(8)8+h(8,8)+g(6) = u(t) 2.1)

where u(t) is an nx1 applied torque vector for junction actuators, 8(t) is the nx1
angular position vector, 6(t) is the nx1 angular velocity vector, 6(t) is the nx1
acceleration vector, g(0) is an nx1 gravitational force vector, h(8,0) is an nx1
coriolis and centrifugal force vector and D(8) is an nxn acceleration-related inertia
matrix. The above model consists of n second order coupled differential equations. The
differential order of the non-linear system is therefore 2. Since D(@) is always non-
singular, the above equation can be rewritten as

8(t)=-D"(8)[h(8,6)+g(8)]+ D™ (B)u(t) (2.2)
The control objective is to find a feedback decoupled controller u(t): .
u(t) = F(6,0) +G(8,0)w(t) (2.3)

where w(t) is an n-dimensional reference input vector, F(6,0) is an nx1 feedback
vector for decoupling and pole assignment and G(6,0) is an nXxn input gain matrix so

that the overall system has a decoupled input output relationship. The particular form
of equation (2.2) renders it easy to visualise such a controller. Let u(t) be taken as

o, iél () +0ay0,(t)- )\'lwl (t)
u(t) = h(8,0)+ g(8) - D(6) ' (2.4)

0,0, (1) +0,,0, (1)~ w, (1)

where a; and A; are arbitrary scalars. By replacing u(t) in equation(2.3) by its value
from equation (2.4) we get

oy lél (t)+0,0, (1) = A, w, (1)
D(6) =0 2.5)

@,,8, (1) +,0, (-2, w, (1)
Since D(8) is non-singular the above equation becomes
6, (1) +0,.0, (1) +0,,8,(1) =A@, (1) i=12,..,n (2.6)

which indicates the final decoupled input output relationships of the system. By
properly selecting o.;s in equation (2.6) poles of the decoupled systems can be placed

at desired positions. Hence the manipulator can be considered as n independent,
decoupled, second order, time invariant systems. An efficient way to compute the




controller u(t) is through the use of Newto_n Euler equations by substituting their joint
acceleration inputs (0, (t)) by A, w, (t)—a,;0,(t) — 6, (t).

The final decoupled input output relationships of the manipulator as derived above are
achievable only if the dynamics of the manipulator are known exactly. In practice this
would hardly be the case. If modelling errors or unknown disturbances exist,
performance of non-linear state variable feedback control (2.4) will deteriorate. In the
presence of modelling errors due to unknown friction, gear dynamics, unknown motor
dynamics and payloads the independent joint equations (2.6) can be regarded as non-
linear systems of the general form

8(0)+£(8,6) = b(8,0)w(t) @2.7)

where f() and b() are unknown non-linear functions of states. Effective
compensation for these non-linear effects is essential for accurate tracking of joint
trajectories.

Te control non-linear systems of the type (2.7) using conventional adaptive control
techniques, f(-) and b() are represented by the relations:

N
f=zklifi

i=l

M
b= kyb,
=]

with f;(-) and b,(-) being continuous known basis functions of states. The coefficients
k, and k,, are then estimated using adaptive control theory [15] and the adaptive
control law u(t) is synthesised.

(2.8)

However, If the basis functions are not known, as in the case of unknown robot
dynamics, it may still be possible to estimate the required control input if an attempt is
made to reconstruct the unknown functions f(-) and b(:), and neural networks can be
wsed for this purpose. Theoretically it is possible for neural networks to approximate a
non-linear function through learning. In the following sections a decentralised Gaussian
meural net based control strategy is developed to cancel the effects of modelling errors
m manipulators and thereby achieve accurate trajectory tracking at high speeds.

