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L INTRODUCTION

Diagnostic problem solving, whether it be fault-diagnosis in an engineering system or
diagnosis of disease in human beings, is a prime example of decision making in the face of
uncertainty. Frequently, many different outcomes may correspond to an identical set of
measured data or symptoms. The converse may also be true, that any given diagnosis may
correspond to a number of distinct sets of diagnostic data. In addition, the data themselves
may be imprecise adding to the overall uncertainty in the reasoning process, making it
probabilistic in nature. These factors can often be the cause of poor diagnostic accuracy and
in part responsible for the difficulty in d.eveloping useful and usable diagnostic support
systems. Furthermore, it would be unusual for diagnostic errors to be viewed as equally
acceptable. For example, a large number of false alarms may be tolerable in the diagnosis of
heart attack when the decision to be made is simply admit to hospital or not. The level of
acceptability changes though, when the decision to be made is whether or not to administer
potentially life-threatening drugs. Evidently the risk associated with an incorrect diagnosis is

crucial to making a decision about treatment.

Bayesian decision theory provides the formalism needed to address the problem of making
risk-sensitive decisions under uncertainty and leads to the minimum risk solution to this
problem. Of course, a “domain expert” must assess beforehand the relative risks or costs of
making incorrect decisions . Although the optimal Bayesian classifier provides the “best”
answer to any statistical decision making problem, it suffers from one serious drawback. That
is, in order to develop a system, certain probability distribution functions (or probability
density functions) must be obtained. This is typically done by:

i)  assuming a distribution function, which may lead to inaccuracies if this does not match
the true distribution;

i) estimating the distribution function directly from data, which typically requires a large
amount of data and is computationally intensive, frequently to the point of being
unworkable.

This second approach is often modified by certain naive assumptions about the independence

of data items, which again may lead to poor performance. Itis at this stage that artificial

neural networks can be used to overcome these well-known difficulties and help to

implement minimum-risk Bayesian decision theory.

Artificial neural networks are computational models of the microstructure of the brain. What

distinguishes them, regardless of their accuracy as brain models, is that they rely on a large

number of very simple processing units, interconnected in a complex way and operating
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encodes the system's long-term memory of its environment and these can be adjusted
according to some “learning” rule. This leads to a distributed representation of the data and
to a system which can learn by example from its environment without being explicitly
programmed. It will be seen that for a wide-class of neural networks, namely the
“feedforward” networks, adaptation of the connection strengths leads directly to an estimator
of precisely those probability distributions required for the implementation of a minimum-
risk, Bayesian classifier. Furthermore, these estimates can be made as accurate as desired yet
still form a parsimonious representation of the problem with little or no prior knowledge of its
probabilistic structure. By their non-linear nature, the neural networks considered make more
“use” of the data set, ie they exploit higher-order correlations in the data, and so, experience
shows, can be made to perform well with far fewer data samples than classical estimation
methods. Two specific architectures are discussed and it will be seen how the minimum-risk
classifier may be implemented as straightforward post-processing of the outputs of a

feedforward neural network.

An example, taken from medical diagnosis—the early diagnosis of heart attack—will then be
discussed. This is currently the subject of research and a neural network-based decision aid
developed by the authors is presently at the clinical trial stage. This case study is used to

demonstrate a methodology for developing a neural network-based decision support system.

2 BAYESIAN DECISION THEORY: A BRIEF EXPOSITION

The question of assigning differential diagnoses in some problem domain when there is
significant uncertainty both about symptoms and about true outcome can be effectively dealt
with within the formalism of Bayesian decision theory. It can be expressed most generally as
deciding to which category, or class, a particular set of data belongs. The uncertainty in the
problem is most naturally expressed in terms of probabilities and an obvious objective is to
design a classifier which minimises the probability of assigning an incorrect diagnosis.
However, in many situations minimizing the probability of making an error is not always
sufficient since, under certain circumstances, failure to diagnose a serious defect or disease is
clearly less acceptable than registering a false alarm. Evidently in safety critical systems and
acute medicine the relative risk involved in making a false negative judgement is very high,
whereas in less critical situations, for instance where lives are not at risk, one must weigh the
cost of system downtime or needlessly used resources against the risk of failure. Therefore, in
developing a diagnostic aid it would be advantageous to be able to bias the outcomes towards
those which are in some sense the least risky. Bayesian decision theory provides a framework
which allows the risk or cost associated with particular decisions to be minimised, subject

