This is a repository copy of Neural Networks, Heart Attack and Bayesian Decisions: An
Application of the Boltzmann Perceptron Network.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79640/

Monograph:

Harrison, R.F., Marshall, S.J. and Kennedy, R. Lee. (1994) Neural Networks, Heart Attack
and Bayesian Decisions: An Application of the Boltzmann Perceptron Network. Research
Report. ACSE Research Report 517 . Department of Automatic Control and Systems
Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

a o 5(s)

Neural Networks, Heart Attack and Bayesian Decisions: An

Application of the Boltzmann Perceptron Network

Robert F Harrison
Department of Automatic Control and Systems Engineering
The University of Sheffield
PO Box 600
Mappin Street
Sheffield S1 4DU

+44 (0)742 825139

Stephen J Marshall?
Department of Automatic Control and Systems Engineering

The University of Sheffield

R Lee Kennedy
Department of Medicine

The University of Edinburgh

Short Title: Diagnosis of Heart Attack by Neural Networks

Research Report No 517

'Supported by the Science and Engineering Research Council, UK



*,

Abstract

A decision aid is proposed for the diagnosis of the most commonly occurring cause of emergency
admission to hospital in the developed world—acute myocardial infarction, or heart attack. The
motivation for the proposal lies in the Bayesian (minimum risk) decision theory which is briefly
reviewed. The fact that many feedforward artificial neural networks are known to estimate the
conditional class probabilities required for Bayesian decision theory is explored, and one candidate—
the Boltzmann Perceptron Network—is selected as possessing the most desirable properties. A brief
account of the theory (based upon the so-called Boltzmann machine) underlying this little known

network is presented.

The Boltzmann Perceptron Network is trained to diagnose the presence or absence of myocardial
infarction on data gathered from a large UK teaching hospital and is found to perform as well
as senior registrars with specific cardiological training (diagnostic accuracy in excess of 80%). In
addition, the Boltzmann Perceptron Network is found to provide greater user confidence than the

multi-laver Perceptron.

Keywords: Medical diagnosis, heart attack, Bayesian classifiers, artificial neural networks, Boltz-

mann Perceptron Network.




1 Introduction

Clinical diagnosis is a prime example of decision-making under uncertainty. Frequently, many un-
connected diseases may correspond to an identical set of diagnostic data comprising symptoms,
measured data and previous history. The converse may also be true, that any given diagnosis may
correspond to a number of distinct sets of diagnostic data. In addition, the data may themselves
be imprecise adding to the overall uncertainty in the reasoning process. These factors can be the
cause of poor diagnostic accuracy which has led to the search for clinical decision aids, both general
purpose and disease specific. They are also responsible, in part, for the difficulty in developing

usable support systems.

Clinical decision support systems are not yet widely used in medicine although their potential impact
is increasingly being recognized. Progress in this area has faced two major problems: first, the need
to overcome the deficiencies in conventional approaches to decision support systems and second,
the reluctance of the medical profession to use such systems. Two approaches to decision support
are being studied intensively. These are expert systems and artificial neural networks. Both expert
svstems and artificial neural networks attempt to perform tasks akin to human reasoning. In expert
systems knowledge is encoded explicitly as a series of rules and the system models the deductive
process. Learning takes place either by interrogation of an expert (the knowledge elicitation process)
or by statistical analysis of a database, and requires the expertise of a knowledge engineer. Because
these sys&éms execute a large number of commands sequentially they can be slow in operation
although increasing availability of fast computers makes this less of a problem. Expert shells provide
a framework within which the rules are encoded and speed up the process of establishing an expert
system. The main obstacles to the widespread use of expert systems lie in their static nature and

in the effort needed to establish and adapt them.

By contrast, artificial neural networks attempt to model the micro-structure and function of the
brain. Knowledge is represented implicitly and is distributed throughout the structure of the arti-
ficial neural network. Learning takes place within the ;ysr.em which uses raw data to learn associ-
ations between data items—Ilearning by example. This information is stored as numerical weights
(analogous to synaptic junctions) in the artificial neural network. Artificial neural networks are

self-adaptive, they can generalize well and exhibit graceful degradation and so can cope with uncer-



_tainty in data items and missing data. Furthermore, rapid re-training of a network to account for
regional variations is a possibility, without the need for the intervention of a “knowledge engineer”,
Artificial neural networks have, however, been criticized because their operation is not explicit and
they cannot “explain” their reasoning, as can rule-based systems. Nonetheless, they do show consid-

erable promise in modelling high level cognitive processes such as those involved in making medical

decisions ([1,2]).

