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ABSTRACT

The purpose of this contribution is: to motivate the use of artificial neural networks
in “intelligent” clinical decision support; to examine the advantages and limitations of two
important classes of artificial neural network; to highlight the potential of intelligent decision
support in the early diagnosis of heart attack; and to outline results which indicate, in
particular, the potential of the fuzzy ARTMAP network in this acute setting. The work to
be described demonstrates that this neural network can overcome problems in knowledge
acquisition and portability which may open the way to neural-network-based “apprentices”
which learn autonomously whilst providing useful decision support.

INTRODUCTION

Diagnostic problem solving in whatever domain is a prime example of decision
making in the face of uncertainty. Frequently many different outcomes may correspond to
identical sets of evidence. The converse may also be true, that any given diagnosis may
correspond to a number of distinct sets of evidence. In addition, the data—both outcome
and evidence—may be imprecise, adding to the overall uncertainty in the reasoning process
and making it probabilistic in nature. These factors can often be the cause of poor
diagnostic accuracy in humans, and are, in part, responsible for the difficulties often
encountered in developing useful and usable decision support tools.

The appeal of computerized decision support systems in clinical practice is an
obvious one, offering the prospect of a fusion of multiple, disparate sources of data and
expertise. Furthermore, it is to be expected that by the use of pattern recognition
techniques or the methods of artificial intelligence, clinicians might be better served by their
decision support systems. That this is so in principle is doubtless true, however, widespread
adoption of “intelligent” clinical decision support systems has failed to occur. In diagnosis
very few of the intelligent decision support tools that have been developed have ever



ventured beyond their site of origination and have thus had little impact on practice. Why
then have computer-based techniques failed to emerge from the laboratory?

1. Data collection and integrity: Classical and Bayesian statistical approaches typically
require large cohorts of historical data, both evidence (symptoms, signs, measurements,
opinions) and (verified) outcome or diagnosis. Large scale collection of accurate and
detailed data can often conflict with clinical practice (eg in a busy casualty department).
High quality data is necessary not only for the development of statistically-based tools but
also for the validation of decision support tools regardless of the underlying technology.

2. Establishing rules or knowledge acquisition: Rule-based systems require a corpus of
expert rules which, in conjunction with evidence, may be used to infer outcome. The
establishment of a rule base is often fraught with difficulty inasmuch as it is the exceptions
(which are of prime importance and which may form a significant proportion of the
population) which often elude the knowledge engineer. _

3. System portability and adaptability: In both of the previous cases we have identified
areas which may make it difficult for the system to be operated away from its site of
origination. Significant geographical or demographical variations would require further
data capture. Temporal variations in the nature of the problem, on “short” time-scales, may
prove intractable. The solutions to these problems may also elude the expert systems
developer, where extensive additional investment in knowledge engineering may be required
to overcome them.

4. Validation, evaluation, usability and resistance: The problems of how to validate a
system's performance and to evaluate its impact in live trials must beset the development of
any form of decision aid. In addition, any useful system must impinge as little as possible
upon normal working practice. Furthermore, there may be inbuilt resistance to the use of
computerized decision support systems such as a fear of the erosion of the expert's role.
Items 1, 3 and 4 are ever present. Items 2 and 3, however, can be addressed by introducing
a “learning” mechanism, which we do here using artificial neural networks.

NEURAL-NETWORK-BASED DECISION SUPPORT SYSTEMS

- Advances in neurocomputing have opened the way for the establishment of decision
support systems which are able to learn complex associations by example. The main thrust
of work in this area has been in the use of the so-called feedforward networks (eg the
multilayer Perceptron [1] (MLP) or the Radial Basis Function networks [2] (RBFN)) to
learn the association between evidence and outcome. Theoretical work in this area has led
to the discovery of two important properties of feedforward networks.

e Their learning rules lead to an interpretation of their outputs as estimates of the posterior
probability distribution, conditioned on a set of evidence [3].

o The MLP or the RBFN have been shown to be rich enough in structure so as to be able to
approximate any (sufficiently smooth) function with arbitrary accuracy [4,5].

