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Abstract =

An autoregressive model is introduced for modelling, invariant feature extraction and
recognition of arbitrary three dimensional (3D) closed boundary curves. An orthogonal
-estimation algorithm is derived for the estimation of the coefficient matrix associated with. -
the model and an error reduction ratio is used to detect the order of the model. Itis shown
that the eigenvalues and the determinant of the coefficient matrix are invariant to rotation
around the origin, to the choice of starting point in tracing the boundary, and to scale and
translation which can therefore be extracted for the recognition of the 3D closed boundary
curves.




1. Introduction -

In the areas of robotics and machine vision there is a growing interest in developing efficient
procedures for the modelling and recognition of 3D objects (Sadjadi and Hall 1980, Oshima

and Shirai 1983, and Bhanu 1984).. The choice of a proper representation scheme is critical .- . .- ..

to the manipulation of the image data in these applications. The enclosing surface of a well
behaved 3D rigid solid unambiguously specifies the object and surface characteristics are
therefore useful in shape dominated pattern recognition. However inpré?ikriﬁny 3D objects
can be represented and recognised based on the boundary curves alone and a full surface

description of the object may not be necessary for the recognition of the object.

There are numerous techniques available for the analysis and recognition of 2D shapes.
Shape descriptions have been used with notable success with a variety of descriptors
appearing in the literature such as the Fourier descriptors (Zahn and Roskies 1972), moment
‘invariants (Dundani el al 1977) and the autoregressive (AR) model approach (Dubois and
Glanz 1986, Sekita et al 1992, and Tsang and Billings 1994). However the application of
© 2D techniques to 3D curves may give erroneous results for modelling and classification of
3D objects. Hence it is desirable to have an efficient way of representing and recognising
3D boundary curves. “In the present study, the AR model approach is extended to cover the
“modelling of 3D closed boundaries. The orthogonal estimation algorithm developed for the

‘analysis of 2D shape (Tsang and Billings 1994) is extended to cover 3D boundary curves and -
| _procedﬁres that determine the order and the significant lagged terms in the AR model are
introduced-_ using an error reduction ratio test. If the order of the model is insufficient to

‘capture the characteristics of the boundary data points, more lagged terms can be added to - 5
the model ‘with the advantage that the newly introduced parameters will not affect the --

previously estimated orthogonal parameters. Using the orthogonal estimator and the error
reduction ratios a minimum set of feature vectors can therefore be derived and this should
 considerably reduce the computational time for the classification of 3D boundary = shapes.
A new recognition algorithm based on the estimated AR coefficient matrix is derived such
that the recognition is invariant to rotation, size and translation of an object. Simulated
examples are included to demonstrate the performance of the algorithms. . -

2. Autoregressive model representation of a 3D boundary
There are currently numerous techniques for acquiring information about surface and

boundary geometry from a variety of sensors (Jarvis 1983). These typically provide
information only about the visible surface of an object. For complete 3D surface and



boundary data information from multiple partial views is required. This is done by using an
active observer (Aloimonus et al 1987) or a mechanism for rotating the object in front of a
passive observer. Assuming that full 3D surface or boundary data is available, an AR model
representation of the closed boundary curve can be obtained. Let U(k) = [X(K) Y(&) Z(k)]7,
" k=0,1,.:.,N-1 be a sequence of 3D boundary data points obtained by sampling according to -
the order of tracing by a sequential boundary follower. The distance between émy
- consecutive data points is fixed and X(k) = X(k+N), Y(k) = Y(k+N) and Z(k) = Z(k+N).
An AR model can then be fitted to the N collected data records. However the fitted AR
-model based on the raw data records will be dependent upon transformations of the boundary

such as translation, scale and rotation. For invariance, the sampled means are first
~ subtracted from the raw data records to give

x(®) = X - XE)

Yk =Y - YR B - 1)

i z2(k) = Z(k) - Z(k) -

~ where the overbar denotes data averaging and a state vector u(k) = [x(k) y(k) z(OIT is
‘constructed. Hence u(k) will be a sequencer of equally spaced 3D boundary data points as
- shown in Fig. 1. An AR model of order m is formed from this sequence of boundary points - -

by combining the preceding m boundary points to give

u(k) = E Au(k-i) + (k) (2

B ;':'where e(k) is an error sequence and 4, i=l,..n are m 3x3 coefficient matnces associated -.