Advances in expert systems and artificial neural networks, both individually and in the production of
hybrid systems, are beginning to produce usable decision support tools. However, most studies have
been laboratory-based and have failed to demonstrate their potential for practical benefit. The aim
of this paper is to demonstrate that artificial neural networks, in particular the so-called Boltzmann
Perceptron Network, have a role to play in the establishment of useful and usable tools for decision

support, specifically in the diagnosis of acute chest pain.

1.1 Decision support in the diagnosis of heart attack

Acute chest pain is a suitable domain in which to develop decision support systems because of its
high incidence and the increasing pressure on doctors to make accurate, early diagnoses. Suspected
heart attack is the commonest reason for emergency referral to hospital in the developed world and
therefore a large amount of relevant data can be amassed relatively quickly. Each year in the UK
alone there are over 250,000 documented heart attacks. Furthermore, a standard criterion, proposed
by the World Health Organization, is available which gives a correct diagnosis (in the sense of its
being widely agreed upon) but this is not available for 24-48 hours. This “gold-standard” diagnosis

can therefore be used objectively to assess the performance of decision support tools.

In a recent audit of the management of acute chest pain in an Accident and Emergency department [3]
approximately 12% of patients were discharged erroneously while 16% of patients were judged to
have been inappropriately admitted to the coronary care unit. In the US, where 1.5 million patients
are admitted to such units each year, approximately half will finally be found not to have acute

ischaemic heart disease [4].

Myocardial infarction (MI), or heart attack, is caused by a blood clot blocking the coronary arteries



thus depriving heart muscle of its blood supply. The routine diagnosis of MI is made using serial
changes in serum cardiac enzymes (which are released from damaged heart muscle) and serial elec-
trocardiographs. However, using these tests it may be up to 48 hours before a definite diagnosis is
made while modern therapy for acute MI demands rapid, accurate diagnosis: thrombolytic agents,
which dissolve the blood clots, reduce morbidity and decrease mortality by 30-50% in patients safely
reaching hospital (for review see Simoons [5]). For maximum benefit, thrombolytic agents should
be administered as early as possible and certainly within six hours of the onset of symptoms [6]. In

addition to this, the agents are expensive and they may be dangerous if administered inappropriately.

In addition to the health risk posed by failure to diagnose MI promptly, economic and other factors
play a significant role in the management of chest pain victims. Indeed, it has been estimated [7]
that simply making an early transfer of a patient from a coronary care unit to a general medical
ward would result in a financial saving of 50%. The saving upon early discharge of patients with

non-ischaemic chest pain or angina would be concomitantly higher.

The desirability of a diagnostic aid during the early stages of MI is therefore clear, particularly for

those in non-cardiac specialties such as Accident and Emergency departments, or in general practice.

1.1.1 Biochemical modelling

Approaches which have been used to improve the accurate early diagnosis of MI include imaging
techniques, biochemical measures and decision support. Of these, the use of biochemical tests
has found the widest usage. Rapid sequential enzyme measurement gives information on the rate
of change of cardiac enzymes and can be used to predict whether the diagnostic threshold for
each enzyme will be exceeded. Early work (7] indicates that high accuracy is achievable, although
requiring measurements up to 12 hours post-onset of pain. Diagnoses made in this way still require

some hours during which time the patient may not have received thrombolytic treatment.



confidence that may be assigned to the classification unless the network output happens to represent

the posterior distribution well in the first place.

To overcome this problem so that a decision can be made which truly minimizes the Bayes risk
function we propose the use of the Boltzmann Perceptron Network devised by Yair and Gersho [25].
This network possesses a Perceptron-like feed-forward structure, followed by a competitive layer
which “shares out” the unit probability between the outputs. The Boltzmann Perceptron Net-
work is inspired by and derived from the Boltzmann Machine [26] and implements an approximate,
deterministic version of it. The outputs of the Boltzmann Perceptron Network may therefore be
considered as estimates of the posterior probabilities of the possible diagnoses, given a specific set
of symptoms and clinical data—precisely those quantities required to formulate the Bayesian risk
function. The Boltzmann Perceptron Network therefore overcomes one of the major problems in-
volved in Bayesian decision theory—the need to assume that the components of the data vector
are independent in order to make tractable the estimation of the probability of class membership
conditioned on the data. Using the Boltzmann Percepl;ron Network, we have confirmed our earlier

results and are now able to classify patients into different risk groups [27].