only to the availability of certain statistical information about the problem.
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In this section we outline the theory of the Bayesian method and discuss the concept of
relative risk. We then discuss the practicalities of-implementing an optimal Bayesian classifier

directly and, from there, motivate the use of artificial neural networks to perform the required
estimation.

21 The Bayesian Formulation

Let us assume that we have M classes, ¢; 1 <1< M, corresponding to M regions,

X; 1<i< M, in the N-dimensional data-space, X. Furthermore, we assume that the regions
X; are disjoint and that they cover the entire space of all possible data, X = U'Z)' X.. This
says that our data (written as an N-vector of elements) is drawn from an environment, X,
which is partitioned into exactly M non-overlapping regions X, each of which is assigned a
class, ¢;. This ensures that every possible data vector must yield a unique diagnosis and has a
diagnosis associated with it. The problem is now one of assigning a particular data vector to
its proper class. We define a decision rule d(x) =d, if ¢ is true (ie x € X;) assuming the
obvious pairing of decision and class. Should the decision dl- be made when ¢ j is true and

1# j an incorrect decision is made and the data are misclassified. We therefore wish to
weight decisions, d,, and classes ¢;, in such a way as to reflect the cost or risk of making a
particular decision. We do this by assigning to each pair (d;, ¢,
is the risk involved in deciding d; when the data belong to class ¢ ; - Frequently it is assumed

;) a unique risk, p; 2 0, ie p;

that there is no risk involved in making a correct decision although it is acceptable to assign
such a risk. Indeed if full economic costs are to be accounted for then it makes sense to

weight all possible pairings.

Denoting the joint probability of the occurrence of two events a and b by P(a,b) we define the

average risk, R, as
i=M j=M

R= ZZPU (difcj) 1)

i=l j=1

but from Bayes theorem P(a,b) = P(a|b)P(b) where P(a]b) denotes the probability of event

a conditioned on event b. Equation (1) therefore becomes
i=M j=M

%= 3 Ple Jo,Pla) @

i=1 j=1
Ifthedat]aXEX then d, 1sdec1dedsothatP( |C) (xeXl )

P(dc)= [ plafe,Jax 3)
Here, p(.) denotes a probability density function. Substituting (3) into (2) we get

i=M j=M
R = 2{ Z;P(c P, jx, p(xlcj )ix

i=1 j=

i=M =M ; (4)

> Ple, Joyplafe, Jax

i=1 ' j=1
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assuming the interchangeability of summation and integration. Minimisation of the average
risk, R, is equivalent to choosing the regions, X, in equation (4) so that x € X, if

j=M j=M
]Z]p,-jP(ci )p(xlcj) < }Z;’p,q.P(cj )p(xlcj) Vk#i (5)
JE j=

The decision rule therefore becomes d(x) = d; if inequality (5) is satisfied ie we assign the

current data vector, X, to class i..

We note that the special choice of weights

0 ifi=j -
pij={1 ifl#]} (6)
leads to the classifier which minimises the probability of making an error, e all incorrect
decisions are equally important and there is no risk involved in making a correct decision.
This equates with the Maximum A Posteriori (MAP) decision criterion which states that,

given the data, X, chose the class with the maximum posterior probability. This is easily seen
by substitution of condition (6) into inequality (5).

