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Abstract

This paper is concerned with the estimation of dynamical invariants from relatively
short and possibly noisy sets of chaotic data. In order to overcome the difficulties
associated with the size and quality of the data records, a two-step procedure is inves-
tigated. Firstly NARMAX models are fitted to the data. Secondly, such models are
used to generate longer and cleaner time sequences from which dynamical invariants
such as Lyapunov exponents, correlation dimension, the geometry of the attractors,
Poincaré maps and bifurcation diagrams can be estimated with relative ease. An ad-
ditional advantage of this procedure is that because the models are global and have a
simple structure, such models are amenable for analysis. It is shown that the location
and stability of the fixed points of the original systems can be analytically recovered
from the identified models. A number of examples are included which use the logistic
and Hénon maps, Duffing and modified van der Pol oscillators, the Mackey-Glass de-
lay system, Chua’s circuit, the Lorenz and Réssler attractors. The identificd models of
these systems are provided including discrete multivariable models for Chua’s double
scroll, Lorenz and Rossler attractors which are used to reconstruct the trajectories in

a three-dimensional state space.
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Taken’s theorem gives sufficient conditions for equation (2) to hold, that is, in order to
be able to infer dynamical invariants of the original system from the time series of a single
variable, however no indication is given as to how to estimate the map f7. A number of
papers have been devoted to this goal and such methods can be separated into two major
groups, namely local and global approximation techniques.

The local approaches usually begin by partitioning the embedding space into neighbour-

hoods {U;}}%, within which the dynamics can be appropriately described by a linear map
g7 : R? — IR such that

y(k+T) = gT(y(k) fory(k)el;, i=1,...,N, . (3)

Several choices for g7 have been suggested in the literature such as linear polynomials
(Farmer and Sidorowich, 1987; Casdagli, 1991) which can be interpolated to obtain an
approximation of the map f¥ (Abarbanel et al., 1990). Simpler choices include zeroth-
order approzimations, also known as local constant predictors (Farmer and Sidorowicﬁ, 1987;
Kennel and Isabelle, 1992) and a weighted predictor (Linsay, 1991).

A common difficulty of such approaches is that the data have to be separated into neigh-
bourhoods. Thus given a point in the embedded space the closest neighbours to such a
point must be found. It is well known that for many methods most of the CPU time is
spent in searching for close neighbours in the embedding space within the data (Grassberger
et al., 1991) and that the effort required to accomplish this grows exponentially with the
embedding dimension.

One way of avoiding the need for constructing neighbourhoods is to fit global models to
the data. In other words, all the data pertain to a single neighbouhood namely the entire
embedding space. This considerable advantage has prompted some authors to investigate the
estimation and use of global models (Cremers and Hiber, 1987; Crutchfield and McNamara,
1987; Kadtke et al., 1993; Aguirre and Billings, 1994a).

The use of global models, however, has two major difficulties namely i) the choice of a rep-
resentation for the model which should be sufficiently complex to approximate the dynamics
of f7, and ii) the selection of the correct structure or basis within the chosen representation.
In the case of global models the representation has to be nonlinear. Consequently the num-

ber and sizes of all possible model bases within a given representation become very large as
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the parameters of polynomial models are currently widely available. One of the disadvan-
tages of global polynomials, however, is that even for polynomial models of moderate order,
the number of terms can become impractically large (Farmer and Sidorowich, 1988a; Cas-
dagli, 1989). Using polynomials to forecast chaotic time series, Casdagli (1989) has reported
that such predictors blow up in the iterative procedure and suggests that this is because
polynomial predictors give bad approximants to the true dynamics except very cloée to the
attractor. On the other hand, some of the problems related to global polynomials are be-
lieved to be connected to the structure of the models (Aguirre and Billings, 1993b) and
promising results have been reported for some systems using nonlinear global polynomials
with simplified structure (Kadtke et al., 1993; Aguirre and Billings, 1994b).

Rational models share with polynomials the advantage of being linear in the parameters.
This feature makes it possible to use well known and numerically robust algorithms to
estimate the parameters of such models. Moreover, rational models seem to extrapolate
better than polynomials (Farmer and Sidorowich, 1988a).

The radial basis function (RBF) approach is a global interpolation technique with good
localization properties and it is easy to implement as the algorithm is essentially independent
of the dimension (Broomhead and Lowe, 1988; Casdagli, 1989; Whaba, 1992). However
performance of radial basis functions depends critically upon the centres (Chen et al., 1990).
For a few hundred data points the choice of the centres is a difficult task and the solution
of the problem could become infeasible on standard workstations for more than 500 data
points (Casdagli, 1989; Billings and Chen, 1992).

Local approximants are concerned with the mapping of a set of neighbouring points
in a reconstructed state space into their future values. A major problem here is to select
the neighbourhoods because such a choice is critical and there could be hundreds or even
thousands of these (Farmer and Sidorowich, 1988b). The size of the neighbourhoods depends
on the noise level and the complexity of the dynamics (Farmer and Sidorowich, 1991). In
addition, local predictors are discontinuous and suffer from undesirable behaviour when long
term intervals are computed.

A simple alternative to nonlinear modelling is the use of piecewise-linear representations
(Billings and Voon, 1987). The discontinuities among the several linear models which com-

pose a piecewise-linear model, can provide effects similar to those observed in nonlinear



models such as chaos (Mahfouz and Badrakhan, 1990a; Mahfouz and Badrakhan, 1990b).
However, as other local representations, the final model is piecewise-linear and therefore
discontinuous. Piecewise-linear models have been found to be unreliable indicators of the
underlying dynamics in some cases (Billings and Voon, 1987), and a possible explanation
for this is that such models violate the physically motivated hypothesis of smooth dynam-
ical systems (Crutchfield and McNamara, 1987). Thus local predictors may not adlways be
suitable for predicting invariant measures (Brown et al., 1991).

Smooth interpolation functions have been suggested as a way of alleviating the problem
caused by discontinuities in piecewise-linear models (Johansen and Foss, 1993). Such func-
tions have localised properties which confers to the final models composed in this way some
similarities with radial basis functions. As would be expected, the quality of the approxi-
mation depends on the choice of several operating regimes where the system dynamics are
approximately linear. This information has to be available a prior: and is somewhat critical.
The problem of selecting the operating points is similar to the choice of neighbourhoods and
of centres in other approaches.

Other representations for modelling nonlinear systems include Legendre polynomials
(Cremers and Hiber, 1987), neural networks (Elsner, 1992; Principe et al., 1992) and
weighted maps (Stokbro and Umberger, 1992).