The paper is organized as follows: In Section 2 we briefly review decision-making under risk from
a Bayesian viewpoint and indicate what is required to realize a Bayesian classifier. In Section 3 we
examine the shortcomings of the widely used multi-layer Perceptron as an estimator of posterior
probabilities and use these to motivate the use of the Boltzmann Perceptron Network. The theo-
retical basis for this network is then presented. The use of the Boltzmann Perceptron Network for
diagnosis of acute chest pain is described in Section 4 and our results are presented and compared

with other classifiers and the performance of clinicians.

2 Bayesian decision theory

The problem of deciding, in the face of uncertainty, to which category, or class, a set of data belongs
can be dealt with in many ways. Clearly, one would normally wish to minimize the probability
of making an incorrect decision but in situations where the cost or risk associated with making

an error is high it is desirable to weight or bias the decision towards the one which is least risky.



Bayesian decision theory allows risk to be minimized formally, subject only to the availability of
certain statistical quantities. It is well known that the required quantities are difficult to obtain
as their calculation is computationally intensive and requires very large data samples. For these
reasons it is usual to make often quite unjustified assumptions about the probabilistic nature of the

problem to facilitate computation.

Here we provide a brief exposition of Bayesian decision theory which is included to indicate our

motives.

The decision problem can be stated as follows: there are M classes, ¢;, corresponding to M regions,
Xi1<i< M,indata-space, to which the NV-dimensional data vectors, z, may belong. The decision
rule, d(z), can then be written d(z) = d; if ¢; is true (ie if z € X;) assuming a natural pairing
of decision and class, and that there are the same number of classes as decisions to be made. It
is further assumed that the regions, X;, are disjoint and that they cover the space of all possible
data, X = U:Z;W X;. This ensures that each point in X yields a unique decision and has a decision

associated with it.

Clearly, should d; be decided when ¢; is true and i £j an erroneous decision will have been made.

Associated with each decision d; and c; is a unique cost or risk, R;; > 0:
R;; = the cost of deciding d; when the data belong to class ¢; (1)

In many applications it is assumed that there is no risk involved in making a correct decision although

it is perfectly acceptable to assign such a risk.

Each category, ¢; has an a prior probability, P(c;), associated with it. Clearly, since the data vector

must belong to one of the classes
i=M

> Ple)=1 (2)

i=1
The average risk, R, for this problem is defined by

i=Mji=M

RS DD RiiPdinc) (3)

i=1 j=1_
where P(a, b) denotes the joint probability of events a and b. Re-writing P(d;, c;) as P(d; | ¢;)P(c;)

yields
i=M j=M

R:Z ZP(CJ)R{_{P(dile) (4)

=1 j=1



where P(a | b) denotes the conditional probability of events a and b. If the data z € X; then we

decide d;, hence P(d; | ¢;) = P(z € Xi | ¢;) or

P(d; | ¢5) = /X p(z | ¢;)dz (5)

where p(.) indicates a probability density function. This makes the average risk

i=Mi=M

R = Z E P(cj)R‘-j/X p(z | cj)dz

i=1l j=1
i=M i=M
= 3 [ 3 Pe)Riplz] o)z (6)
i=1 Y X: j=1
assuming the interchangeability of summation and integration. Minimizing the average risk, &, is
equivalent to choosing the regions, X;, in equation (6) so that z € X; if
i=M i=M
2 RiP(e)p(z | ;) < D RejPlej)p(z | ¢;) Vk =i (7)
j=1 j=1
Inequality (7) forms the decision rule in that d(z) = d; if it is satisfied. It should be noted that, under
the assumptions that there is no risk associated with a correct decision and that the risks associated
with making erroneous decisions are equal, the decision rule reduces to one which minimizes the

probability of making an error.