2.2 Estimating the Required Probabilities

From condition (5) we see that in addition to specifying the weighting, Pij» we also require the
prior probabilities of each class and the probability density function of the data conditioned
on class membership for each class. Estimation of the former is straightforward and assuming
large enough data samples can be obtained from the relative frequency of occurrence of data
with known classification. The structure of the conditional probability density function,

p(xIC j) 1< j £ M, is more problematic, requiring very large quantities of data which

require intensive processing. We therefore appeai once more to Bayes theorem and note that,
ol ) P(ex)p() o
since )=
j
Pi ¢ )

inequality (5) may be restated as

j=M j=M

Y p,jP(cjlx) < 21. p,q.P(cj lx) Vk=i | 8)
ot p

again d, is decided if (8) is satisfied. To implement (8) we no longer have to estimate

probability density functions but are still faced with the task of having to estimate the

probabilities of class membership conditioned on the data—the so called posterior

probabilities. For high dimensional problems this is again a daunting task and has led to a

commonly used assumption—that the components of the data vector are independent of one

another. This assumption reduces the computational complexity of the problem and results

in a reduction from the estimation of 2"*" probabilities to the estimation of only M x N

with the concomitant reduction in the required amount of datal. It is clear that any particular
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problem will be unlikely to satisfy this naive assumption and frequently will violate it

strongly, leading to poor classification performance.

An alternative approach to direct estimation of the posterior probabilities is to introduce a
parametric model of the underlying distribution which can then be adjusted to give the best
(in some sense) fit. This is an approach frequently adopted in textbooks where it is often
assumed that the underlying distribution is jointly Gaussian. Such an approach is useful in
demonstrating the limits of performance of Bayesian classifiers and of course applies when
the processes to be classified are nearly Gaussian. In many situations this will not be the case
and a more generally applicable approach is needed. It is then that a “sufficiently rich” form
of distribution must be chosen so that data regression methods will yield a good fit. The main
difficulty here lies in the prior choice of such a distribution. Commonly a linear combination
of orthogonal functions is chosen?, but even here the choice of functions and the number of

terms must be made in advance and is not guaranteed to represent the data well.

In the following section we examine the possibilify of using artificial neural networks to
provide a parametric model of sufficient generality that it applies to any given classification
problem. The advantage here is that, although some a priori design choices must be made,
they are simple to understand and therefore open the field of developing a diagnostic support

system to “domain experts” rather than experts in statistical decision theory.
3. CLASSIFICATION BY NEURAL NETWORKS

In this section we are concerned with a particular class of neural network—the so called
feedforward networks—which can be shown to possess attractive properties when considered
within the framework of Bayesian decision theory. We first ask the question “what is a neural

network and how does it differ from conventional computing?”.

A neural network comprises a set of very many primitive processing elements (neurons)
which each process signals in a “simple” way?, all operating in parallel on purely local
information. By contrast computers based upon the von Neumann architecture consist of one
(or a small number) of highly complex processors which process data sequentially according
to a pre-defined algorithm. The processing power of the neural network derives from the
complex patterns of connectivity between neurons. Furthermore in a neural network,
memory is instilled into the strength of these interconnections and is thus distributed

throughout the network: contrast this with the single address-based memory of a von

2 In the animal brain neuronal activity is in fact governed by nonlinear partial differential
equations and this has the potential for highly complex dynamic behaviour. Here by
“simple” we mean in the sense of overall input to output behaviour.
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Neumann machine. At the time of writing neural networks must be simulated on
conventional (serial) processors since hardware implementations are yet to become

commercially available.

As far as using neural networks to alleviate the implementational problems of Bayesian
decision theory goes, the link between neural networks and brain modelling is not significant.
What is of interest is:

1) certain results which have been proved by the neural network community about the
capacity for a feedforward neural network to represent mappings or functions and

2) that when a feedforward network adapts to (learns from) its environment it is in fact

estimating the required probability distributions for Bayesian reference.
We therefore make use of a feedforward network which implements a function from the data-

space (N-dimensional) into the category space (M - dimensional), which is made up of

artificial neurons (units) arranged in layers according to Figure 1.

OUTPUT

(logistic or radial
basis function)

Figure 1: A two layer feedforward network;

further hidden layers may be added as required.