3. Adaptive Robot control

3.1. Gaussian neural network based control

Gaussian radial basis function networks (please see appendix) have been found to be a
powerful scheme for learning complex input output mappings. It is well known that the
solution of finding the weights of such networks can be formulated as a linear problem.
To develop a Gaussian network adaptive controller for an independent joint of the
mmanipulator (2.7), the input space for that joint is determined and the centres for the
Gaussian networks are fixed in the input space at pre-determined lattice points. A mesh
of such centres encompassing the whole input space is thus formed as shown in figure
1. In this figure, Ad represents the set comprising these centres. It is assumed that no
siate trajectory, i.e. joint angles and there respective velocities, will fall outside the set
Ad. Within the set Ad the control input to every joint is a sum of PD control and
adaptive control. We define the unknown non-linear function h=b"'f and let h, and




b, be the radial Gaussian network approximations to the functions hand b,
respectively. A tracking error metric s(t):(é-éd)+a(9—ed) is defined where éd
and 6, are the desired values of joint velocities and joint angles, respectively, as given
by the trajectory generator, and O is a positive constant.

The adaptive control law is given by
u,(t)=-b;'[A6-6,)-8,]1+h, +PD (3.1)

where A is a constant and 8, is the desired value of joint acceleration determined by
the trajectory generator. The structure of adaptive control law is shown in figure 2. In
figure 2, g, represent the Gaussian radial basis functions, [, represent the respective
centres, c¢; and d, represent the respective weight connections to the outputs. It can be
shown that if the following weight update laws are used

& =—k;s,()g®,u1,)

d, =k,s,()g(®,p,)[A(0-6,)-6,]
where k, and k, are positive constants and s, (t) = s(t) — Psat(s(t) /D) with & being
a small constant dead zone width and 'sat' representing the saturation function then

asymptotic convergence of tracking errors is achieved. For details of the algorithm and
proof the reader is referred to [13].

(3.2)

A

joint _
velocity .

v

joint angle

Figure 1. subset of joint state space involved in the design of the adaptive controller.

Figure 2. Structure of the adaptive control law for the ith joint.



3.2. Model based neural network control for robots

To apply the Gaussian network controllers for adaptive robot control in an efficient
manner, the large coupling effects between joints of the manipulators have to be
compensated for. For this purpose effective decoupling of the robotic system into
independent joint subsystems was carried out as discussed in section 2. The overall
control structure for an n link manipulator is shown in figure 3. In figure 3, the
objective of the Newton Euler equations is to decouple the dynamics into n
independent systems, each of which can be controlled separately. There is one neural
network adaptive controller per joint of the robot whose function is to suppress the
effects of uncertainties (modelling errors) which otherwise would deteriorate trajectory
tracking and introduce large errors.

The Newton Euler block receives the desired values for the joint angles and joint
velocities from the trajectory generator, while the acceleration inputs come from the
respective neural network output for each joint. The neural network weight update
rules as given in equation (3.2) are dependent on the actual and desired values of the
joint angles and their velocities. The overall idea behind the scheme is to vary the
acceleration inputs of the Newton Euler block to affect changes in the torques to the
manipulator in a manner that joint angles follow the desired values as closely as
possible.
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Figure 3. Structure of the decentralised adaptive control scheme for an n link arm.

The scheme is computationally efficient and is amenable to parallel processing
implementation within a distributed computing architecture. The Newton Euler
formulas for an n link manipulator can be calculated in linear time on a single
processor. Moreover very efficient implementations of Newton Euler formulas have
been achieved on multiple general purpose processors [5], also, pipelined dedicated




hardwares have been proposed [7] to further cut down the computation time. The
adaptive controller part is inherently parallel and two levels of parallelism can easily be
identified. A higher level of parallelism exists because of the independent nature of the
algorithm at every joint. In addition a much finer level of parallelism exists because of
the use of neural networks at each joint. Since a PD controller is acting in parallel with
the adaptive controller a comparison of their outputs would give a fair idea of the
relative contribution of either of the two. As will be demonstrated in the simulation
example, the contribution of the PD controller decreases as the neural network learns
and after a few excursions of the trajectory the PD controller can be unplugged
altogether without any effect on the overall loop.