One final application of Bayes’ theorem puts (7) into a more convenient form for our purpose. Noting

that
Plej | z)p(z)
p(z | ¢j) = —L—~7 8
(z | J) P(cj) ( )
and re-arranging, (7) is re-stated in the form
=M j=M
> RyP(cj|z)< 3 RijPlcj|z) Vi ©)
J=1 3=

and d; is decided if (9) is satisfied. The advantage of this form from a practical point of view is that
it does not require the estimation of the conditional probability density functions—a notoriously
difficult task especially in high dimensional data, requiring very large data samples. As it is, the
probabilities of class membership conditioned on the data must be estimated to obtain a viable
decision rule. This is very frequently an impossible task for practical reasons and has led to an
assumption which is commonly used—that the components of the data vector are independent.
This reduces the computational complexity of the estimation problem to one of estimating each

distribution conditioned on only one element of z. The computational benefit is a reduction from



the estimation of 2¥+¥ probabilities to M x N [28, pp ‘266—268}, leading to a concomitant reduction
in the necessary quantity of data. Equally clear, however, is the fact that any given problem will'not
fulfil this assumption and frequently will violate it strongiy, leading to a classifier which performs
poorly. In the following section we examine the possibility of using neural networks for estimating

the posterior probabilities directly, without making such assumptions.

3 Estimation of posterior probabilities by neural networks

3.1 The multi-layer Perceptron

We briefly summarize the conclusions of [24,29] which describe how the widely used multi-layer
Perceptron [21] relates to the estimation of posterior probabilities. Familiarity with the multi-layer
Perceptron is assumed. Both articles point out that it is the minimization of a least-mean-square
error criterion which leads to the Bayesian interpretation and that any structure capable of describing
the mapping from the input (data) space to the output (probability) space will be valid. As is well
known, the multi-layer Perceptron with adequate numbers of hidden units and/or layers can form
arbitrary input/output maps [30] and is thus a good candidate. We shall not address the problem

of how to decide on the optimal network structure.

Ruck and colleagues [29] demonstrate that the multi-layer Perceptron approximates the Bayes opti-
mal decision rule (minimum probability of error) for both binary and multiple decisions. They point
out that the multi-layer Perceptron fits the optimal discriminant function best when p(z) is large,
that is, for frequently occurring data vectors. However, for the purposes of classification, the best fit
is required close to the decision boundaries and these will, in general, lie away from the maximum
of p(z). The proof in [29] also indicates that the outputs of a trained multi-layer Perceptron may be
interpreted as estimates of the P(c; | z)’s. This result is also derived in [24] where it is shown that,
although the outputs are estimates of the posterior probabilities, they do not in general possess the
properties of probability distributions; in particular, they do not sum to one. Output normalization
is proposed to overcome this problem on the grounds that it does not affect rank order and hence
classification. However, it does affect the level of confidence associated with a classification. The

author goes on formally to quantify this.



By adopting the Boltzmann Perceptron Network we propose to overcome this problem since the

network’s estimates of the P(c; | z)’s satisfy the axioms of probability theory directly.

3.2 The Boltzmann Perceptron Network

The Boltzmann Perceptron Network is a deterministic feedforward network. It is functionally equiv-
alent to the Boltzmann Machine in that it computes class-conditional probabilities, yet it has a
deterministic feedforward structure similar to the multi-layer Perceptron. The network is composed
of two successive stages. In the first stage (similar to a two-layered Perceptron) decision functions
are evaluated for each output class. These are fed to the second stage which performs a soft com-
petition between the classes, resulting in a graded “scoring” for the different class outputs. Instead
of a sole winner, the classes share the total amount of unit probability, thus guaranteeing that the

outputs sum to one.

The Boltzmann Perceptron Network is essentially a deterministic model of the Boltzmann Machine
at “thermal” equilibrium. The steady-state properties of the Boltzmann Machine are central to its
derivation but the Monte-Carlo approach (simulated annealing) to achieving this equilibrium is not
required (although the idea of an artificial “temperature” is still used). Evaluating the deterministic
equations which describe the Boltzmann Machine at equilibrium is, in general, impractical since
it involves complexity of order 27+ where J and M are the numbers of “hidden” and output
units, respectively. However, by imposing a number of constraints on the deterministic equations
(rather than on the underlying Boltzmann Machine itself), the Boltzmann Perceptron Network re-
alizes a computational complexity of order J M, which is computationally feasible. Although these
constraints cause the Boltzmann Perceptron Network to deviate from the underlying Boltzmann Ma-
chine, preliminary performance results indicate that it performs well as a (soft) pattern classifier. In
common with the Boltzmann Machine the Boltzmann Perceptron Network has a learning algorithm
based upon relative entropy or Kullback-Leibler number [31] rather than the least-mean-square er-
ror criterion of the multi-layer Perceptron. However, since no simulated annealing is required and
because of the relatively low complexity of the equations, learning in the Boltzmann Perceptron

Network is far less time consuming. We outline the key steps in the derivation of the Boltzmann

Perceptron Network since it is a paradigm which has so far received little exposure in the litera-

10



ture. The development here follows that of Yair and Gersho [25]. First, the energy function of
the Boltzmann Machine is introduced and the modifications which lead to the massive reduction
in complexity are briefly described. A performance measure which is used to derive the learning

algorithm is then presented.