At present no particular representation can be regarded as the best for any applica-
tion and “finding a good representation is largely a matter of trial and error” (Farmer and
Sidorowich, 1988a). On the other hand, it seems that global polynomial models are in many
respects simpler and therefore more convenient (Kadtke et al., 1993). Moreover, it has been
pointed out that “global equations of motion are to be preferred over atlas! equations of
motion when the former is available” (Crutchfield and McNamara, 1987).

This paper investigates the use of global polynomials with simplified structure to estimate

dynamical invariants of strange attractors.

1Crutchfield and McNamara call atlas the dynamical equations obtained using data from local regions of

the attractor.



2.2 Algorithms

Consider the nonlinear autoregressive moving average model with exogenous inputs (NAR-

MAX) (Leontaritis and Billings, 1985a; Leontaritis and Billings, 1985b)

y(k) = F*[y(k - 1),...,y(k=ny)u(k=d), ... ,u(k —d—n,+1),e(k),...

15(k_n=)] ) (4)

where n,, n, and n, are the ma.ximlum lags considered for the output, input and noise terms,
respectively and d is the delay measured in sampling intervals, T,. Moreover, u(k) and y(k)
are respectively input and output time series obtained by sampling the continuous data u(t)
and y(t) at T,. Furthermore, e(k) accounts for uncertainties, possible noise, unmodelled
dynamics, etc. and F*[] is some nonlinear function of y(k), u(k) and e(k) with nonlinearity
degree /€ Z*. In this paper, the map F*[] is taken to be 2 polynomial of degree £. In order

to estimate the parameters of this map, equation (4) has to be expressed in prediction error

form as
y(k) = U7 (k- 1)0 + &(k) , (5)
where
T(k—1) = [U5,(k—1) TI(k—-1) Vi(k-1)] |
é = [ézu é:-uf é;‘?]‘ 1 (6)

and where U7 (k —1) is a matrix which contains linear and nonlinear combinations of output
and input terms up to and including time t — 1. The matrices Plue(k —1) and ¥F(k—1)
are defined similarly. The parameters corresponding to each term in such matrices are
the elements of the vectors C:)yu, éw{ and (:)5, respectively. Finally, £(t) are the residuals
which are defined as the difference between the measured data ¥(t) and the one-step-ahead
prediction 7 (k—1)O. The parameter vector © can be estimated by minimizing the following

cost function (Chen et al., 1989).

Jus(0) = || y(k) — ¥ (k- 1)0 | (7)



where || - || is the Euclidean norm. Moreover, least squares minimization is performed using
orthogonal techniques in order to effectively overcome two major difficulties in nonlinear
model identification, namely i) numerical ill-conditioning and ii) structure selection.

The ERR criterion used for selecting the most important terms in the model has been
devised as a byproduct of the orthogonal parameter estimation procedure (Billings et al,,
1989; Korenberg et al., 1988). In a recent paper it has been shown that the ERR criterion
gives qualitatively similar results as higher order spectrum techniques in detecting nonlinear
interactions within the underlying dynamics (Aguirre and Billings, 1994a). Moreover, a
similar criterion has been used to generate radial basis functions with a small number of
parameters (Mees, 1993).

In a multivariable model with r inputs and m outputs, the entries in equation (4) are vec-
tors, thatis u(t) = [wa(2) ... w.()]7, y(t) = [1a(t) ... ym(2)]T and , e(t) = [ea(2) ... en(t))7,
and both structure detection and parameter estimation can be performed in a way which is
analogous to the monovariable case (Billings et al., 1989)

Because the final models will be composed of a reduced number of terms, which is a small
fraction of the total number of candidate terms, the models in this paper can be viewed as
‘simplified’ or ‘concise’ global polynomials. It is believed that these models overcome some
of the practical difficulties usually reported for non-simplified polynomials.

The last step in any identification problem is the validation of the estimated models.
Most ‘conventional’ approaches to model validation are not particularly attractive when the
models are chaotic and therefore alternative invariants should be used to quantify the quality

and adequacy of the estimated models (Aguirre and Billings, 1994b).

2.3 Relation to previous work

There are some similarities between the approach described in Sec.2.2 and the more general
setting stated in Sec.1. In particular, the approach followed in this paper does not involve
finding neighbourhoods, thus Ny =1 and zll the data belong to a unique ‘neighbourhood’,
that is, y(k) €Uy k=d.,...,N. This reduces the number of data required to estimate the
dynamics. Moreover, the delay time is taken to be equal to the sampling period, thus 7=1,.

There are, however, a number of important differences. Firstly, a NARMAX model



includes input terms. This enables fitting data from non-autonomous systems and therefore
estimating input/output maps, see (Casdagli, 1992; Hunter, 1992) for related ideas on this
subject. Animmediate consequence of this is that for input /output systems, it is not required
that the output be on any particular attractor. In fact a number of input waveforms can be
used to enhance estimation accuracy (Aguirre and Billings, 1993b). Once an input/output
model has been estimated, a particular input can be used to generate data on a specific
attractor.

Another important difference is the presence of noise terms, that is, the moving average
part of the model. It should be noted that equation (2) will only hold in the unlikely case
when noise is absent. Any noise in the data or any imperfection in the estimate of the map
fT will result in an extra term in the right hand side of equation (2). Such a term would be
responsible for modelling the mismatch introduced by the noise and unmodelled dynamics.
It 1s a well known result in the theory of system identification that if such a term is qmitted
from the model structure, the estimate of the map f7 will become biased during parameter

estimation (S6derstrém and Stoica, 1989) and nonlinear models are no exception to this rule

It seems that when the noise is white and enters the system as a purely additive compo-
nent, the division of the data in neighbourhoods and subsequent estimation reduces the bias.
This will not be the case however if the model is global or if the noise is correlated. Thus in
order to avoid bias a model for the noise and uncertainties, ¥3 (k- 1)0,.c + MHEE 1)0, is
included in the model structure before proceeding to parameter estimation. Once parameters
have been estimated, only the deterministic part of the model is used, namely \I’;(k-l)é)w.
This procedure can handle moderate amounts of white and correlated noise. Although only
white noise is considered in this paper, satisfactory results have been obtained when the
noise was correlated (Aguirre and Billings, 1993b).