Here, the output of each unit is some function of its weighted (or net) input, with
A
net, =y wyy, ; ik, ©)
jele
The weights w;; determine the strength of connections between the ith unit in layer £ and the

jthunit in layer £—1. y. denotes the output of the jth input and this is given by
y, =f(net;) 10)
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where f.is some suitably smooth function usually (but not always) mapping the unrestricted
input, net; , to a finite interval. We might then write the mapping more concisely in the form
Y =F(W,x) (11)
where Y ={y,:i e L, }, thatis Y is the vector of outputs of the network, W = {w,.}. }, the set
of all weights in the network and x = {x,.: 1<i<N }, the data vector. In the feedforward

neural network paradigm the output of the network, Y, is computed for every input in the
data sample and compared with the known classification. Since the “best” value for W is not
known a priori, errors will be generated at the output and W is adjusted in some way to
reduce these errors. This is the adaptation or learning phase. When the errors are acceptably
low (according to some measure) the network is said to be trained and learning is suppressed.

The trained network can then be put into operation.
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3.1 What Can a Feedforward Neural Network Compute?
A question which naturally arises is this “Is a network of the form shown in Figure 1 able to

represent an arbitrary mapping from input to output?”. There are two results pertaining to
this depending on the precise form of the functions f; and the structure of the network. The

1 ;
first is due to Cybenko3 and states that, for the choice i (u)= 1 Vi, that is the logistic

e-l‘
function, any sufficiently smooth mapping can be arbitrarily accurately approximated by a
two layer (ie one output layer, one intermediate or hidden layer) network of the form shown
in Figure 1. In this case it may be necessary to take a very large number of units in the

intermediate stage and the mapping may be more parsimoniously represented by a network

with more than two layers.

The second result is due to Park and Sandberg? and states that for a two layer network with
linear output units and “radial basis functions” (radially symmetric in their arguments eg the
Gaussian function) in the hidden layer, any sufficiently smooth mapping can be arbitrarily

closely approximated.

Both of these results are most encouraging in that if we know how to choose the right
structure and weightings we can implement any reasonable function by F(W,x). We shall
see in the following section that there is more than one way of choosing a measure of the
output error for the neural network and that minimising these leads to a final structure,

F (W' ,x) , whose jth element, P] (W , x), is an estimate of P (c}-|x) required to implement

the decision rule (8).

3.2 What Can a Feedforward Network Learn?

Now that we are considering the neural network as a parametric approximator to a mapping,
we need to decide upon a measure of how well F(W, x) approximates the desired function.
It is usual in a neural network experiment to attempt to minimise some measure of the output
error with respect to the weights. For instance Rumelhart et al° proposed that the mean-
square output error, averaged over all samples in the training set would be a suitable measure
of error and that the minimisation should be performed by gradient descent. This approach
was not originated by them, but their paper certainly served to popularise this form of neuro-

computing and established the so-called back propagation learning rule and its variants.

Let us assume that we have a set of representative data samples {x(p)} where p indexes the
sample over the set. Let Y(p) denote the network output vector when the p th pattern is at
the input and d(p), the desired output for that pattern. For 1-from-M classification of an
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input belonging to the ith category, d (p) is equal to 1 in the ith element and 0 elsewhere. The

mean-square-error measure, E, ¢, is then given by

B =23 S ()-00)

p k=1

=13 3 (@ (p)-E(watp))]

p k=1

(12)

It has been shown by numerous authors®=9 that the optimal set of weights W = W’ which
minimises E,;; is precisely the one which yields the best (least-squares) approximation of

P(c;|x) by E(W",x) 1<j<M.
It is also possible to use other information theoretic measures of output error such as the
cross-entropy function (equivalently maximum mutual information and Kullback-Leibler
distance)
k=M

Ece ==, 3,4 (p)logF (W, x(p))+(1-d, (p))log(1- E (W, x(p))) (13)

p k=1
As before it can be shown that the optimal set of weights leads to an estimate of the required
class probabilities®-10,

Adopting (13) has the effect of weighting errors most heavily when actual outputs are close to
zero or to one. Contrast this with (12) which weights large errors most heavily. This
distinction, in turn, leads to the idea that the least-mean-square criterion approximates the

Bayes optimal decision rule (minimum probability of error) best when p(x) is large, that is,

for frequently occurring data vectors. For the purposes of classification though, the best fit is
required close to the decision boundaries and these will, in general, lie in regions where p(x)
is small”. By contrast the information theoretic error measure (13) is seen to be sensitive to
probability estimates close to zero? (due to the effect of the logarithm). Such a distinction
may lead one to conclude that using (13) as the objective function upon which to base an
adaptation rule would lead to better overall performance. Significant improvements in
classification performance have yet to be observed in practice.