The underlying Boltzmann Machine is symmetrically connected with no self-feedback (26] and the
free running elements are allowed to change their states randomly and asynchronously. The state
vector of the Boltzmann Machine is defined as u 2 (z*,v*,y'), where z is an N x l-vector of real
values—a slight departure from the original conception of the Boltzmann Machine, whose values are
clamped to those of the input vector (hence the equivalent notation), v is a J x l-vector containing
the activations of the hidden units and y is an M x 1 vector of outputs. The notation (.)" indicates

the transpose operation. The “energy” function of the Boltzmann Machine may be defined thus:
a 1., t
Eu=—§u Tu—u'é (10)

where T is the symmetric, zero-diagonal connection matrix and §é is a vector of biases. In view of the

three distinct components of the state vector, the matrix, T, and the vector, §, partition naturally,

thus:
D, R* W!
I'=s| R D Q = ( P, 8 ) (11)
W Q' Ds

The energy function may then be written

Eu = - (‘U h;iz. +Ty|x + T]z:) (12)
where
Ye & Rz+Qu+05Dv+c (13)
Tye 2 o' (Wz+05Dsy+s) (14)
1. 2 z'(0.5Diz+ f) (15)
(16)

Since the states of the input layer are fixed (for each classification) they can be removed from the
state vector which then becomes a (binary) vector of length J + M. This state vector and its

associated energy are denoted by v,y | z and E, |-, respectively. Moreover, since 7, is not now a
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function of state, but serves only as a fixed bias, it can be neglected and D; and f can be set to

zero without loss of generality [25].

For pattern classification to be performed in a deterministic sense (rather than by accumulating
statistics) it is necessary to evaluate the probability, P(y | z) of observing a particular pattern, y,
on the Boltzmann Machine given an input, z. Since the Boltzmann Machine is assumed to be in

thermal equilibrium, this probability can be obtained from the Boltzmann distribution from
1 _sE -
Py, | ) = g Pl (17)
Zr

where 3 is the inverse of the (artificial) temperature and Z. is the normalizing partition function

given by
o= Ze-‘sa“'”" (18)

v,y

L

Summing (17) over all permutations of v then gives the required probability

1
P(y ! 2) = -'2-— 26—55"'”': . (19)

However, evaluation of the partition function is exponentially complex requiring on the order of

27+M exponentiations of the energy function.

Assuming that the set of classes is exhaustive and mutually exclusive it is possible to classify any
input pattern into a single class using an output vector of the formy = ¢;, i € [1, M], where ¢; is the
i*® standard basis vector and corresponds to class i. Only M out of a possible 2% output vectors

are actually feasible and a state vector whose output is feasible is denoted v, e; | z. Applying D; =0

and f = 0 reduces the energy equations (12) and (16) to

Ev,e,|: = - (y?h’;.lz + Tﬂvl'-'-') (20)
where
Y1z = Rr+¢+05Dw+c (21)
=
T, - = Z wi k Tk + 8 (22)
k=1
(23)

where ¢; is the i*" row of Q, wi is the 7, k*® element of W and s; is the i*P element of S. Due

to the zero-diagonal structure of D (and hence D3) the product e!Dse; = 0 Vi. Dj can therefore

12



take the value 0 with no loss of generality [25]. Even though the Boltzmann Machine itself is fully
interconnected, the fact that D3 does not appear in the energy equations means that there is no
interaction between the processing elements of the output layer of the Boltzmann Machine when

y=¢&;, i€ [l,M]ie when a feasible output is generated.

By restricting the output to be feasible, the partition function may be replaced by

Zl= N, Y &Pk (24)

y€e, i€[1,M] v

where the superscript f indicates that a feasible output has occurred.