The scheme does not require the measurement of joint accelerations nor does it require
any force feedback to determine the changing payloads. By dividing the burden of
controlling the manipulator among n neural networks the overall state space is
conveniently divided into n spaces of reduced order. The structure of each controller is
therefore simple and each controller has to learn lesser amount of data. Faster
convergence of joint trajectories to their desired values is therefore possible. As will be
shown in the next section the model based neural network control scheme produces
fast convergence of errors and has very good generalisation properties. The control
scheme is particularly robust to changes in payloads. Moreover, as against other neural
control approaches it does not require any off-line training phase for the neural nets.

4. Simulation application

In order to demonstrate the effectiveness of the proposed scheme, the six degree of
freedom PUMA 560 arm is used in the dynamic simulations [18, 19]. The distributed
controller is applied to the three primary joints of the manipulator, while due to its
decentralised nature, implementation on the full six degrees of freedom manipulator is
a simple extension of this control scheme. Network parameters as used with the
PUMA simulator are given in table 1.

mesh size 0.25x0.25
variance 0.02
oy, 100
o, 20
A 100
No. of Gaussian 348
neurones in mesh
NN. weight 100 Hz.
update rate
0] 0.005
k, 150
o 10

Table 1. Neural network parameters used in PUMA simulations

The first task is to illustrate the capability of the control method to converge to desired
trajectories in the presence of modelling errors and unknown large payloads. A non-
linear friction term of the form 1, .. =V x8+cxsgn(8) where v and c are constants,

was introduced at each joint and a payload of 10 kg was attached to the end of the




third link. The controller had no prior knowledge of these forces. The desired
trajectories are designed so that the end effector starts from an initial point, reaches a
final point, stays there for a while, and then returns to the original point. All the joints
were required to move along their respective desired trajectories simultaneously so as
to induce coupling effects upon each other. The desired and actual trajectories for the
three joints, for the 1st, 10th and 30th excursions of the trajectory, are plotted in
figures 4 to 6 and the respective errors are plotted in figures 7 to 9. It can be seen in
figure 4 that, for joint 1, trajectory following was quite poor at the start (figure 4(a))
but improved as the neural nets gradually got trained and errors were almost
unnoticeable at the 30th excursion (figure 4(c)). The reduction in errors is much more
evident from figure 7(a to c). Here the errors along the 1st, 10th and 30th excursions
of the trajectory are plotted on the same scale. A similar trend exists for joint 2 (figures
5 and 8) and joint 3 (figures 6 and 9). The relative contributions of the PD and the
neural net controllers for the three joints are plotted in figures 10 to 12. Figures 10(a)
and 10(b) give the outputs for joint 1 at the first excursion. It can be seen that in
figure 10(a) the neural net output is quite haphazard during the first excursion and the
PD controller has to generate large correction values (figure 10(b)). However, at the
30th excursion the neural net has almost taken over the entire control effort (figure
10(c)) and the PD output remains close to zero (figure 10(d)), throughout the course
of the trajectory. Quite similar trends were observed for joints 2 and 3 in figures 11
and 12 respectively. These figures indicate fast convergence of errors. For the sake of
comparison, non-linear feedback control without neural net compensation, was applied
to the arm. Both poles for each independent sub-system were placed at -10 through
suitable choice of a; (equation(2.6)) as given in table 1. The results are plotted in

figures 13 and 14. Figure 13 (a to c) give the desired and actual trajectories for the
three joints when all the dynamics are known. It can be seen that exact tracking occurs
under known conditions, while figure 14 (a to c) give the same results when unknown
friction and payload are added, which cause very large tracking errors.