It can be inferred from these results that, given sufficient data, computational
resources (the multilayer Perceptron, in particular, does not scale well with problem size)
and time (non-linear optimization which is non-linear in the parameters may be time
consuming to perform, numerically), it is possible to estimate the Bayes-optimal classifier to
any desired degree of accuracy, directly and with no prior assumptions on the probabilistic
structure of the data. This is an attractive scenario and has been extensively exploited.
However, items 2 and 3 above still remain. The inherent adaptability of NNs may make it
easier to tune-in to local conditions but would still require significant interventio _
additional effort in data capture, retraining and revalidation. Feedforward net%@x]@f—g}e Lo N
static devices in operation and fail to cope with the basic question: “how c A neural b\
network protect from corruption, and retain, useful historical associations (stabil%@) whilst. v




simultaneously learning new associations (plasticity) which may be unrelated to past
experience, or at worst, spurious?”. This question is known as the stability/plasticity
dilemma. To overcome this problem in feedforward networks, learning is suppressed after
acceptable performance is attained. The system is then put into operation. Implicit in this is
the assumption that a trained network both represents the problem adequately at the time of
development and continues to do so into the future, or in remote situations. Should
learning remain continuously active in feedforward networks, all new data will be learned,
with the attendant risk of serious performance degradation.

An entirely different approach, utilizing a network comprising both feedforward and
feedback components, has been taken by Carpenter and Grossberg and colleagues, and
which overcomes to a large extent the stability/plasticity dilemma. This is the so-called
Adaptive Resonance Theory (ART) family of architectures [6,7]. In their earliest
manifestations these were unsupervised systems which autonomously learned to recognize
categories of their own devising. They use feedback to compare the existing state of
knowledge or long term memory (LTM) of the system with the current set of evidence and
either: (i) adjust the LTM, which codes for a particular category, to account for the current
situation if this is “similar” enough to other patterns in that category; or (ii) initiate a new
category which codes for the unrecognized (current) pattern. This has a major advantage
from a design view point in that there is no off-line “hand crafting” of network architecture
to be done, ie one autonomous network can address any problem or, indeed, many
problems simultaneously. Also, commonly occurring patterns have the effect of reinforcing
their category's ability to recognize like examples, while categories representing spurious
events are rarely, if ever, excited again and so do not corrupt previously learned
information. Conversely, should a rare but valid event occur, it will reside in LTM until
next recalled.

The ART architectures of -interest here comprise two layers of nodes, fully
interconnected in both directions. These form an input/comparison field (F1), and an
output/recognition field (F2) which latter implements a “winner-take-all” competition.
Together these form an attentional subsystem which is complemented by an orienting
subsystem which initiates or suppresses search. ART takes its name from the interplay
between learning and recall whereby signals reverberate between the two layers. When an
input pattern is recognized, a stable oscillation (resonance) ensues and learning (adaptation)
takes place. Categories are coded by the formation of templates in the F2 layer (represented
by the weights of a node) and these are refined as new information becomes available.
During recall, when a given node is excited, a template is fed-back to the F1 layer for
comparison with the current input. The degree of match is assessed against the vigilance
parameter which is used to control the coarseness of categorization. If the degree of match
is not sufficiently good, search is initiated until either an acceptable match is found
(resonance) or the pattern is assigned to a new category (F2 node).

Until recently ART was restricted to unsupervised learning. This meant that the
autonomously selected categories would be unlikely to correspond to meaningful categories
in the problem domain. The so-called ARTMAP [8,9] family of architectures has resolved
this problem by providing a mapping network which is capable of supervised learning whilst
retaining the desirable properties of the earlier ART networks. These networks comprise
two ART modules coupled via a map field. Each ART module individually self-organizes
into categories representing data (evidence) and supervisory signal (outcome) and the
association between categories is formed by the map field.