For the final stage of simplification (reduction in complexity) it is convenient to introduce the “score”

of the i*h class, Li(z) £ —BE, .|z = 8Tu.jz + Aeyz With

Az S in (Z eﬁ"'*igu) (25)
v

so that |
_ 1 L@ '
Pz = ik (26)
and
Zf= Z el(=) (27)
e, ig[1,M]

The exponential nature of equations (26) and (27) enforces a competition between the class scores
so that a relatively high score will quickly dominate and its probability will be close to unity at the

expense of the other classes.

Clearly the complexity of computing A, |- is of order 27 however, if the matrix, D, is set to zero

. . n & A =N
the summation in A, . becomes separable and, defining V; 7 by T/}“" = fﬂ i kTk + €+ G5,

ez = ﬁ:tn (1+757) (28)

i=1
thereby reducing complexity to the order of J, which is computationally feasible [25]. With this
restriction the Boltzmann Perceptron Network deviates from the underlying Boltzmann Machine in
that there are now no interconnections among the units of the hidden layer. In general, this will
compromise the performance of the Boltzmann Machine (and the Boltzmann Perceptron Network
which models it), however, in (25] Yair and Gersho demonstrate that their computationally efficient

scheme can represent posterior probabilities very accurately. Reference [25] describes in detail how
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the foregoing ideas are realized as a neural network comprising two layers. The first, a layer of
sigmoidal units connected in the manner of the multi-layer Perceptron. The second, a layer using
the exponential function to impose a graded or “soft” competition between the classes, which shares

out the available unit probability of class membership.

The parameter, 3, which is the inverse of the (artificial) temperature in the Boltzmann distribution,
can be adjusted to alter the sharpness between the classification boundaries—the higher the value
it takes, the sharper the classification. In the limit as 8 — oo the Boltzmann Perceptron Network
becomes a maximum a posteriori classifier [25,32], in which the classification is made bn a winner-

take-all basis.

In order to enable the Boltzmann Perceptron Network to learn the desired mapping from pattern
space to probability space a method of adjusting the weights and biases of the network is needed to
capture the underlying, statistical constraints of the environment. The environment is specified by a
set of examples, each comprising three components: a pattern vector, z; an a prior: probability, Q(z);
and a set of M desired class conditional probabilities, Q;z i € (1, M]. For each input pattern the
network produces a set of outputs, P;; i € (1, M] which differs in general from the true probabilities.
The learning rule is defined so as to choose the network parameters that minimize the difference (in
some sense) between the P;; and the Q. over the whole training set. To do this the measure of
difference or distortion between the true and calculated probabilities is given by G, defined by

G —ii‘fo- i [ ik 29
pie= ilz Pil:z: ( )

i=1

and the average distortion over the data set is therefore

G=3Y Q@G (30)

where G is the Kullback-Leibler number [31]. The weights and biases of the network are therefore

adjusted to minimize G.

For convenience the distortion, G, may be decomposed into two terms, only one of which is a function
of the weights

G=D-Hq (31)
where

i=M
D=3 Q(z)D: with D: == Q,;InP,; (32)
2 t=1

14



and
: M
Ho=-3 Q2)) QuelnQe,c (33)
z i=1
Since only D is a function of the network parameters it is this quantity which forms the cost
function for the minimization. The quantity, Hg, is an entropy measure which indicates the average
uncertainty present in the data set. In [25] it is shown that Hg is a lower bound on D and can be
used to define a useful measure of network performance

G
= H, (34)

The search for the minimum value of p (equivalently G or D) with respect to the network parameters
must be conducted using an appropriate numerical scheme. The partial conjugate gradient search

method is chosen in [25] whereas our work has used straightforward gradient descent.

4 A diagnostic aid for acute myocardial infarction

4.1 Background
4.1.1 Patients and methods

The present study involves 500 consecutive emergency referrals with a complaint of chest pain to
the Medical Department of the Northern General Hospital, Sheffield, England. Information from all
patients was recorded on a standard pro-forma which consisted of 78 items of demographic, clini-
cal and electrocardiographic data. In addition, the immediate diagnosis of the admitting clinician
was recorded. Each pro-forma was completed within four hours of presentation, before the serial
measurements of cardiac enzyme and electrocardiograph were available. Cardiac enzymes (creatine
phosphokinase and lactate dehydrogenase) were measured each day for three days following admis-
sion and 12-lead electrocardiograph recordings were taken over the same period and during any

episode of pain.