~ with the AR model.” “Notice that eqn (2) will be 1nvanant to translatmn because any-~
‘7 mtranslanon will be Temoved after the operation of eqn.(1). - " '

3. Properties of the AR model

The coefficient matrix 4; will have some invariant properties. When each boundary point =
is represented by a state vector u(k), any similarity transformations such as rotation about
-the origin, scale up or down etc. can be expressed as pre-multiplying each boundary point
~ by the similarity transformation matrix B to give
w
Bu(k) = Y BAu(k) + Be(k) )
i=1

Since B is nonsingular and its inverse exists (Kreyszig 1979), eqn.(3) can be written as



ul(l) = z..: BABW/(k-1) + €'(®) (4)

i=1
where u/(k) = Bu(k) and €/(k) = Be(k). Comparing eqn.(4) with eqn.(2), the coefficient
** "~ 'matrix changes from 4, to BA;B -1 Consider the eigenvalues of the matrix BA,B™
o det{AI-BAB™) = det{B(\I-A)B™)
= det(B)det(B ")det(AI-A) = det(AI-A)
where A denotes eigenvalue and det() the determinant. Since B is a similarity

‘transformation matrix the eigenvalues, determinant and trace of A, will be the same as

~ BAB™' (Kreyszig 1979). The eigenvalues, trace values and determinants of the AR

coefficient matrix can therefore be extracted for the recognition of 3D boundary curves
providing an efficient way of estimating the AR coefficient matrix is available.

~ 4. The orthogonal estimator

“The orthogonal least squares estimator (Tsang and Billings 1994) has been successfully
adapted for the analysis and recognition of 2D boundary curves. The algorithm is efficient
and _robust. The error reduction ratio, which is incorporated as part of the orthogonal
estimator, provides an effective way of assessing the significance of model terms. This

~ ““provides a very flexible procedure for ordering the terms corresponding to the contribution
" 'that each makes to the 3D pattern. Prior to the application of the orthogonal estimation
- . algorithm to the estimation of the AR coefficient matrix, eqn.(2) is first split into three scalar
model to give

- am
2B = Y ey )xk-D+@)yk-D+a)zk-D] + &8 = 3 02K + @)
i=1

i=1

m Im
x y(k) = E [(021).-1‘(’5"')"'(ﬂzz).y(k'f)*(au),l(k"f)] * E,(k) = Eey,p”(k) + ey(k) (5)
e o E i=1

i=1

m 3m
' A_:;z(k) = E[(031)5(’6-5)+(032)9’(k‘ﬂ+(033),z(k‘f)] F Ez(k) = Eesza-(k) + Ez(k)

i=1 i=1

where (ajk)‘ is the jk element of the matrix 4;, €.(k), ey(k) and e,(k) are the estimation
errors for the sequences x(k), y(k) and z(k),6,, 6,; and 8, are the coefficients associated

with the regression terms p_(k), pﬁ.(k) and p, (k) respectively in the expansion of eqn.(2) and

P.(k)p, (k) and p,(k) represent any one of the lagged terms x(k-i),y(k-7) and z(k-i). For
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example, a first order AR model can be written as
i x(k) = (an)lx(k—l)+(a12)1y(k—-1) +(513)1z(k-1) * E,(k)

y(B) = (ay)x(k=1)+(a,,)y(k-1)+(a;),2(k-1) + €, (k)
2(R) = (a5 x(k-1)+(a;)),y(k-1)+(a3;),2(k-1) + € (k)

where

6, = (@y), » 65 =) » By =(a),

6, =(@a), » 6,= (@), » 6,5 = (a9,

B, = (a3); » 0, =(ay); » 6y =(a),
pﬂ(k) = pyj'(k) = pd(k) = x(k-1)
Pg(k) = p(K) = py(k) = y(k-1)

Pu® = Py = py®) = z(k-1)
The prthogonal estimation algorithm involves transforming eqn.(5) into three auxiliary
equations