It may be noticed from the previous results, that being an on line learning scheme, it is
eventually able to reduce the errors introduced by any unknown payload, along the
desired trajectory to very small values. However, there may be occasions where, within
a certain range of payloads, high speed payload-invariant trajectory tracking may be
desired. The next task is designed to demonstrate the robustness of the control scheme
against payload variations and also illustrates the generalisation properties of the
scheme in an environment where payloads may be undergoing large variations. Eleven
payloads from 0 to 10 Kg., with an increment of 1 Kg., were selected in a random
sequence and the manipulator was moved along the desired trajectory carrying the
payload. During the initial phase of the experiment tracking errors were observed, as
the payload varied randomly, which diminished rapidly and were almost insignificant at
the end of 100 traversals of the trajectory. After this the manipulator was able to
perfectly track the desired trajectory carrying any payload in this range. The results for
three different payloads, are plotted in figures 15 to 17, where It can be seen that once
the neural nets were trained each of the manipulator joint was able to follow its desired
trajectory accurately over a wide range of payloads. Also, it should be noted that out
of the three payloads of figures 15 to 17, two: 5.5 Kg. and 9.5 Kg., were not used
during the initial runs. It may be pointed out that the coupling effects introduced by the
unknown payloads are being effectively compensated by the neural nets. The above
experiments illustrate fast convergence of trajectories and robustness under partially
known dynamics.
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Figure 4. Joint 1 desired and actual trajectories, (a) 1st excursion, (b) 10th excursion, (c) 30th excursion.
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Figure 6. Joint 3 desired and actual trajectories, (a) 1st excursion, (b) 10th excursion, (¢) 30th excursion.
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Figure 7. Joint 1 trajectory errors, (a) 1st excursion, (b) 10th excursion, (c) 30th excursion.
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Figure 8. Joint 2 trajectory errors, (a) 1st excursion, (b) 10th excursion, (¢) 30th excursion.
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Figure 9. Joint 3 trajectory errors, (a) 1st excursion, (b) 10th excursion, (c) 30th excursion.

11




10{8) 10p)

5 p 23 T3 ) 2%
time : seconds seconds

Figure 10. Neural network and PD contribution joint 1, (a) NN contribution 1st excursion, (b) PD contribution
1st excursion, (c) NN contribution 30th excursion, (d) PD contribution 30th excursion.
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Figure 11. Neural network and PD contribution joint 2, (a) NN contribution 1st excursion, (b) PD contribution
1st excursion, (¢) NN contribution 30th excursion, (d) PD contribution 30th excursion.
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Figure 12. Neural network and PD contribution joint 3, (a) NN contribution 1st excursion, (b) PD contribution
1st excursion, (c) NN contribution 30th excursion, (d) PD contribution 30th excursion.
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Figure 13. Nonlinear feedback control response for known dynamics, (a) joint 1, (b) joint 2, (c) joint 3.
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Figure 14. Nonlinear feedback control response for unknown joint friction and payload. (a) joint 1, (b) joint 2, (c)
joint 3.
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Figure 16. NN control response of joint 2 for variable payloads. (a) 0 Kg., (b) 5.5 Kg..(c) 9.5 Kg.
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Figure 17. NN control response of joint 3 for variable payloads. (a) 0 Kg.. (b) 5.5 Kg., (¢) 9.5 Kg.
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5. Conclusions

In this report a new decentralised neural network based strategy for accurate tracking
control of robotic manipulators, in the presence of partially known dynamics, has been
presented. Gaussian radial basis function controllers using direct adaptive techniques
have been effectively used to compensate for the uncertainties of the system. The
scheme does not require off-line neural net training sessions nor does it require any
force feedback to determine the unknown payloads and is computationally efficient and
inherently parallel. Simulation results show that the control scheme produces fast
convergence of errors and is robust to variable payloads. The formulation of this
control scheme can be easily extended to a general manipulator having any number of
links.
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Appendix

Brief review of Gaussian radial basis function neural networks
A Gaussian radial basis function network with n inputs and m outputs implements a
napping [ : R" — R™ according to

N

@)=Y AgUIx-T1)
=1

where X € R" is the network input vector; . € R" i = 1, ..., N are the radial basis
fimction centres; Ki eR™ i =1, ..., N are the weight vectors; IlIl denotes the
Exclidean norm; and g(-) is the Gaussian radial basis function given by
gw)=exp(-v*/ 6?)

wiere 6 is called the variance of the function, its value essentially defines the extent
«f Iocalisation of the effects of the input. At the input the input space is divided into
prids with a Gaussian function at each node having J, as its centre. At the output
there is a linear node calculating the weighted sum of the Gaussian outputs.

@Giwen any function that is sufficiently regular it is known that an approximation can be
pravided by the Gaussian radial basis function. Details can be found in [11].
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