Acute MI was diagnosed if cardiac enzymes showed progressive changes in association with either
a compatible clinical history, evolving electrocardiograph changes, or both. The final diagnosis was

assigned independently by the senior clinician on the case, taking account of clinical, laboratory



and follow-up data. The clinician was not aware of the factors used to train the network or of its
output. All patients were followed-up, and where necessary, ischaemnic heart disease was excluded

or diagnosed by exercise electrocardiography or coronary angiography.

The information recorded at presentation was the opinion of the medical registrar, whether or not
the patient was a referral from general practice or from the casualty department. There was no
statistically significant difference in age, sex, time of presentation and diagnosis between these two

groups of patients.

We took 38 features from each patient record and coded them as a 53 dimensional, bipolar vector
(each element taking the value -1, 0 or 1 where 0 indicates missing data) and the target vector
(diagnosis) was coded as 1 for membership of a particular class, 0 otherwise. Continuous valued
variables such as age and duration of pain were also coded as bipolar vectors by dividing the normal

range into “bins”.

The data set was divided thus: 200 patient records were used for training purposes; 100 records
were used in the validation phase; and 200 records were taken to be the test set, used to evaluate
network performance. The validation phase is inevitably required when developing neural network
applications due to the non-linear nature of the “optimization” or training problem which may suffer
from local phenomena. It is therefore necessary to train a number of network configurations and
to compare their performance using previously unseen data. The network which performs best over
the validation set, according to some objective criterion, is then selected and its performance is
evaluated on the test set. Since the validation set is used in the establishment of the final network

it is no longer valid as test data—a point frequently ignored by applications developers.

The diagnostic capability of a trained network was assessed by calculating the following performance
indicators for the set of previously unseen data. They are defined as follows— Diagnostic accuracy:
ratio of number of correct diagnoses to total number of cases; Sensitivity: ratio of number of correct
positive diagnoses to the total number of patients with the disease; Specificity: ratio of number of

correct negative diagnoses to the total number of patients without the disease.

Using these indicators it is easy to plot the receiver operating characteristic (ROC) curve (sensitivity

vs l-specificity) for a binary classifier. The intersection of the ROC curve with the semi-diagonal

16



indicates the optimal threshold level, T,, (ie sensitivity = specificity = accuracy) that a network can
operate at, for a binary decision. The operating threshold for a minimum probability of error classifier
bears an interesting relationship to the relative risk of making an incorrect decision (assuming that
the risks associated with a correct decision are zero). It is straightforward to show that any decision

threshold, T, say, is related to the risk factors in the following way:

1

=L Bx
I+71-';-;-

(35)

where Ro; is the risk associated with a false negative decision and R;, is the risk associated with a
false positive decision. Therefore, operating at different thresholds is equivalent to assigning some

relative risk to the decision.

From a user’s point of view, operating at a threshold of T;,, may be counter-intuitive if T, is not
close to 50%, the “natural” threshold. Of course, depending on the risks associated with a decision,
clinicians may implicitly adjust their operating characteristics but this would not be easy to quantify
unless an accurate assessment of their (subjective) probability of diagnosis could be made. The neural
network can, however, be adjusted to give a 50% operating point while still performing optimally
by making use of equation (35). We re-write (33) thus: 7, 2 Ray/Rys = (1-1T,)/T, for the optimal
threshold, T = T, and weight the network outputs as follows. Let y; ¢ € [1,2] denote the output
corresponding to the i*th class, then weight y; by 1/(y1 + roy2) and ya by ro/(y1 + roy2). This has
the effect of shifting the operating threshold to the subjectively more appealing 50% point, while

ensuring that the outputs—uweighted probabilities—still sum to one.

In this study we have not attempted to assign risks or costs to decisions although it is clear that all
misclassifications cannot be regarded as of equal seriousness. Indeed, the risk associated with a false
positive diagnosis, with the attendant implication that the patient will be admitted to a coronary
care unit, is insignificant compared to that of a false negative and the possibility that the patient

will be discharged.