A further important point in the discussion of the choice of objective function is the fact that
although optimisation of E,,5 or E.; leads to feedforward networks which estimate the class
conditional probabilities, neither guarantees that these estimates obey the axioms of
probability. Evidently, for an output stage comprising logistic units each output must lie on
the interval (0,1). It is clear that in a two class problem one output unit is sufficient and if of
the logistic type then there is no such problem. In the 1-from-M (M>2) case the sum over the
output is not guaranteed to equal one, so that the probability of the certain event may be
greater than or less than unity. Wan® has considered normalising the outputs, as a post

processing stage, to overcome this, on the grounds that it does not affect rank order, hence
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o
ow

for some i,j and E the chosen objective function. The argument { indexes the passage of time
and may indicate either each sample presentation or each cohort. The parameter 1\() is a

w; (t+1) = w,(t)-n(t) (15)

ij

possibly time varying scalar which dictates the size of each downward step.

It should be noted that there are myriad variations on the theme of gradient descent but that
these are only able to offer improvements upon, not solutions to, the problem of local
structure. We therefore discuss only the most basic form. Consider now the diagram in

Figure 2 which is a one-dimensional representation of the optimisation problem at hand.

EA

.y
—5-

o, w* o, w

Figure 2: The objective function, E, as a function of connection strength,

W — the scalar case

Clearly for the initial choice of w(0) = ®,, repeated downward steps (assuming a decreasing

learning rate) will lead to a local minimum (marked o). For the choice w(0) = ® g the

algorithm (15) leads directly to the global minimum with corresponding weights % — this is
the point required for the probabilistic interpretation, given earlier in this section, to hold. So,
for a general feedforward structure we are faced with the problem of making a good initial
choice of weights (as is so often the case in nonlinear numerical algorithms) as global

information is denied to us.

The so-called radial basis function!3 feedforward structure is able completely to overcome
this problem by performing classification in two stages. The radial basis function network

consists of a layer of nonlinear “radial basis function” units whose outputs are combined
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4.1 Classification Performance

The use of the measures E,;; or E; in section 3 provides a useful means of driving the

learning process in feedforward neural networks. However, their use to analyse classification

performance is not recommended. Certainly a small value of the chosen objective function

evaluated over previously unused data will indicate that the classifier is performing well in

some sense, but it is not possible to tell from this whether the system makes very many small

errors (which may not affect classification performance at all) or whether it makes fewer large

errors (with a consequent number of misclassifications). There are a number of performance

measures which may be adopted all of which embody the same information. We shall

concern ourselves here with the sensitivity, specificity and accuracy of diagnosis. These are

defined as follows:

e sensitivity is defined as the ratio of the number of correct positive diagnoses to the total
number of occurrences of a condition

e specificity is defined as the ratio of the number of correct negative diagnoses to the total
number of non-occurrences of a condition

® accuracy is defined as the ratio of the number of correct diagnoses (both positive and

negative) to the total number of cases considered.

In order to obtain a graphical picture of the trade-offs between sensitivity and specificity the
Receiver Operating Classification (ROC) curve is a useful tool. This is a plot of the sensitivity
vs 1-specificity? parameterized by the diagnostic threshold. Obviously, these values are

calculated over an independent set of data. The typical form of the ROC curve is shown in

Figure 3.