ARTMAP networks are able to learn to improve their predictive performance on-
line in non-stationary environments, utilizing their entire memory capacities. Learning is
driven by approximate match and takes place very rapidly as does recall or recognition.
Contrast this with the feedforward architectures. These learn off-line and assume a



stationary environment. Learning must be suppressed to overcome the stability/plasticity
dilemma and is: very slow, driven by mismatch; prone to spurious solutions; and scales
exponentially with problem size. Recall, however, is very fast.

ARTMAP presents the prospect of an autonomous system capable of learning stably
to categorize data whilst protecting the user from spurious predictions. This means that the
system can safely carry on learning in situ whilst providing useful support. Thus, in clinical
diagnosis, evidence would be presented. Should it excite a recognition category (from
previous training) then a prediction is returned. Update of LTM can then be initiated if and
when diagnosis is confirmed. If the current pattern is not recognized the user is so
informed. Again adjustment of LTM is only initiated upon confirmation of the diagnosis.
Provided diagnosis remains unconfirmed, no LTM adjustment takes place. This is a crucial
issue in the development of a portable decision aid which should be able to adapt to local
practice and to changing procedures, in much the same way as humans do.

Any decision making or diagnostic procedure where evidence is to be associated
either with an objective outcome or with expert (subjective) opinion, is a potential
application area for this approach and most importantly, it can put development of decision
aids into the hands of the domain expert, rather than the computing expert. This capability
must be viewed as essential in overcoming resistance to the use of computational decision
aids—the domain expert assumes “ownership”.

We now demonstrate the applicability of an ARTMAP variant, fuzzy ARTMAP [9]
(FAM) to the problem of the early diagnosis of myocardial infarction (MI or heart attack).
FAM possesses the attractive properties described earlier and overcomes many of the
failings of early ART and ARTMAP implementations. FAM achieves a synthesis of fuzzy
logic and ART which enables it to learn and to recognize arbitrary sequences of analogue or
binary input pairs, which may represent fuzzy or crisp sets of features.

EARLY DIAGNOSIS OF ACUTE MYOCARDIAL INFARCTION: A
CASE STUDY :

Early and accurate diagnosis of chest pain is perhaps the major challenge in present
day emergency medicine. Chest pain is the commonest reason for emergency medical
referral in the developed world and is a major symptom of the onset of MI. Each year in the
United Kingdom over 240,000 cases are confirmed while in the United States 1.5 million
patients are admitted to intensive therapy units (ITUs). However, in an audit of the
management of acute chest pain in a large Accident and Emergency (A&E) department,
12% of patients were found to have been erroneously discharged while 16% were found to
have been inappropriately admitted to ITU [10]. In the United States, approaching half of
those patients admitted to ITU may ultimately be found not to have suffered a heart attack
[11]. Evidently this is a diagnostic question with significant health risk and resource
implications. It has been estimated that an early transfer of patients from ITU to a medical
ward may result in a financial saving of 50%. Early discharge of those with non-threatening
disease would result in concomitantly higher savings [12].

There is further pressure to improve the early diagnosis of MI—the advent of
thrombolytic therapy. This is most beneficial when administered as soon after the onset of
symptoms as possible. The expected benefit of thrombolytic therapy is a reduction in the
immediate threat to life plus an improved long term prognosis. The first of these benefits
has been confirmed [13] but it is too early to make a judgement on the second.
Thrombolytic agents must be administered within six hours of an infarction taking place to
be of significant benefit [14]. Furthermore, they are expensive and may be dangerous if
given inappropriately. The routine diagnosis of MI relies on serial measurements of
indicators which may take 24-48 hours to develop diagnostic changes. The potential of a



diagnostic aid during the early stages of MI is therefore clear, particularly for clinicians in
non-cardiac specialities such as emergency medicine or in general practice.