3m
x(k) = Egn'w_ﬁ(k) i €x(k)
i=1

- 3m -
L YR = T gm0 + R ©

i=1

3m

S L= Y gw k) +eR)
i=1
: ‘where g, 8, .and g, are constant coefficients associated with the orthogonal data sets
wn.(kj, wﬁ(k) and w,(k) respectively and the orthogonality conditions
wow B = wlw,E) = wkwk) =0 , i=*j @)

hold where the overbar denotes data averaging. Consider first the model related to the

sequence x(k), a set of orthogonal data records can be constructed using the formulae
(Korenberg et al 1988, Tsang and Billings 1994)

w,(R) = pyk)

i-1
‘Wn(k) = .P,(k) = E a_qu_q'(k) ’ j <i
i ®

= WP [ Wi, jeleiv]

2. 0w ® [ Wi s i=1..3m



Note that the orthogonal coefficients g, only depend upon the previously fitted orthogonal
* parameters and will not be affected by any new term. The orthogonal parameters will
therefore be invariant to the specified model order. Once g, have been estimated, the

_elements of the AR coefficient matrix related to the sequence x(k) can be recovered as
(Korenberg et al 1988, Tsang and Billings 1994)

eme = gﬂm

3m (9)

B# = Uzﬂa‘f“' ’ j-3m 1, ,l

Equations (8) and (9) define the orthogonal least squares algorithm for the analysis of the
sequence x(k). They could equally be apphed to the sequences y(k) and z(k) to obtain the
:correéponding coefficients of the AR matrix relating to these sequences such that the full AR
model describing the 3D boundary curve can be reconstructed from the estimated parameters

~-. and the characteristics of the parameter matrix such as eigenvalues, trace and determinants

can be readily extracted for the analysis and recognition of 3D boundary curves.

The error reduction ratio which is a by-product of the orthogonal least squares estimator can
provide information regarding both the significance of individual variables in the system
model and the adequacy of the fitted model. The percentage reduction in the output variance

as a result of including the term g w,(k) into the model for the sequence x(k) can be

. expressed in terms of the error reduction ratio

€RR, = 100 g2 w, (k) / x2(k) (10
: If the value of eRR 15 large, this would imply that the term g w_(k) is a good candidate
to charactense the boundary model and if eRR, is less than a certain threshold, say 0.01,

the term can be excluded from the estimation. Also if the sum of eRR values for the

selected terms is close to 100, this would be an indication that the orthogonal model
adequately represents the sampled boundary data points.

- From e’qn.(S), the estimated coefficients «; and g, are governed by averaging values. If

the equally sampled boundary data records are sufficiently fine, the average values should
approach the actual mean value of the boundary data points and the estimated coefficients
will be independent of the starting point in tracing the boundary curve.



5. Methods of recognising shapes

The eigenvalues, trace values and determinants of the AR coefficient matrix are invariant to
translation of a boundary if the origin is set at the boundary centroid. To make the
‘eigenvalues, trace values and determinants invariant to the scale of a boundary the number

of boundary points is fixed to N and the boundary is divided into N segments of equal arc
" length. Itis expected that the eigenvalues for the same shape will be identical because they
are theoretically invariant under the similarity transformation. Thus shapes could be
classified by using the Euclidean distance between the tested eigenvalues, trace values and
determinants of the AR model and the reference values. Using the Euclidean distance

between the tested parameter vectors A’;, trace(4’) and det(4’) against the reference vector
7 _ P i _ ¥ a8 _

{A.f, trace(A[), det(4,"), c=1,...,C} where C is the number of different classes of boundary

éu;'ves should therefore provide a simple means of classification. The tested boundary points & /(k)

are classified as belonging to the class Q if the Euclidean distance between the feature
vectors is a minimum

m
; ! ! /
e VT A P4 A A P A A
=

= min {zjm:,-xf, |=+|x{,-x;|2+[x{,-x{,|=,c=1,...,c} - u'(k)eQ
isl

Ea ,2,3 |erace(Aj)~srace(A))|

s em. . =i h |trace(A")-tmce(Af)|,c=1,...,C} - u'(k)eQ
5 i=1

Y | det(4;)-det(d,9) |

i=1

(11)