1.0 4
\\°\& >
p timal threshold
5?‘,6\ op 0

2| Y
=
=
g
&

0.0 >

0.0 1-Specificity 1.0

Figure 3: A typical ROC curve

b In decision theory sensitivity is known as the probability of detection and specificity as 1-
probability of a false alarm.
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Choosing a large value of threshold (top right of diagram) results in a highly sensitive
classifier while a low value results in a highly specific one. The choice of threshold at the
intersection of the ROC curve with the leading semi-diagonal is optimal in the sense that here
accuracy = sensitivity = specificity. Multiple ROC curves can be plotted for one-from-M

problems.

In medical terms, say, sensitivity therefore compares the number of people who are
diagnosed as being ill with those who actually are ill and specificity the converse. It is easy,
therefore, to construct a highly sensitive system since, if all patients were diagnosed as having
the disease, sensitivity would be 100% but specificity would be 0%. Similarly if none of the
patients was diagnosed as having the disease then specificity would be 100% and sensitivity
0%. A good predictive system is therefore one which is both highly specific and highly
sensitive, that is, it would indicate those and only those patients requiring treatment. Clearly
there is a trade-off between sensitivity and specificity which may be related to the relative risk
of making incorrect decisions as described in section 2. Such questions are problem specific

and may be considered to be design degrees of freedom.

4.2 Contribution Analysis

Neural networks are frequently criticised for their “black-box” nature, that is that their
decision making is not readily inspected or understood by the user. This has led to
unfavourable comparison with expert systems in particular. It would undoubtedly be
advantageous to provide information on the reasoning process to an operator, in particular,
on how a diagnosis has been arrived at. In single layer networks the strength of connection
between data item and output unit gives a direct indication of the importance of that item in
assigning a diagnosis. It also indicates that item's importance for the entire population. In the
multi layer case the situation is much more complex and the value of the individual weights
do not have a clear interpretation. Indeed, in general, a particular weight will play a

significantly different réle in the diagnosis depending upon the specific input data.

By calculating the sensitivity of the network outputs to the presence or absence of any data
item (not to be confused with the sensitivity measure in the previous section) we are able to
obtain an indication of the contribution to the diagnosis of that particular item19:16, We
define the sensitivity of output i to a change in input j, for the p th input record, as

A gF
S{’j =% (x(p)) The expression S/ ; is straightforward to develop and does not add

’, x : ’
i

substantially to the computational burden. This information could be used on-line to indicate

to the operator the critical components in the diagnosis. It can be used off-line to obtain
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statistical information about the importance of paiticula: data items in particular diagnoses
which may then be compared with existing expert knowledge or, indeed, to prompt

investigation into causal links.

5. A CASE STUDY IN MEDICAL DIAGNOSIS

The intention of this section is to present a case study in the early diagnosis of myocardial
infarction (MI), commonly known as heart attack. Before doing this we draw attention to the
use of neural networks for fault detection and diagnosis in some other fields. In the following
brief discussion the neural networks are all of feedforward type and, although not explicitly
treated as such, they are being used to implement Bayesian classifiers. Naidu et all?,
Venkatasubramanian et a118, Hoskins and Himmelblaulg, Watanabe et 2120 and Ungar et a121,
have addressed the question of fault diagnosis in highly nonlinear chemical process plant
with multiple symptom to multiple fault characteristics, in particular, the diagnosis of sensor
failures is of interest. In a further paper Venkatasubramanian presents a case study of a
fluidised catalytic cracking process and compares the effectiveness of the neural network
based approach to that of a knowledge-based sysfemzz. In power generation, Ebron et al23
propose the use of neural networks for the detection of incipient faults in an electric power
distribution feeder system while Alguindigue et al24 use the approach to detect changes in the
state of a commercial pressurized water reactor. In other areas such as integrated circuit
manufacture (Meador et al23), electronic circuit boards (Kagle et a126), or in aerospace (Barron
et al?7, Macduff and Simpsonzs, Duyar and Merrill?%, Solorzano et al30) neural networks
have been used as an alternative to traditional statistical pattern recognition approaches or as
a way of overcoming the inherent “brittleness” of knowledge-based approaches. The
common finding in all of the above is that neural networks can offer significant advantage
over existing techniques. How much advantage is still a matter for research, but the

overriding message is one that is very encouraging.