Acute chest pain is a suitable domain in which to develop a decision support system
because of (i) its high incidence and (ii) the possibility of obtaining a concrete final
diagnosis. Our study included 500 consecutive emergency referrals to a large teaching
hospital in the UK, with a complaint of chest pain [15,16]. Information was recorded from
each patient on a standard proforma, comprising 78 items of demographic, clinical and
electrocardiographic data. In addition the admitting clinician was asked to estimate the
likelihood of the patient having suffered a heart attack. Each proforma was completed
before the results from confirmatory tests were available. Twenty six features were
abstracted from each patient record and these were coded in a binary vector excepting real-
valued data such as age efc which were normalised in the range 0-1 [17]. The final
diagnoses were assigned independently and were binary coded.

Methods

A number of experiments have been conducted to explore the capabilities of FAM in
the early diagnosis of MI. Three training methods were investigated as follows.

. Single-epoch (SE) training—each pattern pair is presented once only in the
following cycle: present evidence, predict outcome, present verified outcome, update long
term memory. Such a strategy can be implemented on-line, in real-time.

o Multi-epoch (ME) training—corresponds to the above but the data are presented as
many times as is necessary to ensure that as many as possible are correctly classified.
Evidently the computational burden rises here with the amount of historical data and thus,
for on-line operation the minimum interval between data presentations must increase.

. Voting—is an inherently off-line technique, requiring multiple network realizations
using either SE or ME training, for random orderings of the data. The voting strategy can
overcome classification errors associated with the order of presentation of data (a known
problem with FAM [9]) by cancelling prediction errors.

For investigations into off-line performance the data were partitioned into a training
set and an independent test set, as shown in Table 1, below. Note that the data comprises
approximately equal proportions of MI, angina and non-ischaemic heart disease (IHD)
sufferers and therefore has an a priori bias towards excluding a diagnosis of MI of 2.2:1.

A further 26 records were set aside (16 from the training set and 10 from the testing
set) to obtain a comparison with a panel of experts. Of these, 20 were thought to be
“difficult” cases whilst six were “text-book” cases, included for calibration. Networks were
trained on the training set, using the selected method, and diagnostic performance was
calculated from the testing set.

In the assessment of on-line performance, the remaining 474 data were used both to
train and to test; statistics being

Training Set Testing Set gathered prior to verification of

Final DX | Number | Proportion | Number | Proportion | diagnosis an LTM update. Here
Ml 92 0.31 62 0.31 accuracy (ACC), sensitivity
Angina 114 0.38 15 0.38 (SENS) and specificity (SPEC)
Non-IHD | 94 031 63 031 of diagnosis are of interest. For
Totals | 300 1.00 200 1.00 off-ine  training, confidence

Table 1 Classification of chest pain sufferers.

intervals are calculated for these
quantities according to the
method due to Highleyman



(reported in [18]). Since this method relies upon the division of data into explicit training
and testing sets, it is not appropriate to the on-line situation. We have not yet investigated
confidence measures for that case.

It should be noted that, whereas it is usual to select optimal decision thresholds by
analysis of the Receiver Operating Characteristic (ROC) curve [19], this technique is not
appropriate here owing to the “all or nothing” predictions made by the FAM system. It will
be seen that this inability to select optimal thresholds, hence to counteract the effects of a
priori bias in the data, can result in an imbalance in the values of accuracy, sensitivity and
specificity. Recent work by the authors introduce a modified FAM which can achieve, on-
line, very close to Bayes optimal classification rates for strongly biased data [20].

Results and Discussion

We concentrate on those results which best illustrate the effectiveness with which
FAM addresses items 2 and 3 in the Introduction.

Oft-line processing

Table 2(a) presents accuracies, sensitivities and specificities for the binary decision,
MI or not MI for the single-epoch and multi-epoch training strategies and for their
associated voting strategies (with ten voters). The columns headed “Ave” contain the
means of ten runs (using randomly ordered data) and their associated standard deviations
are shown below “SD”. Confidence intervals for ACC, SENS and SPEC are also given.’

Voting gives the best overall performance and achieves the levelling of ACC, SENS
and SPEC usually associated with optimal threshold selection by ROC analysis.