Summarising, equation (5) is a hybrid model since it is composed of a deterministic part
and a stochastic component. The latter is only used during parameter estimation in order to
avoid bias on the former. Therefore, in this paper the models used to generate the surrogate
data are purely deterministic although the stochastic part of the models is also represented
for clarity. Thus, the deterministic component of the identified models is an approximation

to the dynamics, that is, f7 = U7 (k — 1)0., where T=T,.
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The NARMAX polynomials used in this paper should be viewed as simplified polynomi-
als as opposed to other approaches which include every possible term in the model. Apart
from becoming impractical due to the explosion in the number of terms, the dynamics of
overparametrized polynomials are severely affected (Aguirre and Billings, 1993b). Conse-
quently, alternative structure selection techniques have recently been investigated (Kadtke
et al., 1993). It should be noted however, that whilst some of the approaches in that refer-
ence operate on 2 basis which originally contains a large number of terms and subsequently
deletes those elements which are Jess important, the present work follows a ‘constructive’
approach since it is assumed that the model basis is initially an empty set and in each step
the most important term among those remaining in the set of candidate terms is appended
to the model. In this way a very large number of candidate terms can be considered without

incurring numerical problems.

A helpful account of some of the main points on this and the previous section can be

found in the literature (Casdagli et al., 1992).

3 Diagnosing Chaos

In general, the problem of diagnosing chaos can be reduced to estimating invariants which
would suggest that the data are chaotic. For instance, positive Lyapunov exponents, non-
integer dimensions, fractal structures in Poincaré sections and abrupt jump in the prediction
error for long prediction times would suggest the presence of chaos. The main question is
how to confidently estimate such properties from the data, especially when the available
records are relatively short and possibly noisy. The techniques that have been suggested in

the literature may be divided in two major groups.

Non-parametric methods. These include the use of tools which take the data and esti-
mate dynamical invariants which, in turn, will give an indication of the presence of chaos.
Such tools include power spectra, the largest Lyapunov exponent, the correlation dimension,
reconstructed trajectories, Poincaré sections, relative rotation rates etc. Detailed descrip-
tion and application of these techniques can be found in the literature (Moon, 1987; Tufilaro

et al., 1990; Denton and Diamond, 1991). For a recent comment of the practical difficulties in
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using Lyapunov exponents and dimensions for diagnosing chaos see (Mitschke and Dammig,
1993).

Two practical difficulties common to most of these approaches are the number of data
points available and the noise present in the data. These aspects are briefly discussed in the
following section.

Poincaré sections are very popular for detecting chaos because for a chaotic system the
Poincaré section reveals the fractal structure of the attractor. However, in order to be able to
distinguish between a fractal object and a fuzzy cloud of points a certain amount of data is
necessary. Moon (1987) has suggested that a Poincaré section should consist of at least 4000

points before declaring a system chaotic. For non-autonomous systems this means 4 x 103

forcing periods which could amount to 4 x 10° data points.

Prediction-based techniques. Some methods try to diagnose chaos in a data set based
upon prediction errors (Sugihara and May, 1990; Casdagli, 1991; Elsner, 1992; Kennel and
Isabelle, 1992). Thus predictors are estimated from, say, the first half of the data records
and used to predict over the last half. Chaos can, in principle, be diagnosed based on how
the prediction errors behave as the prediction time is increased (Sugihara and May, 1990),
or based on how the prediction errors related to the true data compare to the prediction
errors obtained from ‘faked’ data which are random but have the same length and spectral
magnitude as the original data (Kennel and Isabelle, 1992).

Regardless of which criterion is used to decide if the data are chaotic or not, predic-
tions have to be made. Clearly, the viability of these approaches depends on how easily
predictors can be estimated and on the convenience of making predictions. The two afore-
mentioned techniques require dividing the reconstructed state space into neighbourhoods
and subsequently finding the closest neighbours. This may require long data seté and 1is
usually time-consuming. Moreover the choice of neighbours is known to be critical.

These problems seem to be somewhat alleviated in the NARMAX model approach. NAR-
MAX models can be readily obtained from relatively short data sets with a moderate amount
of noise. Once a predictor is estimated criteria and statistics such as the ones presented in

(Sugihara and May, 1990; Kennel and Isabelle, 1992) can be used to diagnose chaos.
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4 Data requirements

The length and quality of the data records are crucial in the problem of characterisation
of strange attractors. At present, there seems to be no general rule which determines the
amount of data required to learn the dynamics, to estimate Lyapunov exponents and the cor-
relation dimension of attractors. However it is known that “in general the detailed diagnosis
of chaotic dynamical systems requires long time series of high quality” (Ruelle, 1987).

Typical values of data length for learning the dynamics are 2x10* (Farmer and Sidorowich,
1987; Abarbanel et al., 1990) for systems of dimension 2 to 3, 1.2 x10* — 4x10* (Casdagli,
1991).

It has been argued that to estimate the Lyapunov exponents 10%® — 10* forcing periods
should be used (Denton and Diamond, 1991). Another estimate is that the number of data
points needed is around 307 where D is the dimension of the system (Wolf et al., 1985) but
in some cases at least twice this number of points was required (Abarbanel et al., 1990).
Typical examples in the literature use 4 x 10 — 6.4 x10* (Eckmann et al., 1986) 1.6 x 10*
(Wolf and Bessoir, 1991) and 2x10* data points (Ellner et al., 1991).

Fairly long time series are also required for estimating the correlation dimension. In fact,
it has been pointed out thet dimension calculations generally require larger data records
(Wolf and Bessoir, 1991). For a strange attractor, if insufficient data is used the results
would indicate the dimension of certain parts of the attractor rather than the dimension
of the entire attractor (Denton and Diamond, 1991). However, results have been reported
which suggest that consistent estimates of the correlation dimension can be obtained from
data sequences with less than 1000 points (Abraham et al., 1986). On the other hand, there
seems to be evidence that “spuriously small dimension estimates can be obtained from using
too few, too finely sampled and too highly smoothed data” (Grassberger, 1986). Thus {ypical
examples use 1.5x10%—2.5x10* (Grassberger and Procaccia, 1983) and 0.8x10% —30x10* data
points (Atten et al., 1984). Thus there seems to be no agreed upon rule to determine the
amount of data required to estimate dimensions with confidence but it appears that at least
a few thousand points for low dimensional attractors are needed (Theiler, 1986; Havstad and
Ehlers, 1989; Ruelle, 1990; Essex and Nerenberg, 1991).

It should be realised that the difficulties in obtaining long time series goes beyond prob-
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lems such as storage and computation time. Indeed, it has been pointed out that for some
real systems, stationarity cannot always be guaranteed even over relatively short periods of
time. Examples of this include biological systems (May, 1987; Denton and Diamond, 1991),
ecological and epidemological data (Schaffer, 1985; Sugihara and May, 1990).

These difficulties can be avoided by first estimating models and subseguently using such
models for generating longer sequences of surrogate data. An advantage of using NIARMAX
models to do this is that typically 10° — 2 x 10® data points are sufficient to perform both
structure selection and parameter estimation. Another advantage is that, because noise
terms are allowed in the model during parameter estimation, the deterministic part of the
model, ¥7 (¢ — 1)0,., is rather robust to moderate amounts of white and correlated noise.