4.2 Results

Using the Boltzmann Perceptron Network to classify patients into two groups according to the

presence or absence of MI, the results obtained were comparable to, or slightly better than, those



~

obtained by the unaided clinicians (see Table 1) who were experienced registrars with specific cardi-

ological training. The sensitivities, specificities and accuracies for the clinicians and the Boltzmann

Clinician | BPN (50%) | BPN (26%)
True +ve 45 39 47
True -ve 118 134 124
False +ve 20 4 14
False -ve 17 23 15

Table 1: Clinicians’ preliminary diagnoses vs Boltzmann Perceptron Network

Perceptron Network are shown in Table 2. We present results for the network operating at a 50%

Clinician | BPN (50%) | BPN (28%)
Sensitivity (%) 73 63 76
Specificity (%) 86 97 90
Accuracy (%) 82 87 B6

Table 2: Performance of clinicians’ and Boltzmann Perceptron Network

decision threshold and at the optimal threshold, T, (= 0.28). Note that T, is computed over the
validation data which has the effect of levelling the three performance measures. However, in oper-
ation (over the test data) we find that they are no longer equal (Table 2). This is due to statistical
differences in these small samples. It was not possible to account for the operating characteristic of
the clinicians since their diagnosis was recorded simply as the presence or absence of MI. It is clear

that operating the Boltzmann Perceptron Network at T, dramatically improves its performance.

To compare, formally, the performance of the Boltzmann Perceptron Network and the clinicians
we use McNemar’s test for matched-samples which is commonly used to compare different methods
of making clinical decisions [33, pp 255-258]. By highlighting the frequency with which techniques
disagree, a test statistic can be generated which is x>2-distributed with one degree-of-freedom. Table 3
displays the numbers of cases for each possible decision pairing for the clinicians and for the network

operating at its optimal decision threshold.

The test statistic, M, is calculated thus: M = (|Npos/neq = Nneg/pos| — 1)2/(Np“,mg + Nneg/pos)

using the information in Table 3. N, denotes the number of disagreements between methods and
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Network

Pos Neg
Pos | 47 18
Clinicians
Neg | 14 121

Table 3: Positive and negative MI diagnoses. Clinician vs network

the null hypothesis is that there is no significant difference between the diagnostic performance of
the network and the clinicians. Here M = 0.28 which is not significant at the 99% level and the
null hypothesis is accepted ie the Boltzmann Perceptron Network and the clinicians perform equally

well.

We also test the performance of the multi-layer Perceptron against the Boltzmann Perceptron Net-
work. We do this using the Wilcoxon test for matched-pairs (33, pp 224-227] which takes account
of the magnitude of errors. When tested on the numbers of correct decisions made over the 200
patient test set the Boltzmann Perceptron Network was found to outperform the multi-layer Per-
ceptron (with a confidence level in excess of 99.9%) even though, on the dichotomous decision, the

two methods appear to perform very similarly.

The advantage of this test for deciding upon one decision rule over another lies in the levels of
certainty or otherwise that may be associated with a particular decision. For instance, although
we have found linear discriminant analysis to perform well in making dichotomous decisions [16],
its outputs are clustered around its optimal decision threshold (an obvious consequence of linear
regression) so that when it makes a correct diagnosis it is no more confident about it than when
it makes an incorrect one (ie its errors are equally weighted). Contrast this with the behaviour
of the Boltzmann Perceptron Network which makes a correct decision with small error, and makes
incorrect decisions with large error ie its errors are weighted in favour of correct decisions. This
means that the user can have confidence that when the Boltzmann Perceptron Network returns a
probability close to one or zero it is likely to be correct and when it returns a probability in the
mid-range it indicates that the diagnosis is uncertain. The Wilcoxon test, in this case, indicates
that the decision of the multi-layer Perceptron is qualitatively less reliable than that made by the

Boltzmann Perceptron Network.
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5 Conclusions

The Boltzmann Perceptron Network has been proposed as an “inference” engine to perform the
estimation of the posterior probability of class membership, conditioned on data, in a Bayesian
decision support system ie the estimation is performed by an artificial neural network—a determin-
istic implementation of the Boltzmann Machine. A second candidate artificial neural network—the
multi-layer Perceptron—was considered for this réle but was rejected for its lack of a rigourous prob-
abilistic interpretation of its outputs, which may be important in overcoming resistance to the use
of computerized decision support systems. The integration of the Boltzmann Perceptron Network

into a risk-sensitive decision making system is also proposed.

An example from medical diagnosis has been’ presented in which the proposed decision aid is shown
to perform as well as experienced registrars with specific cardiological training and to perform with a
higher degree of user confidence than the multi-layer Perceptron. In an emergency setting, during the
critical time period, it is unlikely that an individual would be attended by such specialized clinicians,
thus indicating that a neural network-based decision aid of this type may have a significant impact

in the practise of “front-line” Accident and Emergency medicine.
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