= min {i | dct(Ai’)-det(Af) |,c=1,...,C} - u'(k)eQ
i=1

Once the shape has been recognised, the orientation of the object can also be identified. The
starting point of the data sequence is arbitrary but in order to identify the angle of rotation
of an object the alignment of the tested sequence with the reference sequence is required.
A cyclic correlation is therefore performed on the radius vector of the tested sequence and

the reference radius vector r(k) = yx2(k)+y2(k)+z(k) to give



N-1

hi’ ™ (k) TN k) -TETD)
¥, () = t2 , R =r'(N+k) , r(k)=r(N+K) (12)

J —2( 0 -r'(k) J (ro)-r0O)

. (7)) will give a maximum value if the two sequences are aligned. Once the alignment

~ factor t_, is found, the orientation of the tested boundary can be evaluated as

u(k) = Bu(k+t,) (13)
A least squares estimate for B can be obtained as
& v (e *1)
SRR : R (747 777 IS Tk 77 o I 'L T C I +2) (14)
: ’--_jHenﬁ:e orientation and size can be extracted from B.
6. Boundary on a plane
" The equation of a plane is given by
px(R) + qy(k) + rz(k) = s ‘ (15)

. where p,q, T, and s are constant coefficients. From eqn.(15), any one of the variables
x(k), y(k) and z(k) can be derived from the knowledge of the other two variables ifp, q, r
_and s are fixed. The inclusion of the term z(k) in the modelling of a 3D boundary curve
situated on a plane will therefore be redundant because z(k) can be absorbed by the other two
variables x(k) and y(k). In the orthogonalisation procedure, after the first two

orthogonalisation steps using the variables x(k) and y(k), the inclusion of the term z(k)
will provide no further information on the shape of an object if the curve is situated on a

: plane because the contribution has already been absorbed by the variables x(k) and y(k).
The zero or close to zero contribution of any consistent terms in the orthogonalisation
procedure should therefore be a good indicator for detecting if the boundary curve falls on

i _a plane. Notice that the inclusion of these redundant terms into the model will tend to
introduce numerical problems in the reconstruction of the coefficient matrix. To avoid this
problem, a procedure has to be introduced such that if the contribution of a particular term
is zero, or less than a very small threshold, that term will be excluded from the estimation
and the formulation of the AR coefficient matrix and the corresponding coefficient will be
set to zero so that the eigenvalues, trace and determinant can be extracted for the recognition

7



of the boundary. Better still the Tecognition can be reduced to a two dimensional recognition
problem by throwing away the third redundant term in the estimation such that the AR
coefficient matrix is reduced to a 2X2 matrix and an equation of a plane is fitted to the
collected data. Consider for example the two plane shapes with different orientations shown

~ in Fig.2 where 100 boundary data records were sampled from the two shapes for further

| analy51s From the error reduction ratio tests, a second order AR model was sufficient to
describe the curve because the sum of the error reduction ratio tests was over 99.9%.
Further, the error reduction ratio tests revealed that two variables were sufficient to capture
the feature of the shape and the third dimension variable was redundant because the
contribution to the error reduction ratio was close to zero. Hence a second order AR model
with a 2X2 coefficient matrix was fitted to the collected data set of Fig.2a) and the estimated

. AR model was given by
R [:(k) [1.8735 o.ozu] x(k-l)} -0.8778 —0.0156] x(k—Z)] L I
S 77 -0.1210 -0.9598] [y(k-2)] |e,(®)

0.0084 1.9443] |y(k-1)
The eigenvalues, trace values and determinant for the two matrices are given by
= (1.8711,1.9467), trace(4,) = 3.8178, det(d)) = 3.6425, X, = (-0.8756,-0.9621),

trace(A,) = -1.8376, det(4,) = 0.8423 and the shape was situated on the plane z(k) = 0.
Fig.2b) was obtained from Fig.2a) using the similarity transformation matrix

02198 0.2620 0.9397
B =|-.9264 0.3578 0.1170

LT -3056 -.8963 0.3214
" For 100 collected data records from the curve in Fig.2b) the orthogonal estimation algorithm

produced the second order AR model
[;r(k)] [1 9429 0.0141] t(k-l)] _[-os31 -.0145] t(k-z)l . [s,(k)] -
(®] 10.0198 1.8750] [y(k-1)] [-.0479 -.8845] [y(k-2)] |e.(®)
N and the equauon of the plane fitted to Fig.2b) with the mean removed was given by
z(k) = -2.9238x(k) - 0.3640y(k) (18)

“The eigenvalues, traces and determinants of the coefficient matrix for eqns.(16) and (17) are
exactly the same. - This clearly demonstrates that if the boundary curve falls on a plane the
~ recognition procedure reduces to the operation of a 2X2 coefficient matrix and the zero
- contribution of the third dimension variable indicates that the shape lies on a plane.