Therefore as long as a dynamically valid model is estimated, sufficiently long series of
clean data can be generated in order to meet the requirements imposed by the estimation of
Lyapunov exponents, correlation dimension and other invariants. This two-step procedure

was originally suggested in connection with radial basis functions (Casdagli, 1989).

5 Estimation of Dynamical Invariants

In this section a number of examples are given to illustrate the performance of NARMAX
polynomials in retrieving dynamical invariants from short and noisy data sets. It is worth
stressing that although the stochastic component of some models is represented for greater

clarity, only the deterministic part is actually used in estimating the invariants.

5.1 Poincaré sections

Consider the Hénon map (Hénon, 1976)

z(k)=1-14z(k-1P+y(k-1)

y(k)=03z(k—1) . .

Iterating this map and adding noise with variance 02=9.2x10~* yields data with signal

to noise ratio SNR=20log(c2/0?)=55dB. The first return map for 1000 points taken from
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Figure 1: First return map for (a) the Hénon map contaminated with noise. Only the

encircled data were used in the estimation, (b) the identified map of equation (9).

such data is shown in Figla. The following model was estimated from the 50 points marked

with circles

z(k) = 0.99433 — 1.3818 z(k — 1)® + 0.29302z(k — 2) . (9)

The first return map for this equation is shown in Fig.1b and has a correlation dimen-
sion of D, = 1.11 = 0.216 which shows good agreement with the original map for which
D.=1.21 £ 0.01. The correlation dimension estimated directly from 20000 data points with
the same SNR as above was D.=1.76 & 0.058 revealing that the estimated value is quite
sensitive to such levels of noise. Further improvement can be achieved by using more than
50 points, but the objective in this example was to show that the map can be estimated
fairly accurately from a short and noisy time series.

In the case of driven oscillators, the practical reconstruction of Poincaré sections is re-
stricted to controlled experiments because of the large amount of data required since only
one point in such sections is obtained for each forcing period. Moreover, small amounts of
noise often blur the delicate fractal structure of the attractor and the Poincaré sections tend

to become fuzzy.
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Figure 2: Poincaré sections (a) obtained from a noisy orbit of the Duffing-Holmes oscillator,

(b) of the identified model of equation (11). A=0.3 and w=1 rad/s.

The well known Duffing-Holmes equation is commonly used to model mechanical oscilla-

tions arising in two-well potential problems (Moon, 1987). The equation which models this

system is (Holmes, 1979)
J+6y—By+y®= Acos(wt) . (10)

For §=0.15, f=1, A=0.3 and w=1rad/s, this system settles to a strange attractor, White
noise with variance 02 =9x107% was added to a sequence of N =1500 data points sampled
at T, =7/15. The Poincaré section obtained from a much longer time series but with the

same SNR is shown in Fig. 2a. From such data the following model was obtained

y(k) = 0.84725 y(k—1)+0.35713 y(k-3) - 0.69431x 10~ y(k~1)?
+0.12780x 107 y(k—4) + 0.61319 x 10~ u(k—1)
+0.40325 y(k—2) - 0.24349 x 10~3y(k - 1)y (k - 2)y(k - 5)
—0.46215 y(k—5) + 0.96339 x 10~ u(k—3) — 0.15316 y(k=2)y(k-3)y(k-4)
~0.73618 x 10~ y(k—1)%y(k-5) + 0.71822x 107 y(k—1)y(k—3)y(k—4)
+U7(t = 1)0:+£(1) . (11)
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Figure 3: Poincaré sections (a) obtained from a noisy orbit of the modified van der Pol

oscillator, (b) of the identified model of equation (13). A=17 and w=4rad/s.

It should be noted that the data used in the identification of the model in equation (11)
would yield only 50 points in Fig.2a. An estimate of the original Poincaré section is shown
in Fig.2b which was obtained by iterating equation (11).

Similarly, consider the equation governing the dynamics of a forced oscillator with nega-

tive resistance (Ueda and Akamatsu, 1981)
J+p =g+’ = Acos(w) . (12)

This is known as the modified van der Pol oscillator (Moon, 1987) and has a self-sustained
oscillation, that is, an oscillation for A=0 with w=1.62rad/s. Taking p=0.2, 4=17 and
w=4rad/s, this system settles to a strange attractor. Figure 3a shows the Poincaré section
of this system when white noise with variance 67 =8.3x10"* (SNR=70.6 dB) was added to
the measurements. Equation (12) was simulated and the data sampled at T,=7/80. Noise

with the same variance as above was added to 1500 data points which were used to 1dentify

the following NARMAX model

y(k) = 0.83599y(k—1)+ 0.87488% 107 y(k—4) + 0.68539x 10 u(k—2)
+0.46776x 107 y(k—1)° — 0.47330 y(k ~6) + 0.12786 y(k - 2)

+0.37341y(k—3) — 0.22840x 10~ %u(k=1) + 0.49504 x 10~ Yy (k - 5)
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Figure 4: Bifurcation diagrama for (a) the logistic map, (b) the identified map of equation

(15).

—0.14841 x 107 y(k - 1)%y(k - 2) - 0.81389 x 10~ u(k —3) + 0.38305 x 10~ u(k - 5)
—0.13534x 107 u(k —4) + 0.20404 x 10~ 2y (k—2)%y(k-3)

—0.34234% 107y (k= 1)y(k—6)% + 0.35999 x 10~y (k —2)y(k—4)y(k —6)
+UE(t— 1)O+E(1) (1)

The Poincaré section obtained by iterating the deterministic part of equation (13) is shown
in Fig. 3b. This model also has a self-sustained oscillation with w=1.56rad/s.

Comparing the Poincaré sections in Figs. 1b, 2b and 3b, reconstructed from the respective
NARMAX models, to the original maps (not shown) shows that good agreement in such cases
is possible. Moreover, less than 2000 noisy data points were used to learn the dynamics

successfully.

5.2 Bifurcation diagrams

Consider the logistic equation (May, 1976)
y(k)= Al —y(k-1]y(k-1) . (14)

This equation displays a variety of dynamical regimes as the bifurcation parameter is

varied in the interval 2.8 > 4 > 3.9, The bifurcation diagram for this system is shown in
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Figure 5: Bifurcation diagram of (2) the Duffing-Holmes oscillator, (b) the identified model
of equation (11). w=1rad/s.