In table 2(b) the performance of the admitting clinicians at presentation, and the best
performance achieved (on a super-set of the same data) by an MLP (with optimal decision
threshold) [15] are presented.

Clearly, FAM is able to outperform both the admitting clinicians and the best
available MLP results when trained off-line. Note that here the admitting clinicians had all
received specific cardiological training and thus might be expected to outperform typical
casualty officers.

SE ME
Ave SD Vote Ave SD Vote Clin | MLP
ACC (%) | 719(%) |5 86(3) | 84(3) |3 | 90(3 ACC (%) |82 |90
SENS (%) | 75(%) |7 |86(3) [82%) [3 |90 SENS (%) {79 |87
SPEC (%) | 81(%) |9 86(3 85(3 4 90(3 SPEC (%) |84 91
Table 2(a) Off-line training performance. Table 2(b) Comparisons.

When compared with a panel of experts (senior clinicians with extensive
cardiological experience), which was given 26 selected cases to diagnose [15], FAM
diagnosed 10/11 cases of MI and excluded 13/15

Panel of experts i :
FAM  |MI | nonMI | Tomr | Pon-sufferers [17]. The panel diagnosed 10/11 and
MI 11 ] 2 9/15 respectively. The relative performance of the

non-MI | 5 9 14 panel and FAM is shown in Table 3 which can be

Total 16 10 26 analyzed by McNemar's method to produce a chi-

square test statistic of 2.66. This is not significant at
the 10% level thus we conclude that the panel and

Table 3 DX by FAM and a panel of FAM perform equally well on the sample.
experts.



On-line processing

Figure 1 indicates the on-line performance of FAM for two separate cases. The first
uses the technique of “sample replacement”. Here, samples are drawn at random and are
returned after use. Thus any individual sample may be chosen repeatedly. The second case
is analogous to in situ or real-time learning when samples are not returned to the pool.
Again ACC, SENS and SPEC are considered and their averages over ten runs are plotted
with an indication of their standard deviations. There are two important points to note
pertaining to on-line processing. (i) Sometimes FAM fails to make a prediction (recognize a
pattern). This is especially true in the early stages of learning. Here such non-predictions
are counted as erroneous so that the performance indicators are biased downwards. (ii)
Because statistics were gathered sequentially for each run, frequent poor (or non)

Performance (%) Performance (%)
100 T T T T T T T T T 100 T T T T T T T T

80

€0

40

20

[ 1 1 1 1 1 | 1 1 1 0 1 1 1 1 1 1 4 1 1
50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
No. of samples No. of samples
1(a) Sample Replacement 1(b) No Sample Replacement

Figure 1 On-line FAM performance.

predictions in the early stages are included in the long-run results. Again this has the effect
of biasing the results downwards.

In both cases the qualitative behaviour of FAM is as expected: broadly speaking, a
continuous improvement in performance as the number of samples increases accompanied
by a gradual reduction in spread. This latter indicates that the performance of an individual
run has a tendency towards the average performance ie in the long run averaging should not
be required to achieve good performance and a truly on-line system can be used. Peaks and
troughs in the early stages result from the formation of poor initial templates and frequent
non-predictions. Sample replacement yields a better result owing to the relatively small
sample size (relatively large probability of repetition).

CONCLUSION

FAM has demonstrated its potential to diagnose acute myocardial infarction. FAM
attains the performance of the MLP, and has the following advantages:

° autonomous operation whilst learning to improve predictive performance on-line;
° few parameters to be tuned and little “hand crafting” of architecture;
. recall and learning very rapid (potentially real-time).

The primary disadvantage of FAM vis a vis feedforward networks, is its lack of a
Bayesian interpretation, which is under further investigation. The authors have shown
empirically that FAM can approach the Bayes-optimal solution in on-line mode [20]. It
appears, therefore, that FAM may offer solutions to the problems of autonomous machine



acquisition of knowledge and portability, whilst simultaneously providing useful decision
support and may thus open the way for a computerized “apprentice” system.
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