7. Experiments and results

The effectiveness of the estimation algorithm in the recognition of 3D boundary curves will
" be investigated using several examples. The experiments are principally concemned with
simply connected shapes which are completely known. The shapes used for the experiments
are illustrated in Figs. 3 and 4. Samples with various sizes and different translational and
rotational position were collected. The sizes were varied from 0.4 to 1.1. Shape set A of -
" Fig.3 is composed of 9 boundary curves of different sizes and orientations which were used
to investigate if the eigenvalues, trace values and determinants of the AR model fitted to the
3D boundary data are invariant to similarity transformation and can be used for pattern
_recognition. Shape set B (Fig.4) is composed of 9 shapes where some are relatively similar. -
~ 'This serves to test the sensitivity of the shape model to small variations in object shape. -

"1 Classification results and discussion

To investigate the effects of translation, size and rotation on the AR model, nine views
obtained from the same pattern with different orientations and sizes were used (Fig.2).. 100

- boundary sampled data were obtained from the nine curves and the orthogonal estimation . ==~ -
" . algorithm was applied. From the error reduction ratio test, a second order AR model was

- sufficient to described the curve because from the error reduction ratio test, a second order .

AR model “captured -over 99.9%-of the ‘total - output -variance. - Figure -5 shows the -~ iw=.==
.~ eigenvalues, trace values and determinants of the fitted AR coefficient matrix for the nine .
curves. They are very similar and this clearly demonstrates that the recognition algorithm .

is invariant to size, translation and rotation.

In order to estimate the relative size and orientation of a particular object, view (5) was
selected for the analysis and view (1) of shape set A was taken as the reference. One
hundred sampled data were used for the analysis. The relative size of view (5) to view (1)
can be obtained by

100 100
Y e [ Tk =08
k=1 k=1

To evaluate the orientation of the object, a cyclic correlation was performed on the radius
vectors for views (5) and (1) and the correlation function is shown in Fig.6. The correlation -
function is 2 maximum when © = 41 and, from eqn.(4), the similarity transformation matrix
was given by



- [-.2989 0.5294 0.5150
B = |-.4851 -5574 0.3170
0.5810 0.3170 0.5104

Figure 7 illustrates the sampled boundary data points of view (5) superimposed on the
transformed reference view. A very close match between the two curves has clearly been - - ---
obtained. - —~ - '

Shape set B of Fig.4 contains nine different objects. Some of the shapes are vefj similar and

some are rather complicated. This serves to test the performance of the algorithm when used

~ toclassify a large number of patterns. One hundred boundary points were collected for each _

. pattern shown in Fig.4 and the estimated eigenvalues, trace values and determinants of the - - ==

fitted AR coefficient matrix are shown in Fig. 8. The Euclidean distances between the nine

~ patterns are shown in Fig.9 and they indicate a similarity between curves 5,6 and 7 because )
_the Euclidean distances between these parameter vectors are small. Finally 81 patterns of . - _-

different sizes, and orientations created from Fig.4 were used to test the classification rule

and the algorithm correctly classified them all.

8. Conclnsions
The othooonal estimation algonthm prowdes an effective approach for estimating the .- :.: - -

_ coefficient matrix associated with the AR model of 3D boundary curves. - The eigenvalues, .- wt
* 'trace 'values and ‘determinants of the coefficient matrix are invariant to size, rotation and _H

translation if the number of the sampled boundary data are fixed and are equally-spaced. = - .

, Couphng the orthogonal estimation algorithm with the extracted features of the eigenvalues,
trace values and determinant provides a promising way of analysing and classifying 3D
boundary curves.
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Figure 1. 3D boundary coordinates
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Shape set A

Figure 3.
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Shape set B

Figure 4,
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