Fig.4a. Equation (14) with 4=3.8 was used to generate 1750 data points to which white

noise was added to give in a SNR=37.9dB. Having fixed the structure, parameter estimation

yielded
y(k) = 3.8492y(k — 1) — 3.8380y(k — 1)? . (15)

In order to generate a bifurcation diagram from this model, equation (15) should be

written in the same form of equation (14). This yields
y(k) = A(1.0029 — y(k - 1)) y(k - 1) (16)

for which the bifurcation diagram if Fig.4b can be readily obtained. Comparison of Figs.
4a and 4b shows good agreement.

Figures 5a and 5b show the bifurcation diagrams of the Duffing-Holmes system in equa-
tion (10) and of the identified model shown in equation (11). Similarly, Figs.6a and 6b
display the bifurcation sequence of the oscillators described by equations (12) and (13), re-
spectively. These figures show that the identified models do reproduce the major bifurcation
patterns of the original systems. This is usually more demanding than, for instance, requir-

ing that a model should reproduce invariants associated with particular attractors (Aguirre

and Billings, 1994b).
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Figure 6: Bifurcation diagram of (a) the modified van der Pol oscillator, (b) the identified
model of equation (13). w=4rad/s.

The identified models used to generate the above bifurcation diagrams were estimated
from data on one particular attractor. Nevertheless, such models reproduce bifurcation
sequences which span over a fairly wide parameter range. It has been shown, however, that
the bifurcation diagrams of identified models of non-autonomous systems can be improved

if the input amplitude is chosen such that the original system is better excited (Aguirre and

Billings, 1993b).

5.3 Original and embedded trajectories

This section reports some results concerning the use of NARMAX polynomials in reproducing
embedded and original trajectories of strange attractors. To investigate this three well known
attractors are considered, namely Chua's double scroll, Lorenz and Rossler attractors. If only
one variable of the original system is measured then a monovariable NARMAX polynomial
is used and the iterated discrete-time output can be used to reconstruct the geometry of the
original attractor in the embedding space. On the other hand, if all variables are measured,
multivariable NARMAX models can be fitted to the data and the iterated discrete-time
outputs can be used to reconstruct the original attractor geometry in state-space.

Consider the set of normalised equations governing the dynamics of Chua’s circuit (Chua,

1992; Madan, 1993; Chua and Hasler, 1993)
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Figure 7: The double scroll Chua's attractor.

z = a(y — h(z)) mz + (mo—my) z2>1
j=z —y+z , hz)={ me |z |<1 (17)
z= -0y miz — (mo—my) =< -1,

where mo=—1/7 and m;=2/7. Varying the parameters & and 3 the circuit displays several
regular and chaotic regimes. This system is a particular case of the more general unfolded
Chua’s cireuit (Chua, 1993). The well known double scroll attractor, for instance, is obtained
for =9 and f=100/7, see Fig. 7. Monovariable models for this attractor can be identified
from each component individually (Aguirre and Billings, 1994a). In particular, the following
model was estimated from 1750 measurements of the z component sampled at T,=0.15 and

with SNR=42.7dB

z(k) = 0.17799x10z(k-1)+ 0.467032(k —3)z(k—4)? — 0.87039z(k —3)
+0.91053 107 2(k—1)%2(k—4) + 0.63361 z(k - 5)
+0.13195x 107 22(k—4)?2(k—5) + 0.579172(k—1)z(k—4)2(k—5)
—0.34940 z(k—4) — 0.91067x 107 *2(k-1)* + 0.81258 x 10™*2(k - 1)?2(k-2)
—0.10603 2(k—5)° — 0.16898 z(k —1)*z(k—35) + 0.73569 x 10~ 22(k — 2) z(k - 5)?
—0.12979x 107 2(k=1)2(k-2)% — 0.394902(k—1)z(k —5)>

k—2)z(k—

+0.566082(k—3)z(k—35)% = 0.78674z(k—3)z(k—4)z(k-5)

-0.31911x 107 2( 4)* +0.22167x 107 2(k—1)%2(k-3)
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Figure 8: Embedded trajectory of the double scroll attractor obtained from equation T, =2.

This figure compares very well with an original trajectory embedded in the same way.

—0.407252(k-1)2(k—4)% + 0.192462(k—1)z(k—3)z(k-3)
—0.152062(k=3)%2(k~3) + U7 (1 - 1)O¢+£(t) . - (18)

The deterministic part of this model can be iterated to produce the embedded attractor

shown in Fig.8 which is very similar to a trajectory on the original attractor embedded in

the same way.

A multivariable model can be obtained for the double scroll Chua’s attractor if the three
variables are used. Thus, the data were sampled at 7, =0.07 and white noise was added to
the z, y and z components resuliing in signal-to-noise ratios equal to 72.9, 39.9 and 75.5dB

respectively, see Fig. 9a. Such data were used to identify the following model

z(k) = 0.11282x10z(k - 1)+ 0.55867 y(k - 1) - 0.47190x 10~z (k — 1)
+0.39895x 107 y(k — 1)2(k — 1)* - 0.31229x 10~ ?2(k — 1)
+0.18363 %107 2k — 1) + WG, ¢, ( — 106, + (1)

y(k)

0.91948y(k — 1) - 0.10392x 10™32(k — 1)° + 0.70843 x 10~z (k - 1)
+0.67800x 107 2(k — 1) — 0.13424 x 102z (k — 1)3
+0.44206 X 107%2(k = 1)%(k = 1) + UF, ¢ ¢, (1 = 1)O¢, ¢ ¢, +6,(1)

2(k) = 0.96628z(k—1)-0.95854 y(k— 1) - 0.36719% 10" z(k — 1)
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Figure 9: (a) Noisy trajectory used for identification, SNR=72.9, 39.9 and 75.5dB for z, y

and z components, respectively. (b) Double scroll Chua's attractor reconstructed from the

identified model in equation (19).

—0.55765x 107 y(k — 1)° + 0.10333x 102z (k — 1)°

+0.20536 X 10722 (k — 1)y(k = 1)z(k = 1)+ U7 ¢, (t = 1)O¢e,e, +E:(2) (19)

This estimated model settles to a strange attractor which resembles the original double

scroll Chua’s attractor, see Fig. 9b.

The Lorenz equations are (Lorenz, 1963)

t=o(y — z)
y=pz — Yy — T2z (20)
z=zy — f[z.
Choosing o =10, f=8/3 and p = 28, the solutions of equations 20 settles to the well
known Lorenz attractor shown in Fig.10a. Such data were sampled at T,=0.025 and white

noise was added to 1000 data points. The resulting data had a signal to noise ratio of 37dB

and were used to identify the model

z(k) = 0.85919z(k—1)+0.22489 y(k—1)— 0.2833x107%z(k—1)z(k-1)
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Figure 10: The Lorenz attractor (a) original, (b) reconstructed from the identified model in

equation (21).