5.1 The Diagnosis of Acute Myocardial Infarction

Early and accurate diagnosis of chest pain is perhaps the major challenge in present day
emergency medicine. Chest pain is the commonest reason for emergency medical referral in
the developed world and is a major symptom of ti1e onset of MI. Each year in the United
Kingdom over 240,000 heart attacks are confirmed, while in the United States 1.5 million
patients are admitted to Intensive Therapy Units (ITUs). However, in an audit of the
management of acute chest pain in a large accident and emergency department, 12% of
patients were found to have been erroneously discharged while 16% were found to have been
inappropriately admitted to ITU3L, In the United States approaching half of those patients
admitted to ITU may ultimately be found not to have suffered a heart attack32, Evidently this

is a diagnostic question with significant health risk and resource implications. Collinson33
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has estimated that an early transfer of patients from ITU to a medical ward may resultin a
financial saving of 50%. Clearly early discharge of those with non-threatening disease would

result in concomitantly higher savings.

There is further pressure to improve the early diagnosis of M, that is the advent of
thrombolytic therapy which is most beneficial when administered as soon after the onset of
symptoms as possible. This is because Ml is caused by a blood clot which cuts off the blood,
hence oxygen, supply to the coronary muscle with the resulting death of heart tissue.
Thrombolytic agents are enzymes which dissolve the blood clot, unblocking the affected
arteries and thereby minimising the damage to the heart. The expected benefit of
thrombolytic therapy is therefore a reduction in the immediate threat to life plus an improved
long term prognosis. The first of these benefits has been confirmed34 but it is too early to
make a judgement on the second. The agents must be administered within 6 hours of the
infarction taking place to be of significant benefit3d. Furthermore, they are expensive and

may be dangerous if given inappropriately.

The routine diagnosis of Ml relies on serial measurements of enzyme levels in the blood and
the electrocardiograph. Both of these indicators rely on sufficient time having elapsed for
diagnostic changes, due to the death of tissue, to have taken place. These changes may take
2448 hours to become evident and may not be useful in the early management of the

problem.

The desirability of a diagnostic aid during the early stages of Ml is therefore clear, particularly
for clinicians in non-cardiac specialities such as accident and emergency departments or in
general practice. In what follows we demonstrate that a neural network may be used to

implement a Bayesian classifier with impressive discriminating power.

5.2 Methods

5.2.1 Data collection

Acute chest pain is a suitable domain in which to develop a decision support system because
of (i) its high incidence, so that data is readily available, and (ii) the possibility of obtaining a
concrete final diagnosis, to supply the desired outcome to the network. Our initial study
included 300 consecutive emergency referrals, with a complaint of chest pain, to a large
teaching hospital in the UK1536, Information was recorded from each patient on a standard
pro forma, comprising 78 items of demographic, clinical and electrocardiographic data. In
addition the admitting clinician was asked to estimate the likelihood (expressed as a
percentage) of the patient having suffered a heart attack. Each pro forma was completed

before the results from confirmatory tests were available.
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Thirty-eight features were abstracted from each patient record and these were coded as a 53-
dimensional bipolar vector, with zeros indicating missing data. The target or desired
response was simply coded as 1 for MI and 0 otherwise. Continuous valued variables such
as age and duration of pain were coded, eliminating redundant elements, using the method of
Widrow et a7,

5.2.2  Network architecture and training

An architecture with only one intermediate layer of units, as per Figure 1, has been used
throughout. This layer is fully interconnected with the units of the input and output layers.
Within layer connections and direct input-to-output couplings are not permitted. The

intermediate and output layers comprise logistic units.

The final architecture, comprising 53 input units, 18 intermediate units and 1 output was
arrived at after extensive experimentationld. Our initial configurations were guided by the
algorithm14.

In this study the mean-square objective function, E, ¢, has been chosen to derive the optimal
weight values. The network was trained on the first 90 patient records until the mean-square
error was at an acceptably low value. The remaining 210 patterns were used to assess the

network's diagnostic capability.
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