—0.34598x 107 3y(k—=1)2(k—1) — 0.12927x10~! — 0.69159 x 10-Ez(k-1)y(k-1)
+0.73257x 1073z (k—=1)? + UFee.(t=1)O¢¢,e,+E2(1)

y(k) = 1.109y(k-1)- o.snsxm-?y(k—l)z(k-l)-0.18688x10'1z(k-1)z(k-1)
+0.54947 2(k—1) = 0.33705x 10™*2(k—1)? + 0.67054 x 10~z (k - 1y(k-1)

~0.36963 X107 2(k=1)2 + UT,, . (t = 1)O¢.c,c,+£, (1)

N
gt |

o
S

n

1.0077 2(k—1) + 0.93353x 1072z (k= 1)y(k-1) - 0.21708 x 10~z (k- 1)?
+0.72469x 107z(k—1)? + 0.76919 x 10~ ?y(k—1)? — 0.47834

+0.48760x 10~ *y(k=1)2(k-1) + Veee(t= 1)(3.)5,5,5,+£z(z) . (21)

This model can be iterated to obtain time series for the three components z, y and z.
Plotting such data in state space reproduces the original attractor fairly well as can be seen
in Fig. 10b.

Consider the set of equations originally suggested by Réssler (Réssler, 1976)

z=—(y + z)
y=z + ay (22)
é:a—!—z(a’:—}l).
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Figure 11: The Réssler attractor (a) original, (b) reconstructed from the identified model in

equation (23).

The strange attractor displayed by these equations for a = 0.2 and p = 5.7 1s shown
in Fig.1la. These data were sampled at T, = 0.025 and white noise was added to each
component as for the previous examples. The resulting data with SNR=39dB and N = 1000

were used to estimate the model

z(k) = 0.99982z(k-1) - 0.24884x 107 y(k—1) — 0.10431 x 10~ 4z(k=1)?
—0.51675x 107 y(k—1)z(k—1) - 0.32205x 10~ %z(k—1)z(k~1)
+\I’:‘=Ey53(t - 1)©f=fyfz +£-"’~'(t)

y(k) = 1.0048y(k—1)+0.25786x 107 z(k—1) — 0.64615x 10~3y(k~1)z(k—1)
—0.81375x107%2(k—1) — 0.98027 x 10~z (k- 1)z (k— 1)
U7 e (1= 1)Oc e e, +64(1)

z(k) = o.sszogz(k-1)+0.24939><10-1z(k—1)z(k-1)+0.81343x10-3y(k—1)z(k—1)
+0.17808x 1073z (k—1)? - 0.61844 x 10~32(k — 1)

+q]g=fy€x(t = l)éESEyEI+EZ(t) . (23)

The reconstructed attractor obtained by iterating this model is shown in Fig.11b. The

above results illustrate that the estimated NARMAX models successfully reproduce the
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geometry of the original attractors in state space. Quantitative invariants of such attractors

can also be estimated using the identified models as reported in the next section.

5.4 Lyapunov exponents and correlation dimension

A major difficulty in estimating Lyapunov exponents and measures of fractal dimensions is
the amount and quality of the data required, see Sec.4. This section reports some results
which suggest that 2 viable way of estimating such invariants from short and possibly noisy
sequences of data is via system identification.

The results concern NARMAX polynomial models although any other representation
could, at least in principle, be used to generate the surrogate data as long as the models
used are dynamically valid. However, the use of some ‘simple’ model structures seem more
adequate for some applications. Examples of this are discussed below.

One way of calculating Lyapunov exponents is by evaluating the Jacobian of the system
along a trajectory on the attractor. In many approaches the Jacobian (and consequently the
tangent space) has to be estimated from data a great number of times. This is usually done
with local linear maps. Although the calculations involved are straightforward, the whole
procedure is time consuming. Moreover, the estimation of the tangent space using linear
maps is rather sensitive to noise and it has been pointed out that global models are better
suited because they offer significant noise-averaging characteristics since the entire data set
is fitted simultaneously (Kadtke et al., 1993).

A further advantage of using simple global model structures is that the Jacobian can be
easily determined analytically from the estimated models. In particular, a polynomial NAR?

model (see equation (4)) of order n, can be represented as

y(k)=f(y(k-1)) (24)

2 1t should be noted that only the autoregressive part of the model is needed here.
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where f/y(k —1)=0if f(-) does not include y(k — 7). Thus the Jacobian of f is
0 1 o ... o0 |
0 0 1
Df = (26)
0 0 0 1
a8f af af af
L Sy{kny) Oy(knyrl) BGy(kn,2) "°° &y(k1) |

If a global model is used, the structure and parameters of such a model are estimated
only once using the entire data set. Further, the Jacobian in equation (26) can be easily
obtained analytically. This can also be done only once. The Jacobian can then be promptly
evaluated at specific points taken along an orbit on the attractor, Df(y), as many times as
necessary.

The accuracy of Lyapunov exponents can be improved by using more terms in the Taylor
expansion of f around y (Brown et al.,, 1991). It should be noted that usually only the
Jacobian of f is used which corresponds to the first term in the series. For the same reasons
discussed above, the use of higher-order derivatives of f, that is, D(z)f(y), D®)M(y),... is
greatly facilitated if global models with simple structure are obtained first.

Consider the delay system (Mackey and Glass, 1977)

y(t) = ﬁ%}f% —by(t) , (27)

where 7 is the delay and the following values have been used a = 0.2, 6=0.1, ¢=10 and
7=30. Equation (27) was originally suggested to mode] the creation of blood cells in patients
with leukemia. Because of the delay 7 this system is of high dimension (Farmer, 1982). Using

a sequence of 234 data points sampled at T, =3 the following model was obtained
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y(k) = 0.24662x10y(k—1)~- 0.16423x 10 y(k—2) + 0.60992 y(k—3)
+0.73012x 107 y(k—5)%y(k~10)? + 0.38566 y(k—3)y(k - 10)
+0.66999 y(k—1)y(k—10)* + 0.88364 y(k—1)* — 0.67300 y(k—4)y(k—10)?
-0.11929x 10 y(k—1)* — 0.50451 x 10~y (k—4)y(k—5) — 0.24763 y(k-i)‘
+0.42081 y(k—4)y(k—9)y(k—-10)2 — 0.70406 y(k—1)y(k—-10)3
—0.14089 y(k —5)y(k—8)? + 0.14807 y(k — 1)y(k—7)y(k—10)

+T7 (1 - 1)0¢+£(2) . (28)

This model has A; =0.006, A;=0.002 and D, =3.02 = 0.228 which compare fairly well to
the original values.

Table 1 lists the values of the largest Lyapunov exponent and of the correlation dimension
estimated from noise-free data obtained from both the original and the identified models. It
1s noted that the data length and noise levels in the table correspond to the records used in

the identification and not to the data from which the invariants were actually estimated.

5.5 Location and stability of fixed points

To determine the location and stability of fixed points is often the first step in the analysis
of nonlinear systems (Guckenheimer and Holmes, 1983). In the case of non-autonomous
oscillators, a first step in the analysis is the determination of the fixed points of the respective
autonomous system. This section investigates the feasibility of using estimated NARMAX
models to determine the location and stability of the fixed points of the original systems.
Two examples are considered, a monovariable model of the Duffing-Holmes oscillator and a

multivariable model for the double scroll Chua's attractor.

27



Table 1. Estimated values of A; and D, from identified models

Original Estimated SNRe
System Eq. | A D, Eq. At D. N/FP¢ | (dB)
Duffing-Ued. | d | 0.1 |219£0.020 | d | 0.12 |2.34 £0.050 | 1900/15.8 | oo

Duffing-Hol. | (10) | 0.20 | 2.40 £0.019 | (11) | 0.19 | 2.37 £0.031 | 1500/50 | 58.5
van der Pol | (12) | 0.33 | 2.18 +£0.028 | (13) | 0.31 | 2.20 £0.044 | 1500/9.4 | 70.6
Chua’s spiral | (17) | 0.11 | 1.88 £0.010 | e 0.11 | 1.87 £0.021 1750 oo
Chua’s DS-1D | (17) | 0.23 | 1.99 £0.023 | (18) | 0.23 | 2.03 £0.019 1750 42.7
Chua’s DS-3D | (17) | 0.23 | 1.99 £0.023 | (19) | 0.24 | 2.08 £0.009 1000 39.9/
Lorenz (20) | 0.90¢ | 2.01 £0.017 | (21)| 0.90 | 2.06=0.021 1000 37
Rossler (22) | 0.074 | 1.91£0.002" | (23) | 0.066 | 1.89=0.010° 1000 39
Mackey-Glass | (27) | 0.007 3.0 £0.2 (28) | 0.006 | 3.02 £0.228 234 oo
0.004? 0.0027
® 20logio(o?/c?) ® Computed using log. ¢ Number of forcing peric;ds
4 (Aguirre and Billings, 1994b) ¢ (Aguirre and Billings, 1894a) 7/ For the y component
9 (Peitgen et al., 1992)  Lyapunov dimension Dy =2.01 * Dy =2.02

7 Second Lyapunov exponent, A;

5.5.1 The monovariable case

The Duffing-Holmes system in equation (10) can be expressed in state space as

y=z

t=—-6z+fy—y>+ Acos(wt) .

The fixed points of this system with A =0 are (2,7) = (0,0); (0, ++/B) and (0, —/B).
The characteristic equation of the Jacobian of this system is A2 + § A\. + 3y2 — 8 = 0. Thus
for the values 6=0.15 and =1, it becomes clear that the aforementioned fixed points are
a saddle and two sinks, respectively. The location of such fixed points as well as the fixed

points of estimated models are listed in Table 2.
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Table 2. Fixed points — the autonomous case

Fixed Original Estimated
Points | (y-coordinate) | Eq. (29) | Eq. (11)
Saddle 0.0 0.0 0.0
Sinks 1 £0.99928 | £0.99964

From a sequence of 1500 data points taken on the strange atiractor attained with

u(t)=0.3 cos(t), the following model was estimated for W

y(k) = [er+asy(k=1)* a;+ aqy(k-2)%[y(k-1) y(k-2)]7 + biu(k-1) + byu(k-2)
+UE(t - 1)O¢+£(1)
= 0.20122x10y(k-1) - 0.96973 y(k—2)~ 0.42851x 10~ y(k—1)3
+0.44832x 107 u(k—1) - 0.20161 x 10~ 2u(k—2) + 0.31973 X 1073y (k-2)3
+TF (- 1)Oc+€(1) . (29)

The fixed points of the estimated model in equation (29) for u(k — 1) =u(k - 2) =0 are
¥=0,+0.99928 and —0.99928. It should be noted that because the mode] in equation (29)
1s monovariable and has been estimated from data of the y-component, the fixed points
obtained from this model correspond to the fxed points of the y-component in the original
system.

To assess the stability of each fixed point a state space representation should be used since
the model is of second-order. Thus taking the state vector y(k=1) = [y(k-2) y(k—1)]7, the
eigenvalues of the Jacobian of this model are given by the roots of the following quadratic

equation
A‘é — (CL1 + 3 as y(k = 1)2) )\d - (Gg + 3(14 y(k - 2)2) =) (30)

Solving for A4 in the last equation also reveals that the fixed points are a saddle and two
sinks. This agrees with the analytical results obtained from the original system.
The model in equation (29) was obtained from noise-free data and that enabled estimating

such a model with a relatively small maximum lag, namely ny = 2. In practice, however,

29



because of the presence of noise larger values of n, will usually be required if the mode]
is monovariable. The final state space will be in the IR™ and therefore the fixed points
of the resulting models will have more eigenvalues than the original system if ny >2. A
similar problem is known in the estimation of the spectrum of Lyapunov exponents. In
fact, some techniques have been put forward to distinguish between genuine and spurious
Lyapunov exponents (Stoop and Parisi, 1991; Parlitz, 1992). However, it seems that the
estimated models would still be useful for assessing the location and stability of the original
fixed points even when n, is greater than the order of the original syster. It is believed,
although further investigation is needed in this direction, that similar techniques used to
detect spurious Lyapunov exponents could also be used to discern which eigenvalues are not
genuine.

Consider the model in equation (11) which was identified from data generated by the
Duffing-Holmes system and subsequently corrupted with white noise. Following the same
procedure as above, the fixed points of this model for u(k — 1) = u(k — 3) = 0 are
7 =0,+0.99964 and —0.29964. The eigenvalues of the Jacobian of this model computed
at such fixed points also reveal that the first one is a saddle-type and the other two are
sinks. The eigenvalues are shown in Table 3. It is noted that the classification of the fixed
points would not be altered even if it was not known a priori which were the genuine eigen-
values. It is remarkable that the genuine eigenvalues of the model in equation (11) are very
accurate.

It should be observed that in order to compare the rates of contraction and expansion of
nearby orbits the eigenvalues of the Jacobian related to the continuous system were mapped
in the discrete domain using Ag = e* T,

The results in Table 3 clearly reveal that it is viable to estimate not only the fixed
points and related stability but also the rates of contraction and expansion of orbits in the
neighbourhood of such fixed points. This can be done by straightforward calculations due

to the simple structure of the models identified.
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Table 3. Eigenvalues of the Jacobian evaluated at the fixed points
for the Duffing-Holmes original and identified models.

Original Estimated
Fixed Continuous Discrete Domain Eq. (11)
Points | Domain () (erT) Eq. (29) genuine spurious
Saddle -1.077 0.7979 0.7999 0.7977 -0.220 £50.780
0.9271 1.2143 1.2123 1.2161 -0.7262
Sinks | -0.075 £51.412 | 0.942 +70.287 | 0.942 £70.286 | 0.947 =5 0.287 | -0.235 +50.789
-0.7158

5.5.2 The multivariable case

To investigate how the location and stability of fixed points can be recovered by means of a
multivariable NAR (see footnote 2) polynomial model, consider the Chua system, equation
(17), and the identified model (19).

The fixed points of the original system are (z,9,2)=(0,0,0), (1.5,0,~1.5) and (-1.5,0,1.5).
These fixed points are saddles with indices one two and two respectively. This information
1s conveyed by the eigenstructure of the Jacobian evaluated at such fixed points.

If the estimated model is multivariable it is possible, in principle, to recover the coordi-
nates of each fixed point along the z, y and z components. In the monovariable case, only
the coordinate related to the component used to identify the model can be recovered, see
Table 2. Another difference is that whereas in the monovariable case the fixed point can
be determined analytically, for multivariable models a set of nonlinear algebraic equations
must be solved. Although this is still a simple problem, it cannot always be solved with-
out resorting to numerical methods. Thus the fixed points of model in equation (19) are
{zyu,2)=(0, 0, 0, (1.5767,—6.927x1074-1.5767) and (-1.5767,6.927x10‘4,1.5767) which are
also saddles with indices one, two and two respectively. These results are summarised in
Table 4.

It is worth pointing out that apparently the unstable eigenvalues seem to be estimated
more accurately than the stable ones. This is more evident for the nontrivial fixed points.

It seems appropriate to suggest that such Inaccuracy may be attributed to the fact that, in
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steady state, no trajectories evolve in the directions of the stable manifolds (the inlets of
the nontrivial fixed points) and therefore there is less information concerning the rates of
contraction is such directions in the records. On the other hand, because the trajectories
‘jump’ from the unstable manifolds of one non-trivial fixed point to the other, there seems
to be motion in the direction of the stable manifold or inlet of the trivial fixed point and

consequently the eigenvalue associated with this direction is better estimated.

Table 4. Eigenvalues of the Jacobian evaluated at the fixed points

for the Chua's double scroll original and identified models.

Original Estimated
Fixed Continuous Discrete Domain
Points Domain (A.) (eXT) Fixed Points Eq. (19)
(0,0,0) 2.2174 1.1679 (0,0,0) 1.1741
-0.9658=72.7112 | 0.9179430.1763 0.9199+70.1888
(1.5,0,-1.5)° 3.9421 0.7589 (1.5767,0.0007, 0.6825
0.1854=73.0470 | 0.9901+752.1444 -1.5767) 0.9903=32.1486

® The stability of the fixed point (-1.5,0,1.5) is identical and therefore has been omitted.

A similar problem can be observed for the Lorenz system which has fixed points at
(z,¥,2) = (0,0,0), (8.4853,8.4853,27) and (-8.4853,-8.4853,27). The fixed points of the
identified model in equation (21) are (-0.0001,0.0012,1.7736), (8.4080,8.3644,25.7312) and (-
8.5872,-8.5065,26.1558). Clearly the identified model does not have the trivial fixed point and
it has also become unsymmetrical. It is conjectured that because there are no trajectories
which evolve ‘close’ to the origin, the dynamics in the neighbourhood of the trivial fixed
point of the original system are not well represented in the data, Consequently such a fixed
point becomes ‘unobservable’ to the identification algorithm?, It is interesting to note that

this is not the case for the double scroll since the dynamics evolve in the vicinity of the three

fixed points although not along all the directions as discussed above.

3We are grateful to Carlos Fonseca for this observation.
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6 Limitations

There are two main limitations to the use of NARMAX polynomials in modelling nonlinear
dynamical systems, namely high levels of noise and ‘fast dynamics’.

It is believed that noise in the data will pose greater difficulties to prediction-based
estimation algorithms if such data are chaotic and that there is a maximum level of noise
which can be handled adequately by such algorithms (Aguirre and Billings, 1993a). If good
models cannot be obtained because of high noise levels, filtering techniques can be used to
alleviate such a problem. A number of noise-reduction techniques for chaotic data have been
suggested in the literature which could be used to pre-filter the data before identification.
In particular, filtering techniques which are also based on NARMAX polynomials and the
algorithms in Sec. 2.2 have recently been investigated in the context of system identification
(Aguirre and Billings, 1993a; Aguirre et al., 1994).

The second aforementioned difficulty is related to the underlying dynamics. Some of the
problems related to polynomial model bases can be avoided by the judicious choice of the
terms which compose such bases. However, polynomial models may fail to give good results
if the dynamics present abrupt ‘jumps’. In such cases different representations should be
tested. It should be noted that bases composed by rational functions, radial basis functions

and neural nets can also be represented as NARMAX models (Billings and Chen, 1989; Chen
et al., 1990).

7 Conclusions

This paper has investigated the use of NARMAX models as a means of estimating dynamical
invariants from short and noisy time series which would be inadequate for estimating such
invariants by using most current techniques. Thus a two step procedure has been investigated
in which global models are first estimated from data records which may have less than two
thousand points and be noise-corrupted. The deterministic part of the identified models
can then be used to produce an, in principle, unlimited amount of clean data from which
dynamical invariants can be estimated more comfortably.

It has been shown that, because the estimated models are global, such models are apt
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for analysis. In particular, the Jacobian of the model can be analytically obtained and
subsequently evaluated along trajectories in order to estimate the Lyapunov exponents and
the stability of the fixed points which can also be obtained analytically from the identified
model.

Multivariable models have been estimated from state space data and subsequgntly used
to reconstruct the three-dimensional Chua’s double scroll, Lorenz and Réssler affra.ctors.
Whereas such models require that more variables be measured, greater robustness against
noise has been observed in the multivariable case.

Although polynomial models are not adequate to model all types of dynamical systems,
it is hoped that the results presented in this paper will draw attention to the fact that, as
long as the polynomials are ‘simplified’ or ‘concise’ and possess the right structure, such
models can describe the dynamics of a number of chaotic systems and therefore be used not

only in modelling chaos by also in diagnosing and quantifying chaotic dynamics.
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